Implementing Internet Key Exchange (IKE)

Niklas Hallqvist
Applitron Datasystem AB
niklas@openbsd.org

Angelos D. Keromytis
Distributed Systems Lab, University of Pennsylvania
angelos@openbsd.org

Abstract

A key component of the IP Security architecture is
the Internet Key Exchange protocol. IKE is invoked
to establish session keys (and associated crypto-
graphic and networking configuration) between two
hosts across the network. IKE needs to authenticate
and authorize the parties involved in an exchange,
negotiate parameters to be used for the communi-
cation, and interact with the local IPsec stack. The
number of tasks, along with the flexibility built into
the protocol, as well as the need to allow future ad-
ditions and modifications to the protocol, need to
be taken into consideration when designing and im-
plementing IKE.

Another complicating factor is the need for security
policy management. Although IKE can establish se-
curity associations with remote hosts, some method
for determining what kinds of traffic can and should
be exchanged with a remote host is necessary. As
there is no standard specification yet, we are us-
ing a trust-management based approach using the
KeyNote system as a basis for specifying policy.

This paper discusses the design, architecture, and
implementation details of the OpenBSD IKE dae-
mon, with separate mention of the security policy
mechanism.

1 Introduction

The IP Security architecture [14], as specified by the
IETF (Internet Engineering Task Force), is com-
prised of a set of protocols that provide data in-
tegrity, confidentiality, replay protection, and au-

thentication at the network layer. This positioning
in the network stack offers considerable flexibility
in transparently employing IPsec in different roles
(e.g., in building Virtual Private Networks, end-to-
end security, remote access, etc.). Such flexibility is
not possible in higher or lower levels of abstraction.

The overall IPsec architecture is very similar to pre-
vious work [12] and is composed of three modules:

e The data encryption/authentication protocols
[1, 2]. These are the “wire protocols,” used
for encapsulating IP packets to be protected.
Outgoing packets are authenticated, encrypted,
and encapsulated just before being sent to
the network, and incoming packets are decap-
sulated, verified, and decrypted immediately
upon receipt. These protocols are typically im-
plemented inside the kernel, for performance
and security reasons. A brief overview of the
OpenBSD kernel IPsec architecture is given in
Section 2.

e The key exchange protocol (IKE) [11] is used
to dynamically establish and maintain Security
Associations (SAs). An SA is the set of pa-
rameters necessary for one-way secure commu-
nication between two hosts (e.g., cryptographic
keys, algorithm choice, ordering of transforms,
etc.). Although the wire protocols can be used
on their own using manual key management,
wide deployment and use of IPsec in the Inter-
net requires automated, on-demand SA estab-
lishment.

Due to the large number and variety of config-
urations and options an IKE implementation
must support, this part of the IPsec architec-
ture tends to dominate the other two in terms
of code size and complexity. The first part of

this paper discusses the OpenBSD implemen-
tation of IKE.

e The policy module governs the handling of
packets on their way into or out of an IPsec-
compliant host. Even though the security pro-
tocols protect the data from tampering, they
do not address the issue of which host is al-
lowed to exchange what kind of traffic with
what other host. While traditional packet fil-
tering mechanisms, such as employed in mod-
ern firewalls, can be used (with minor modifica-
tions) in enforcing traffic policies, a higher-level
mechanism for validating and configuring such
filters is needed. The second part of this paper
discusses the implementation of a security pol-
icy mechanism based on trust management [6]
in the OpenBSD IPsec.

1.1 Paper Organization

The remainder of this paper is organized as follows.
Section 2 outlines the OpenBSD IPsec architecture.
Section 3 gives a brief overview of the IKE protocol,
while Section 4 discusses the design and implemen-
tation of the OpenBSD IKE implementation, and
Section 5 presents the security policy mechanism.
Related and future work is presented in Section 6.

2 OpenBSD IPsec

IPsec in the OpenBSD kernel is implemented as
just another pair of IP transport protocols (AH and
ESP). Thus, incoming IPsec packets destined to the
local host are submitted to the appropriate IPsec
protocol for processing based on the protocol num-
ber in the IP header. The SA needed to process
the packet is located in an in-kernel database using
information retrieved from the packet itself. Once
the packet has been correctly processed (decrypted,
authenticity verified, etc.), it is re-queued for fur-
ther processing by the IP module, accompanied by
additional information (such as the fact that it was
received securely) for use by higher protocols and
the socket layer.

Outgoing packets require somewhat different pro-
cessing. When a packet is handed to the IP module
for transmission, a lookup is made in a modified

version of the routing table (called Security Policy
Database, or SPD, in the IPsec standards) to deter-
mine whether that packet needs to be processed by
IPsec. If this is the case, the result of the lookup
also specifies what SA(s) to use for [Psec-processing
the packet. Once processed, the packet is then re-
queued for transmission by IP. If no SA is currently
established with the destination host, the packet is
dropped and a message is sent to the key manage-
ment daemon through the PF_KEY interface [16].
It is then the key management’s task to negotiate
the necessary SAs.

To manage the SA and SPD tables, we use the
PF_KEY interface, which is similar in concept to
the routing socket interface available in BSD. Both
manual keying utilities and key management dae-
mons (such as IKE or Photuris [13]) use this inter-
face to communicate with the kernel.

A somewhat dated overview of the OpenBSD IPsec
architecture is given in [15].

3 The IKE Protocol

IPsec provides a solution to the problem of secur-
ing communications. However, for large-scale de-
ployment and use, an automated method for man-
aging SAs and key setup is required. There are
several issues in this problem domain: negotiation
of SA attributes, authentication, secure key dis-
tribution, and key aging to name some. Manual
management is complicated, tedious, error-prone,
and does not scale. Standardized protocols ad-
dressing these issues are needed; IETF’s recom-
mended protocol is named IKE, the Internet Key
Exchange. IKE is based on a framework protocol
called ISAKMP and implements semantics from the
Oakley key exchange, therefore IKE is also known
as ISAKMP /Oakley.

The IKE protocol is unfortunately a rather complex
one, with many modes and options. Furthermore,
new extensions proposed result in a further increase
in complexity. Interoperation has been a problem
because of this, but we are beginning to see good
interoperability in the mandatory parts of the pro-
tocol.

The IKE protocol has two phases: the first phase
establishes a secure channel between the two key

management daemons, while in the second phase
IPsec SAs can be directly negotiated. The first
phase negotiates at least an authentication method,
an encryption algorithm, a hash algorithm, and a
Diffie-Hellman [9] group. This set of parameters is
called a “Phase 1 SA.” Using this information, the
peers authenticate each other and compute key ma-
terial to use for protecting Phase 2. Depending on
the protection suite specified during Phase 1, differ-
ent modes can be used to establish a Phase 1 SA,
the two most important ones being “main mode”
and “aggressive mode.” Main mode provides iden-
tity protection, by transmitting the identities of the
peers encrypted. Aggressive mode provides some-
what weaker guarantees, but requires fewer mes-
sages and allows for “road warrior” ! types of con-
figuration using passphrase-based authentication.

The second phase is commonly called “quick mode”
and results in a IPsec SA tuple (one incoming and
one outgoing). As quick mode is protected by a
Phase 1 SA, it does not need to provide its own
authentication protection, allowing for a fast nego-
tiation (hence the name). Optionally, a new Diffie-
Hellman computation can be done, providing “Per-
fect Forward Secrecy”. PFS is an attribute of en-
crypted communications allowing for a transient ses-
sion key to get compromised without affecting the
security of future keys negotiated under the same
Phase 1 SA (in other words, all session keys are
cryptographically independent).

4 OpenBSD IKE

During spring 1998, Ericsson Radio Systems was
looking for technology that could secure general IP-
traffic in networks of tens, maybe hundreds of thou-
sands of participating hosts. Fairly soon it became
evident that IPsec was the right approach, but it
was not at all clear what IKE implementation to use.
The IKE standard was still evolving, and available
implementations were lacking in either functionality,
portability, exportability, or scalability. After hav-
ing been presented with the state of the IKE mar-
ket, Ericsson agreed to fund the development of an
IKE implementation written from scratch, isakmpd.
The initial authors were Niklas Hallqvist and Niels
Provos, both from the OpenBSD project.

IRemote mobile users that need to access the protected
network behind a firewall, using IPsec.

4.1 Architecture

When reading the drafts (later RFCs) on IKE, it
became clear the protocol was complex, with many
degrees of freedom. It was also known that isakmpd
would be ported to several platforms, each with dif-
ferent APIs to the IPsec stack. There were also
a number of proposals for IKE extensions in vary-
ing stages of completion. All these facts pointed
towards a very modular architecture with distinct
APIs between the subsystems. To avoid develop-
ment complexity, we also decided to map the con-
cepts of the standards fairly directly onto internal
data structures.

Given how isakmpd would work (accepting in-
bound packets, doing some processing in the packet-
prescribed context, sending a reply), it felt natural
to build a message-based event-driven application.
Thus isakmpd looks like most Unix UDP servers,
with a main loop consisting of a select call followed
by a multiplexor calling the right handlers for the
occurring events.

The most common event is packet arrival, handled
by the message module which is also responsible
for packet validation and context lookup. Another
fairly common event is the timeout, dealt with by
the timer module. There are also application events,
which are upcalls from the controlled application,
in our case the IPsec stack. The design of isakmpd
allows for other such “applications” in the future.
This is the reason why it is called isakmpd, instead
of iked. IKE is just one possible instantiation of the
ISAKMP framework. The upcalls are dealt with
by the application module, which to a great extent
consists of system-dependent code dealing with the
IPsec stack at hand. Currently, there exist three
application back-ends, PF_KEY, PF_ENCAP and
FreeS/WAN’s NetLink API.

For controlling isakmpd there are a couple of mod-
ules worth mentioning. The “user interface” (UI)
module listens for asynchronous events that control
different aspects of isakmpd, like debugging level, ac-
tive connections etc. This is currently done through
a FIFO, but the design allows use of sockets or some
other IPC mechanism. There is also a configuration
module dealing with configuration file parsing, as
well as lookups and overrides (via UI) of configu-
ration entries. Last but not least, there is a policy
module controlling what kind of SAs are allowed to
be negotiated and by whom (see Section 5).

As ISAKMP is a transport-neutral protocol, there
is also a transport module, which is actually an
abstract class in an object-oriented view. Since
IKE only requires UDP as the transport mechanism,
there is just one derived class, the udp class. Finally,
there is also a low-level network interface module
which provides interface-walking, etc.

As all ISAKMP packets belong to “exchanges,” we
chose to create an exchange abstraction which was
mainly a script engine and a data structure accu-
mulating context state to later be carried over into
SAs. Therefore, there are exchange and SA mod-
ules. They deal with creation, lookup, maintenance,
aging, and destruction of these structures. Each
exchange has a “script,” which is walked for every
packet received or transmitted. This makes it easy
to create a source file per exchange type, making
the code well modularized.

Independent of what exchange is used, there are a
lot of common operations that need to be carried
out during a negotiation. For this purpose we cre-
ated separate modules for authentication, encryp-
tion, hash computation, and Diffie-Hellman com-
putation. These in turn need more basic modules,
like random number generation, long integer math,
group math of both modP and elliptic curve kinds,
and X.509 certificate management [7].

Lastly, there are miscellaneous modules dealing with
things like dynamic loading of code, logging, etc.

4.2 Component Description

e The message module.

This module provides an abstract data-type
representing individual ISAKMP messages. In-
ternally, the messages are subdivided and in-
dexed by payload type. Exported functionality
consists of creation/destruction, incremental
payload addition, parsing, validation, and con-
text lookup of incoming messages, registering
of post-send functions, transport-independent
send logic, and message debugging. There is
also generic SA negotiation logic which is cov-
ered in the implementation details section be-
low. The reason for this logic being here is be-
cause it is driven by the physical message lay-
out.

e The timer module.

A fairly simple module accepting registration
of functions to call at specific times together
with their actual parameter. In order to get
the functions called, the time module exports
a function that calculates the timeout parame-
ter to give the select call of the main loop, as
well as the actual timer run function. Removal
and reporting (for debugging) of timers is also
supported.

The application modules (app, pf-encap,
pf-key, etc.)

These modules deal with the communication
with the application for which isakmpd is nego-
tiating SAs. Currently, only one application is
supported, IPsec. Communication with it oc-
curs through various system-dependent APITs.
Operations that need to be supported include
getting a fresh SPI, creating an SA, updating
a “larval” SA, grouping SA bundles, and, fi-
nally, removing SAs. Also needed is a means
for telling the IPsec stack that ISAKMP traf-
fic needs to be unencrypted. In OpenBSD, this
is achieved by setting the appropriate setsock-
opt(3) options in the isakmpd socket.

The network modules (transport, udp and if).

The transport module exports an abstract
data-type representing a specific transport. It
has an associated function pointer table, just
like the common wvtables that C++ compil-
ers create in order to implement polymor-
phism. Thus the transport structure is re-
ally a base class for the real transport classes.
There is just one such class at the moment,
the udp class. Exported functionality con-
sists of creation/destruction (or rather refer-
ence/dereference as they are ref-counted) of
transports, getting file descriptors ready for
I/0 to use in the select loop of main(), as well
as checking them for I/O possibility afterwards.
Message sending and reception methods are ex-
ported as well, along with endpoint address de-
termination.

The UI module.

This module is really just a simple com-
mand line interpreter. It conveniently accepts
commands asynchronously through a one-way
FIFO (named pipe). The commands are rudi-
mentary, one letter with a few parameters
each. The existing controls deal with issues
like debugging, SA management, and dynamic
changes to the configuration database.

int (*ike_main_mode_initiator[]) (struct message *) = {

ike_phase_1_initiator_send_SA,
ike_phase_1_initiator_recv_5SA,
ike_phase_1_initiator_send_KE_NONCE,
ike_phase_1_initiator_recv_KE_NONCE,
initiator_send_ID_AUTH,
ike_phase_1_recv_ID_AUTH

Figure 1: The Initiator Main Mode script

e The configuration module.

isakmpd maintains a configuration database
consisting of section/tag/value triplets, i.e. it
maps closely to a well known format called
“INI”. This configuration database is primed
from the configuration file (.INI-style) at pro-
gram start, and every time a HUP signal is sent
to the isakmpd process. It is also possible to
dynamically alter the database via the UI mod-
ule. There is functionality to treat the value of
a triplet as a comma-separated list, and easily
“walk” that list. Otherwise, ordinary database
operations like creation, lookup, and removal of
entries are exported.

e The policy module.

See section 5 for a description of this module.
This module exports only one function, which
is called to validate a combination of SA pro-
posal, remote peer identity, and packet selec-
tors (Phase 2 IDs).

e The exchange module.

A key abstraction in isakmpd is the exchange.
This is the engine that drives the negotiations
towards SA establishment. Exchanges form the
context of all negotiations, and closely map to
the exchange concept of the RFCs. Every ex-
change is a well-defined, fixed-length sequence
of messages between the two peers. Every in-
dividual message also has a well-defined min-
imum content of payloads. This structure of
exchanges lends itself to implementation as a
generic finite state machine driven by “scripts”
supplied by each exchange type. These scripts
provide the actions to execute at message recep-
tion as well as before/after message transmis-
sion. It is also easy to have a generic “syntax
checker” inspecting each message, ensuring the
required payloads are present. This module’s
exported API consists of functions for estab-
lishing exchanges when acting as initiator, as

well as setting up exchanges for “incoming” ne-
gotiations. There are also several lookup func-
tions, finding exchanges using different criteria.

The SA module.

Just like the IPsec kernel, isakmpd needs to
maintain its own SA database. This database
actually consists of both ISAKMP SAs, which
are the results of Phase 1 negotiations, and
application SAs from Phase 2. Every SA has
attached DOI-dependent (Domain Of Interpre-
tation) data, should we ever need to support
other DOIs than IPsec. The SA structure con-
tains both the on-the-wire representation of the
SA, as well as internal per-SA data. SAs are
created when the negotiation starts, but are in-
active until an exchange finalization routine is
run. The SA API is mostly a set of life main-
tenance functions, i.e. creation, ref-counting,
expiration setup, and destruction operations.
Similar to the exchange module, a fairly ver-
satile set of lookup functions is available.

The authentication module.

IKE allows for several kinds of authentication.
An authentication method needs to provide just
three functions: generation of a shared secret
the peers derive keys from, encoding of a keyed
hash proving the authenticity of the peer, and
decoding of such a hash thereby verifying the
other peer’s authenticity. Currently isakmpd
supports the mandatory pre-shared key authen-
tication method, as well as certificate based
(X.509) RSA signature authentication. We
plan to support public key encryption-based
authentication in the near future.

Cryptography and math.

Isakmpd builds upon some basic cryptographic
and mathematic components.

— Ciphers.

There is a collection of ciphers which can
be used interchangeably to protect the
data that goes on the wire. It is natural to
implement these ciphers as subclasses to a
“crypto” base class, which provides hooks
for initialization, cloning, and updating of
key state, as well as encryption and de-
cryption of data. The separation of key
state management from the actual algo-
rithm applications is important for main-
taining cryptographic synchronization be-
tween the peers. isakmpd implements
the following algorithms: DES, 3-DES,
CAST, and Blowfish.

Hashes.

As was the case with ciphers, it is also a
design requirement that hash algorithms
be easy to alter. Thus, hash algorithms
are also implemented as subclasses of a
generic hash class, providing a simple API
for incremental hash computation of con-
catenated data.

Diffie-Hellman.

The Diffie-Hellman algorithm is a means
of establishing a shared secret between two
peers without exposing sufficient data for
wire-tappers to compute that secret. The
API is simple, since only two functions are
needed: creation of a local random big-
integer, and computation of the actual se-
cret based on the local big-integer and a
similar-type value received from the peer.

Group mathematics.

The mathematical basis for Diffie-Hellman
is called group math. Groups are big-
integer arithmetic systems with a few pa-
rameters. It turns out that groups are
also suitable to implement in an object-
oriented fashion, as there are different
algorithms that comply with the group
math requirements. In isakmpd, there is
support for two kind of groups, elliptic
curves and modP groups.

Big integer mathematics.

Both group mathematics and the public
key cryptography used in the authentica-
tion and policy modules, need big-integer
math. We currently use OpenSSL’s BN
functions as well as a few supplementary
routines written by us. We have how-
ever made the underlying math library
exchangeable so other math libraries can

be used if needed. We currently sup-
port FSF’s GMP but we also intend to
take advantage of hardware support for
big-integer operations, since such prod-
ucts have begun to make their appearance
in the market,.

e The dynamic loader module.

Perhaps a less obvious component to have in a
daemon like isakmpd is a module for dynamic
loading and linking of code. The reason for
this module is mainly due to the RSA patent;
we cannot ship RSA code in OpenBSD as the
license-free implementation cannot be imported
to the United States. Therefore, we dynam-
ically load that support if it is available (the
supporting libraries can be fetched separately,
different versions for different countries). This
module exports a function that takes a dynamic
load script, written in a very simple language
we designed, that describes what files should be
loaded and what symbols should be resolved.

e The log module.

Logging is crucial in security applications. It is
also important that developers of security soft-
ware are presented with debugging tools that
help them find bugs faster. We consider logging
to be such a tool, if it can be controlled in a fine-
grained way. This module exports functions to
change the levels per logging class, to control
where logging information goes and, naturally
to actually log both binary and textual buffers.

e The system-dependent module.

In order to maintain portability, every func-
tion that may need differing implementations
depending on the platform, needs to be placed
in a central, exchangeable, system-dependent
module. Most often, functions placed here are
glue or proxies.

4.3 Implementation Details

4.3.1 The Exchange Script Machine

An IKE exchange normally consists of a fixed num-
ber of well-defined messages, which each peer sends
every other turn. Recognizing this simple fact, we
chose to build the state machine around an en-
gine which ran “scripts” unique for each exchange
type. An example of a script is shown in figure 1.

This is the script an initiator runs when doing a
“main mode”. The elements of the script are func-
tions, alternately constructing a message to be sent,
or dealing with a message that has been received.
Along with this semantics description there is also
a syntactic “script”, which may look like figure 2.
This syntax description describes what payloads are
mandatory in each message of the exchange. It also
marks when the exchange ends.

4.3.2 Configuration

Configuring IKE is an involved process, due to IKE
being a complex protocol. When we were faced with
the problem of how to design the configuration lan-
guage we tried a few simplistic approaches, but they
soon turned out to be too inflexible. Thus we de-
cided to use a rather generic configuration syntax
which we could fit in everything we wanted. The
syntax would also allow for easy dynamic modifica-
tion of the internal configuration information with-
out reloading a full file. The caveat is that our con-
figuration syntax maps much better to the machine
and protocols than to a human being administering
isakmpd. Our plan was to get someone else write a
“real” configuration file format that could be trans-
lated into our style. So far no one has taken the bait.
Note that ideally, very little configuration should be
needed for isakmpd; most of the information should
be provided on-the-fly by the kernel (at least in the
end-to-end case), or through some security policy
discovery mechanism.

The file format is commonly known as .INI-format,
and a snippet is shown in figure 3. Internally, ev-
erything is treated as (section, tag, value) triplets,
where the values can optionally be lists of scalar val-
ues. The values themselves are often section names
thereby giving a tree (or rather a forest) structure
to the data.

As we have already mentioned, the internal config-
uration is dynamically alterable. We saw a need
for several “users” altering the configuration con-
currently, so we made the API transactional. Each
transaction can contain several modifications to the
configuration, and they are atomically introduced.

Internally there is also an API to get the actual con-
figuration values. Because of this, it is considered
very easy to move the configuration database into
other internal formats or even externalize it.

4.3.3 Portability Considerations

From its conception, there was a portability require-
ment in ¢sekmpd. It should run on various plat-
forms, and with different IPsec stacks. Because of
this demand, the “sysdep” module was introduced.
Each platform we support needs to provide its own
version of this module. In principle, all of the IPsec
API could be dealt with here, but as APIs can be
shared among several platforms (and there even ex-
ist standards now), most often the sysdep module
only has stub code to call the right API module, like
PF_KEY.

PF_KEY may become a standard, but it is only an
API for maintaining SAs, and IPsec also needs pol-
icy maintenance. All PF_KEY systems we support
have chosen to add policy extensions to PF_KEY
because of the fact that the API is flexible enough
to pass such data as well, and it is easier to extend
something working than to invent something en-
tirely new. However, extensions tend to be platform
specific, so the PF_KEY support code in isakmpd
has to deal with several different variants of the pro-
tocol. This problem is recognized, and there actu-
ally is some consensus between OpenBSD, KAME,
and FreeS/WAN that this needs to change, and that
the extensions need to converge, if not even be stan-
dardized.

With respect to differences in the build environ-
ment, we have seen a need to support both main
“make” dialects, BSD and GNU. This is of course
less than optimal, but given the alternatives it is
currently our best option. Furthermore, every sup-
ported platform has to provide a makefile fragment
wherein constraints on what isakmpd should support
on that particular platform can be expressed, as well
as instructions on how to build system-dependent
code.

4.3.4 Debugging Support

Being a security critical application, it is vital
isakmpd be as bug-free as possible. All software con-
tains bugs, and all development creates new ones.
Recognizing that, we have chosen to make debug-
ging a more pleasant task than it usually is. Nor-
mally isakmpd detaches from the controlling termi-
nal and logs only exceptional conditions to the sys-
log facility. However, in order to be able to run
under a normal debugger, it is possible to run in

int16_t script_identity_protection[] = {
ISAKMP_PAYLOAD_SA,/* Initiator -> responder. x*/
EXCHANGE_SCRIPT_SWITCH,
ISAKMP_PAYLOAD_SA,/* Responder -> initiator. x*/
EXCHANGE_SCRIPT_SWITCH,
ISAKMP_PAYLOAD_KEY_EXCH,/* Initiator -> responder. */
ISAKMP_PAYLOAD_NONCE,
EXCHANGE_SCRIPT_SWITCH,
ISAKMP_PAYLOAD_KEY_EXCH,/* Responder -> initiator. x*/
ISAKMP_PAYLOAD_NONCE,
EXCHANGE_SCRIPT_SWITCH,
ISAKMP_PAYLOAD_ID,/* Initiator -> responder. x*/
EXCHANGE_SCRIPT_AUTH,
EXCHANGE_SCRIPT_SWITCH,
ISAKMP_PAYLOAD_ID,/* Responder -> initiator. */
EXCHANGE_SCRIPT_AUTH,
EXCHANGE_SCRIPT_END

Figure 2: The syntax of an ID_.PROT exchange

Incoming phase 1 negotiations are multiplexed on the source IP address.

[Phase 1]
192.168.0.1= ISAKMP-peer—-node-0

[ISAKMP-peer-node-0]

Phase= 1

Transport= udp

Address= 192.168.0.1

Configuration= Default-main-mode
Authentication= yoursharedsecretwithO

[Default-main-model]

DOI= IPSEC

EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA,3DES-MD5

[3DES-SHA]

ENCRYPTION_ALGORITHM= 3DES_CBC
HASH_ALGORITHM= SHA
AUTHENTICATION_METHOD= PRE_SHARED
GROUP_DESCRIPTION= MODP_1024
Life= LIFE_600_SECS

[LIFE_600_SECS]

LIFE_TYPE= SECONDS
LIFE_DURATION= 600,450:720

Figure 3: Configuration entry samples

the foreground, sending logging messages to stderr
instead. As we have already mentioned, the logging
module has a fine-grained control mechanism mak-
ing it easy to chose detailed information on certain
topics. In order to ease problem pinpointing, almost
every intermediary computation can be logged.

The build environment also contains instructions on
how to build isekmpd with two different memory
allocation debugging tools: ElectricFence, for find-
ing buffer overflows and use after deallocation, and
Boehm’s garbage collector to find memory leaks.
We periodically run with these tools to test for such
problems.

4.3.5 Addressing Denial of Service Attacks

IKE is subject to DoS (Denial of Service) attacks
since state has to be kept in the responder after the
first message has been received. If a malicious peer
starts flooding isakmpd with exchange initiations, a
lot of state will accumulate in the responder. Worse
yet, in aggressive mode, the responder will have to
do expensive computational work 2 before the peer
has been authenticated. These issues are actually
protocol problems and could have been moot, if only
the “cookie” mechanism adopted from the Photuris
protocol had been understood and used correctly
[13, 17]. Since the protocol has been standardized,
we need to address the potential attacks. Our ap-
proach is twofold: first off, we always check memory
allocation for failure, and back out, cleaning up all
resources tied in with the message we are re deal-
ing with. Second, we use a maximum, configurable,
exchange lifetime. If the exchange times out, all
resources are given back to the system.

We have considered additional measures, like ag-
gressive random tail drop of exchanges stuck in the
state after the first reply. This would be somewhat
analogous to the normal response to TCP SYN-
floods.

4.3.6 Solving the RSA “problem”

At the time we started implementing isakmpd, ex-
porting a US RSA implementation in source form to
the world at large was illegal. Another problem was

2Even hardware accelerators for big number computation
cannot handle the high volume of operations that would be
involved in such a DOS attack.

that it is not legal to use the RSA algorithm within
the US unless one has a license from RSA Inc. or
use the US-originated non-commercial RSAREF li-
brary. Thus, there was no way to make a distribu-
tion that would be free to use both in the US and in
the rest of the world, because the only implemen-
tation that is free in the US was not exportable.
OpenBSD has solved this problem in other places of
the source tree in an elegant way: we chose to use all
RSA functionality via a dynamically linked shared
library, libcrypto, which is part of OpenSSL. This
library exists in three variants: one RSA-crippled,
with no RSA support at all, one with internationally
written RSA code and one with RSAREF. We ship
the RSA-crippled version as that one has no patent
or exportability issues at all. Then we tell interna-
tional users to fetch the international libcrypto ver-
sion, and US users to get the one based on RSAREF
(if they meet criteria to legally use it).

This could work for isakmpd too, if it were not for
the fact that we want isakmpd to be statically linked,
so we can get IKE negotiation capabilities really
early in the boot process.

The solution was to use dynamic linking via the
dlopen API. Every RSA-related symbol of libcrypto
needs to be accessed indirectly through a pointer.
This pointer is initialized with the address of the
statically linked RSA-crippled stubs. After a suc-
cessful dynamic link the pointers get reset to the
newly loaded libcrypto equivalents. It is not consid-
ered a fatal error if the dynamic linking fails. Not
all operating systems allow statically linked binaries
to use dlopen though, but those who do can benefit
from this.

4.3.7 Performance and Code Size

The SA negotiation is very CPU-intensive. More
specifically, in main and aggressive mode there is
always a Diffie-Hellman exponentiation and some-
times, depending on authentication method, RSA
or DSS signature operations that are fairly expen-
sive in terms of CPU processing. In quick mode, the
DH exponentiation is optional but recommended.
That exponentiation is what provides “Perfect For-
ward Secrecy.” Some sample timings can be found
in figure 4.

In its current state, isakmpd consists of roughly
36,000 lines of code, almost all of it in C. This in-

Exchange Seconds
Main mode, 3DES, SHA, DH group 2, pre-shared key 1.44
Quick mode, 3DES, SHA, PFS (DH group 2) 1.40
Main mode, DES, MD5, DH group 1, pre-shared key 0.95
Quick mode, DES, MD5, PFS (DH group 1) 0.60
Aggressive mode, 3DES, SHA, DH group 2, RSA signature (X.509) 1.50
Quick mode, 3DES, SHA, no PFS 0.35

Figure 4: A Pentium 200MHz running two instances of isakmpd negotiating over the loopback interface (an
exchange between two distinct machines may actually finish faster as some computations can be carried out

in parallel).

cludes commentary, which we have at least tried to
be fairly generous with. Security protocol imple-
mentations need to be auditable, and readability is
therefore an important aspect. 4,000 of these are
the platform-dependent parts, and 2,500 are regres-
sion testing. The static memory footprint for i386 is
approximately 950KB for a full-blown version and
300KB for a trimmed down version with support
only for mandatory ciphers, exchanges, groups, and
authentication methods (no debugging or refined
policy handling is included in the trimmed-down
version).

5 Security Policy

When discussing security policy, it is often useful
to define the term in the appropriate context. For
our purposes, security policy in the network layer is
the information needed to decide whether a packet
should be accepted/forwarded or dropped. Further
restricting the definition in the IPsec context, se-
curity policy dictates what classes of packets are
acceptable over a specific SA. This is all the more
important for IPsec, since the encapsulation mecha-
nism used literally allows establishment of arbitrary
virtual topologies over the network fabric.

Since there exists no standard mechanism for speci-
fying, disseminating, and processing security policy
for IPsec, we have adopted some ongoing research
work based on a compliance-checking architecture.
The concept behind this architecture is that, at SA
establishment time, we utilize some mechanism that
validates the suitability of an SA for a particular
class of packets and a remote principal at IKE ex-
change time; all the characteristics of the SA (cryp-
tographic algorithms, key sizes, transform ordering,
etc.), along with the packet classes (in effect, a set of

packet filter rules) and the remote principal’s iden-
tity (public key, X.509 certificates, passphrase, etc.)
are available at that stage. It is important to realize
that this operation is performed only infrequently
compared to the number of packets that will use the
established SAs. Thus, it is possible to use a mecha-
nism that is more general, powerful, and extensible
than a simple packet filter specification language.
We would also like to be able to utilize credentials
delegating authority, as we have found these to al-
low easier and more scalable administration.

The higher-level mechanism for security policy
compliance-checking we use is a trust-management
system. Trust-management systems [5, 4] provide
a unified approach to specifying security policies,
credentials, and relationships between principals in
the system. Unlike traditional certification schemes,
trust-management credentials bind keys directly to
the authorization to perform some task. A trust-
management system provides a highly-adaptable
general-purpose mechanism for specifying security
policies and credentials. A principle of trust man-
agement is “monotonicity.” This means that poli-
cies and credentials can only have a positive effect
on the privileges of a principal; it is not possible to
revoke privilege by issuing a credential. This may
only be done by expiring credentials, or by modi-
fying the relevant policies and credentials. For an
extensive overview of trust-management, see [3].

KeyNote is an instantiation of a trust-management
system, designed to be simple yet flexible. It pro-
vides a single language for both policies and creden-
tials, based on predicates that describe the trusted
actions permitted by holders of specific public keys
(or other cryptographic identifiers). For more de-
tails on KeyNote syntax and processing, see [4]. For
more details on the policy architecture itself, see [6].
The following subsection discusses some implemen-

tation specifics.

5.1 Implementation Details

Modifying isakmpd to make use of the compliance-
checking architecture for policy resolution proved
straightforward. isakmpd was initially designed with
a rudimentary mechanism for verifying security as-
sociations proposed by the remote peer. The set of
acceptable security associations was read from the
configuration file, and then consulted when examin-
ing the proposed SA. However, this scheme lacked
flexibility and extensibility. In particular, it was
not possible to delegate authority, allow for very
fine-grained SA specification without an explosion
in the size of the configuration file, take into consid-
eration information not directly relevant to the SA
(such as time of day, or system security level), nor
allow for flexible packet selectors (an exact match
was required).

Since this verification mechanism was implemented
as a procedure call, we only had to modify the
invoking code to call another procedure that ulti-
mately invoked KeyNote. This change occurred in
two places:

1. When the Responder of an IKE exchange exam-
ines the list of IPsec (Phase 2) SAs to determine
which one is acceptable.

2. When the Initiator receives (during Phase 2)
the response containing the acceptable SA.

When invoked, the procedure converts information
taken from the exchange and sa structures to a for-
mat suitable for use by KeyNote. Such information
contains the IPsec protocols to be used, the crypto-
graphic algorithms to be used, the packet selectors
requested (Phase 2 User IDs), the cryptographic
identifier used in Phase 1 by the remote peer, etc.

This cryptographic identifier is used by the compli-
ance checker to determine which part of the security
policy is relevant to a specific request. If public key
authentication was used, then our security policy
may directly refer to said public key, and the same
applies for passphrase authentication. For X.509-
based authentication, we have a number of options
as to who policy may refer to:

e The public key of the remote principal as it ap-
pears in the Subject field of the X.509 certifi-
cate, or the X.509 certificate itself. This form
of delegation is the most direct and limited in
scope.

e The public key or X.509 certificate of some
certification authority (CA) that ultimately
“speaks for” the remote principal. This may be
the CA immediately validating said principal,
or some other CA further up in a CA hierar-
chy. The higher up the CA we delegate to, the
broader the scope of the delegation (and thus,
more users share the same rights). Note that
it is possible to delegate a set of rights to some
CA that “speaks for” some user, and simulta-
neously give more rights to that specific user.
Reducing a user’s privileges through the same
mechanism is not feasible under KeyNote, how-
ever (because of monotonicity, as previously de-
scribed).

e Since public keys and X.509 certificates can
be cumbersome to manipulate even in a text
form, it is possible to use the Distinguished
Name as it appears in an X.509 certificate. This
makes policies much more concise and readable.
An added benefit is that certificates (and even
keys) may change without affecting the policy
(although in some cases this may turn into a li-
ability). We can use the DN of the remote prin-
cipal directly, or that of some CA that “speaks
for” the principal.

The assembled information is passed on to KeyNote,
and the response indicates whether the SA should
be accepted or dropped. In effect, KeyNote is ver-
ifying that the combination of remote peer, IPsec
protocols (and algorithms, lifetimes, etc. used by
those protocols), and packet selectors are accept-
able by policy. This policy may be expressed solely
in terms of local policy or as a combination of local
policy and (signed) credentials. These credentials
may be acquired during the Phase 1 exchange (pro-
vided by the remote peer) or at any point in time
afterwards (e.g., fetched on-demand through some
out-of-band protocol®). As soon as an SA is ac-
cepted, the search is concluded.

The procedure is called once for each distinct SA
proposal received from the peer (since there is no

3We have experimented with fetching credentials from a
web server, using a primitive cgi-script and a database keyed
on public keys and X.509 Distinguished Names.

way to efficiently encode all the SA proposals in one
action attribute set and have KeyNote make a de-
cision on which one to select — this is a drawback of
using KeyNote instead of a more complex policy lan-
guage). Note however that each such invocation is
very “lightweight” in processing terms: converting
the relevant information is straightforward, and any
cryptographic operations are only performed once
and their results cached for future use. The pol-
icy assertions are loaded once at startup time (and
reloaded if isakmpd is asked to re-initialize). Some
simple experiments show that the cost of invoking
KeyNote increases linearly with the number of as-
sertions in use, and that for a simple setup of 3-
4 assertions/credentials the cost is in the order of
150usec.

Here, we wish to make two additional observations:

e KeyNote is invoked during Phase 2 only. While
it is trivial to allow policy control over estab-
lishment of Phase 1 SAs, we believe that this
is both unnecessary and potentially confusing
to users. Since Phase 1 SAs are used only by
isakmpd and have no direct effect on the sys-
tem or on network traffic, this approach does
not compromise safety.

e Currently, compliance checking on the initia-
tor is performed when the accepted SA is re-
ceived from the responder (message 2 in Quick
Mode). Ideally, this check should be done be-
fore transmission of the first message in Quick
Mode, to avoid transmitting SA proposals that
in the end will not be accepted by us. Process-
ing after receipt of message 2 should be lim-
ited to verifying that the returned SA is among
those offered in the first message. We elected
not to do this because of code complexity: be-
cause KeyNote support was added after most of
1sakmpd was written, the code that constructs
the list of SAs in message 1 was already intri-
cately tied to message construction, configura-
tion file parsing, and attribute syntax verifica-
tion. Rewriting the relevant code just to ac-
commodate KeyNote would involve serious re-
structuring. We intend to rewrite that piece
of isakmpd in the near future to retrieve SA
information from the kernel (as opposed to a
configuration file). At that time, an interface
better suited to policy compliance checking will
be introduced. We should note that this issue
is not an artifact of our use of KeyNote; using
any security policy system on the initiator side

would require the same code restructuring.

In terms of code size, the “glue” code between
1sakmpd and KeyNote was about 1200 lines, almost
exclusively dealing with the conversion of informa-
tion from isakmpd’s internal structures to KeyNote
action attributes. We also had to add about 50
lines of code in different parts of KeyNote, dealing
with initialization and record keeping. The code
displaced by KeyNote was approximately 500 lines
long. The KeyNote library itself is about 5000 lines
(not including the cryptographic functions, where
liberypto is used).

6 Conclusion

6.1 Current State

We believe that isakmpd currently addresses all
mandatory features in the RFCs. We also
implement most optional features. isakmpd
currently runs on OpenBSD’s old IPsec stack
with PF_ENCAP, OpenBSD’s current stack with
PF_KEY, FreeS/WAN with Linux NetLink APT and
FreeBSD/NetBSD with KAME’s IPsec stack via
PF_KEY. We have also made it possible to shave
off much of the extras at compile time, thus making
isakmpd a candidate for being used in small em-
bedded systems. isakmpd is in production used in
numerous sites.

6.2 Future Directions

There seems to be an increasing number of proposed
new IKE extensions after every IETF. We are, how-
ever, reluctant to incorporate them all as code bloat
is a problem we should fight to maintain any kind of
security. Something we definitely are going to add is
IPv6 support, as we recently have started shipping
OpenBSD with an IPsec-aware IPv6 stack. Other
likely enhancements are support for PKCS#11 (an
API to talk to cryptographic tokens, like smart-
cards, for authentication), challenge-response au-
thentication for Phase 1 exchanges and PKIX com-
pliance. A major short-term project is support for
cryptographic hardware for RSA and Diffie-Hellman
computation, since OpenBSD has began to sup-

port a cryptographic services framework in the ker-
nel. Other minor projects involve integration with
DNSSEC [10] infrastructure once we see further de-
ployment and use, and “New group mode” sup-
port to dynamically negotiate new groups to com-
pute DH secrets in. There are plans to support
some new platforms, for example FreeS/WAN over
PF_KEY and Solaris 8. There are other commer-
cial Unices with IPsec stacks which we may port
isakmpd to. Closer integration with the kernel and
userland applications (possibly through the setsock-
opt(3)/getsockopt(3) API), and various projects in-
volving policy discovery/negotiation (in particular,
direct exchanging of KeyNote credentials) and au-
tomatic configuration are also part of our plans for
future work.

6.3 Interoperability

We have attended a couple of interoperability work-
shops as well as carried out our own tests and have
succeeded remarkably well, given the complexity of
the IKE specifications. A lot may be attributed
to our flexible configuration which, however, cannot
be said to be user-friendly. We have been known to
interoperate with the 3com Pathbuilder 500, Ash-
ley Laurent VPCom, Axent Raptor, Cendio Fuego
Firewall, CheckPoint FireWall-1, Cisco I0S, Cisco
PIX, F-secure VPN+, FreeBSD/NetBSD KAME,
Intel LanRover, Linux FreeS/WAN, Nortel Contiv-
ity, PGP VPN, Radguard cIPro, Teamware TWISS,
Windows 2K, and Timestep Permit.

Most of this interoperation has been with pre-shared
keys. Unfortunately we have not yet had a chance to
do extensive certificate-based interoperability test-
ing.

6.4 Security Considerations

As might have become clear by now, IKE is a com-
plex protocol, perhaps overly so. As we are imple-
menting security, complexity is not something well
looked upon. Complex protocols are implemented
with complex programs which tend to have more
bugs, and some bugs might just happen to be secu-
rity breaches. Modular design with clear APIs inter-
nally helps reduce complexity and allows for easier
auditing, but there is still a lot more risk with com-
plex programs than with simple ones. There are

simpler alternatives to IKE, more limited in func-
tionality, but likely more secure [13].

6.5 Related Work

There are of course other Open Source projects
that implement IKE, the two most widely known
being the Linux FreeS/WAN project’s Pluto, and
Racoon, of the KAME project whose IPsec stacks
exist for both NetBSD and FreeBSD. Both of these
are only meant for their respective platforms, unlike
1sakmpd, which is meant to be a portable implemen-
tation. As a matter of fact, isakmpd runs on top of
both the FreeS/WAN and KAME stacks. Racoon
is, to our knowledge, the only IKE implementa-
tion with IPv6 support. There are also other key-
management protocol implementations available, an
example is photurisd, OpenBSD’s Photuris imple-
mentation. An extensive overview of the employ-
ment of cryptography in OpenBSD may be found
in [8].

7 Acknowledgments

We would like to thank Matt Blaze, Theo de Raadt,
Martin Fredriksson, Markus Friedl, Hugh Graham,
John Ioannidis, Hakan Olsson, Niels Provos, and
Jonathan Smith for their support, comments, sug-
gestions, and work in various aspects of this project
and paper. Most of the development of isakmpd
was funded by Ericsson Radio Systems. The secu-
rity policy work mentioned in this paper was sup-
ported by DARPA under grant F39502-99-1-0512-
MOD P0001.

8 Availability

All the software described in the paper is available
through the OpenBSD web page at:

http://www.openbsd.org/

OpenBSD is based in Calgary, Canada. All individ-
uals doing cryptography-related work do so outside
countries that have limiting laws.

References

[1]
2]
3]

[13]

[14]

R. Atkinson. IP Authentication Header. RFC 1826,
August 1995.

R. Atkinson. IP Encapsulating Security Payload.
RFC 1827, August 1995.

M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The role of trust management in dis-
tributed systems security. In Secure Internet Pro-
gramming, volume 1603 of Lecture Notes in Com-
puter Science, pages 185-210. Springer-Verlag Inc.,
New York, NY, USA, 1999.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.
Keromytis. The keynote trust management system
version 2. Internet RFC 2704, September 1999.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentral-
ized Trust Management. In Proc. of the 17th Sym-
posium on Security and Privacy, pages 164-173.
IEEE Computer Society Press, Los Alamitos, 1996.

M. Blaze, J. Ioannidis, and A. Keromytis. Trust
Management and Network Layer Security Proto-
cols. In Proceedings of the 1999 Cambridge Security
Protocols International Workshop. Springer, 1999.

Consultation Committee. X.509: The Directory
Authentication Framework. International Tele-
phone and Telegraph, International Telecommuni-
cations Union, Geneva, 1989.

T. de Raadt, N. Hallqvist, A. Grabowski, A. D.
Keromytis, and N. Provos. Cryptography in
OpenBSD: An Overview. In Proc. of the 1999
USENIX Annual Technical Conference, Freeniz
Track, pages 93 — 101, June 1999.

W. Diffie and M.E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, IT-22(6):644-654, Nov 1976.

D. Eastlake and C. Kaufman. Dynamic Name Ser-
vice and Security. Internet RFC 2065, January
1997.

D. Harkins and D. Carrel. The internet key ex-
change (IKE). Request for Comments (Proposed
Standard) 2409, Internet Engineering Task Force,
November 1998.

John Toannidis and Matt Blaze. The Architecture
and Implementation of Network-Layer Security Un-
der Unix. In Fourth Useniz Security Symposium
Proceedings. USENIX, October 1993.

P. Karn and W. Simpson. Photuris: Session-key
management protocol. Request for Comments (Ex-
perimental) 2522, Internet Engineering Task Force,
March 1999.

S. Kent and R. Atkinson. Security architecture for
the internet protocol. Request for Comments (Pro-
posed Standard) 2401, Internet Engineering Task
Force, November 1998.

[15]

[17]

A. D. Keromytis, J. Ioannidis, and J. M. Smith.
Implementing IPsec. In Proceedings of Global Inter-
net (GlobeCom) 97, pages 1948 — 1952, November
1997.

D. McDonald, C. Metz, and B. Phan. PF_KEY Key
Management API, Version 2. Request for Com-
ments (Informational) 2367, Internet Engineering
Task Force, July 1998.

W. A. Simpson. IKE/ISAKMP Considered Harm-
ful. USENIX ;login:, December 1999.

