Hydan: Hiding Information in Program Binaries

Rakan El-Khalil and Angelos D. Keromytis

Department of Computer Science, Columbia University in the City of New York
{rfe3,angelo$@cs.columbia.edu

Abstract. We present a scheme to steganographically embed informati@6in
program binaries. We define setsfohctionally-equivalent instructiongnd use

a key-derived selection process to encode information in machine code by using
the appropriate instructions from each set. Such a scheme can be used to water-
mark (or fingerprint) code, sign executables, or simply create a covert communi-
cation channel. We experimentally measure the capacity of the covert channel by
determining the distribution of equivalent instructions in several popular operat-
ing system distributions. Our analysis shows that we can embed only a limited
amount of information in each executable (approximag%lbit encoding rate),
although this amount is sufficient for some of the potential applications men-
tioned. We conclude by discussing potential improvements to the capacity of the
channel and other future work.

1 Introduction

Traditional information-hiding techniques encode ancillary information inside data such
as still images, video, or audio. They typically do so in a way that an observer does not
notice them, by using redundant bits in the medium. The definition of “redundancy”
depends on the medium under consideration (cover medium). Because of their invasive
nature, information-hiding systems are often easy to detect, although considerable work
has gone into hiding any patterns [1]. In modern steganography, a secret key is used to
both encrypt the information-to-be-encoded and select a subset of the redundant bits
to be used for the encoding process. The goal is to make it difficult for an attacker to
detect the presence of secret information. This is practical only if the cover medium has
a large enough capacity that, even ignoring a significant number of redundant bits, we
can still encode enough useful information.

Aside from its use in secret communications, an information-hiding process [2] can
be used for watermarking and fingerprinting, whereby information describing proper-
ties of the datad.g.,its source, the user that purchased it, access control information,
etc) is encoded in the data itself. The “secret” information is encoded in such a manner
that removing it is intended to damage the data and render it unugsaglgntroduce
noise to an audio track), with various degrees of success.

In this paper, we describe the application of information-hiding techniques to ar-
bitrary program binaries. Using our system, named Hydan, we can embed information
usingfunctionally-equivalent instructior(e., i386machine code instructions). To de-
termine the available capacity, we analyze the binaries of several operating system dis-
tributions (OpenBSD 3.4, FreeBSD 4.4, NetBSD 1.6.1, Red Hat Linux 9, and Windows

XP Professional). Our tests show that the available capacity, given the sets of equiva-
lent instructions we currently use, is approximatg—:%g bits (i.e., we can encodé bit

of information for everyl10 bits of program code). Note that we make a distinction
between the overall program size and the code size. The overall program size includes
various data, relocation, and BSS sections, in addition to the code sections. Experimen-
tally, we have found that the code sections take up 75% of the total size of executables,
on average. For example, a 210KB statically linked executable contains HigKB

of code, in which we can embdd44KB (11, 766 bits) of data.

In comparison, other tools such as Outguess [1] are able to achiﬁvbiaencod-
ing rate in images, and are thus better suited for covert communications, where data-rate
is an important consideration. Tlff%6 encoding rate achieved by the currently imple-
mented version of Hydan is obtained when we only use instruction substitutions. In
Section 5 we discuss improvements that may Iead@}@ @ncoding rate.

This capacity can be used as a covert steganographic channel, for watermarking or
fingerprinting executables, or for encoding a digital signature of the executable: we can
encode an all-zeroes value in the executable, a process that modifies the code without
damaging its functionality, sign the result, and then encode the signature by overwriting
the same “zeroed-out” bits. Signature verification simply extracts the signature from the
binary, overwrites it with an all-zeroes pattern, and finally verifies it. This signature can
be a public- or secret-key based one (MAC). Apart from the fact that this information
is hidden (and can thus be used without the user’s knowledge or consent — admittedly,
a worrisome prospect), one advantage of this approach is that the overall size of the
executable remains unmodified. Thus, it may be particularly attractive for filesystems
that provide functional-integrity protection for programs without increasing their size,
nor rely on an outside database of hashes.

Paper Organization In the remainder of this paper, we briefly examine prior work

in both classical and code steganography (Section 2), describe our approach (Section 3),
and experimentally measure the capacity of this new medium by examining a large
number of program binaries (Section 4). We discuss the weaknesses of our approach
and potential ways to overcome them in Section 5.

2 Related Work

Unlike the medium of sound and image, data hiding in executable code has not been
the subject of much study. One hindering particularity of the machine code medium is
the inherently reduced redundancy encountered, a redundancy that information hiding
depends on to conceal data. Most of the previous work on executable code was therefore
done at the source code or compilation level. Our work differs in that we embed data
at the machine-code level, without need or use of the source code. Here, we present an
overview of research in both classical and code information-hiding.

Classical Information-Hiding Petitcolaset al.[3] classify information hiding tech-

niques into several sub-disciplines: creation of covert channels, steganography, anonymity,
and copyright marking. Each of those fields has specific, and often overlapping require-
ments. Steganography, literally the art of “covered writing,” has the requirement of

being imperceptible to a third party. Unlike copyright marking for example, steganog-
raphy does not have to resist tampering; the focus is to subliminally convey as much
information as possible. In contrast, copyright marking need not always be hidden, and
some systems use visible digital watermarks. Despite the opposite requirements, they
are both a form of information hiding. A general information-theoretic approach to in-
formation hiding and steganography can be found in [4, 2], forming the basis for the
design of such systems.

Executable Code Steganography Despite the relative lack of work on code steganog-
raphy, there are a few general techniques that have been developed, and at least four
patents issued [5-8]. Those techniques have primarily been geared towards software
protection and watermarking. Following the classification introduced in [9], the tech-
niques can be divided into two general categories: static and dynamic watermarking.

Static watermarks are embedded at compilation time and do not change during the
execution of the application. Verifying the watermark becomes a matter of knowing
where and what to look for. Examples include:

e Static data watermarks:
e const char c[] = "Copyright (c).."; or
e const struct wmark = {0x12, 0x34, ... 1 [8]
e Code watermarks, which depend on characteristics such as the oodeseobtate-
ments, the order of functionally independent statements, the order of pushing and
popping registers on the stack [10], or the program’s control flow graph [6].

In dynamic watermarking, the user executes the program with a specific set of inputs,
after which it enters a state that represents the watermark. Some examples of these are:

e “Easter Eggs,” where some functionality (such as a piece of animation) is only
reachable when a secret sequence of keystrokes is entered.

e Dynamic data-structure watermark, where the content of a data structure changes
as a program executes. The end-state of the structure represents the watermark [9].

e Dynamic execution-trace watermark is similar to the above, but uses execution
traces [9]. The order and choice of instructions invoked constitute the watermark.

All of these techniques are only applicable if the source code is given, or obtained as
a result of de-compilation, to the person performing the data-hiding. However, ease of
de-compilation varies greatly across different programming languages. In theory, the
differentiation of data and code in von Neumann machines reduces to the Halting Prob-
lem, and therefore perfect disassembly is impossible. Thus, in practice we are forced to
settle for a less than perfect solution, often relying on heuristics that can sometimes fail.
Those heuristics have varying degrees of success depending on the language the appli-
cation was coded in. Java and .Net are much simpler to disassembleSthasmfor
example. In the Java case, significant amounts of meta-data is inserted into its classes,
and JVM code must pass a stringent verification process before it is run. Under these
correctness constraints, it becomes easy to accurately decompile Java byte-code.
Becausex86 code does not have such constraints, it is notoriously difficult to dis-
assemble. As such, most of the research on code watermarking has been executed with
Java in mind, and implemented for Java byte-code. One work was specifically devel-
oped forx86code [11] and outlines a spread-spectrum technique to embed watermarks.

This scheme was subsequently implemented for Java byte-code in [12]. Our work dif-
fers in that it was researched, and implementedx8@rcode.

It is also worth noting that programmers have historically embedded “signatures”
into the assembly code of their hand-coded Z80 and 6502 programs. The first tool to
do this automatically was the A86 assembler, which embedded a signature into the
code it produced by choosing between equivalent instructions to output, for registration
purposes. As in the previous techniques, access to the original source is required.

3 Architecture

Hydan takes a message and an executable (covertext) as input, and outputs a function-
ally identical executable that contains the steganographically embedded message. We
use the inherent redundancy in the machine’s instructionesgt, the i386 processor
family instruction set) to encode the message, as several instructions can be expressed
in more than one way. For example, adding the v@Q¢o registereaxcan be repre-
sented as eithertld %eax, $50 " or “sub %eax, $-50 ".

Using these two alternate forms, we can encode one bit of information anytime
there is an addition or a subtraction in the executable code. Another example is that of
XORing a register against itself to clear its contents: subtracting the register from itself
has the same effect. For example, consider the code on the left column of Table 1. Using
theadd/sub substitution, we can encode 2 bits in that code. By convention we decide
that all addition instructions represent bit 0, and subtraction instructions represent bit 1.
Thus, encoding the binary valu@8, 01, and11 would yield the functionally identical
code shown in Table 1.

Original code Encoding 00

83 e8 30 sub %eax, $0x30 83 cO0 do add %eax, $-0x30
83 f8 36 cmp %eax, $0x36 83 f8 36 cmp %eax, $0x36
77 e5 ja $-27 77 e5 ja $-27

83 cO 08 add %eax, $0x8 83 cO 08 add %eax, $0x8
89 04 24 mov %eax, [%esp] 89 04 24 mov %eax, [%esp]
Encoding 01 Encoding 11

83 cO d0O add %eax, $-0x30 83 e8 30 sub %eax, $0x30
83 f8 36 cmp %eax, $0x36 83 f8 36 cmp %eax, $0x36
77 e5 ja $-27 77 e5 ja $-27

83 e8 f8 sub %eax, $-0x8 83 e8 f8 sub %eax, $-0x8
89 04 24 mov %eax, [%esp] 89 04 24 mov %eax, [%esp]

Table 1.Encoding the valuesd0, 01, and 11 using equivalent instructions (highlighted).

Another feature used to encode data is that several instructions have two éogms,
“insn r/m, reg " and ‘“insn reg, r/m ", wherereg is a register, and'm

can be either a register or a memory location. However, if we consider the case where
r/m points to a register, then we can encode the instruction using either form. All we
need to do is change the opcode, and swapdheandr/m values in the instructions

so that they point to the correct operands.

We can sometimes encode more than one bit per instruction by using as many as
possible equivalent instructions, since we can enlbgg(n) bits when using a set of
n functionally equivalent instructions. For a set of four instructions, any instruction in
that set can be used to embed two bits of data. The sets we found usually contain two
or four instructions. In two cases, we were able to find seven-instruction sets.

However, seven instructions are not enough to encode three bits of data, and too
many to encode only two bits. In order to avoid having to use only four instructions and
waste the other three, we devised an encoding scheme whereby we use one instruction
from the set as a wildcard. This instruction is used when we encounter a value we cannot
directly represent with the current set of instructions. For example, using a 7-instruction
set, we can encode the binary values 0 through 5. However, we cannot encode the values
6 to 8. So we use the wildcard instruction to signify that this instruction does not encode
any data, and try to embed the missing values with the next instruction. What will most
likely happen is that those values (6—8) will be broken down into smaller chunks of
one or two bits and encoded that way. For our example of seven instructions, we can
embedlog,(6) = 2.58 bits, instead of just 2. In general, we can encagg (n — 1)
bits in a set of: instructions, whem is not a power of two. This works well under the
assumption that the message has equal distribution of values. To ensure this (as well as
further secure the message, as is common practice in steganographic applications), we
encrypt the data before embedding it and hence achieve nearly uniformly distributed
binary data. We assume that ciphertext produced by a good block encryption algorithm,
such as AES or Blowfish, has this property.

For simplicity, we chose to only consider replacement instructions of the same size.
Indeed, if we were to replace an instruction with a functional equivalent of a larger
size, such as two or more instructions, then we would need to shift all subsequent jump
target and function call addresses, as well as data locations and their references by
the difference in size. This is not infeasible, but significantly complicates the encoding
process, especially as we need to be particularly careful x@ihdisassembled code
since it may not always be accurate. A nice result of our choice is that the program code
size remains the same.

Furthermore, although all of the instructions in each set have the same end result,
they may exhibit different side-effects,g.,set some of the processor flags differently.
For example, addition and subtraction set the carry and overflow flags differently in
some cases. Hydan thus takes into account any flags that a replacement instruction
might have an adverse effect on, and scans through the instructions following it to see
if the flag differences might have an effect on execution flow. What we do is look at
each instruction following the replacement instruction, and see whether it tests for one
of the modified flags. We continue this way, following execution flow, until we either
hit the end of the current function, or an instruction that modifies the value of one of the
flags we are tracking. If all of the flags are modified by other instructions before they
are tested, it is safe to replace the instruction. Otherwise, the instruction is not used for
embedding, and left unmodified. Fortunately, in practice such instructions are rare (less
than 0.2% of the total), and the bandwidth lost negligible.

The Embedding Process The embedding process itself is straightforward. Upon
reading the message to be encoded and the corresponding covertext, Hydan asks the

user for a key to encrypt the message with. Hydan then prepends the size of the message
to the message proper, and encrypts the resulting data with Blowfish in CBC mode.

The length of the message needs to be embedded for decoding purposes, but is
encrypted to avoid being used as a means to detect the presence of hidden data in the
binary. The length is a 64-bit value, and as such most of its MSBs will typically be
all-zeroes, which could facilitate cryptanalysis (the attacker can use that information
to mount a dictionary attack against the Blowfish session key, which is derived from
a user-supplied passphrase). We therefore XOR this length with a hash of the user-
supplied passphrase before encrypting it, as a whitening step.

Once the encryption step is completed, Hydan determines the locations of instruc-
tions in all code sections of the executable which can be used for embedding. For ex-
ample, ELF executables can have multiple executable code sections,awhitaind
PE/COFFexecutables only have one such section. Starting from the first code section,
we embed bits following a random walk by skipping a random amount of instructions
before embedding anything. This random walk is seeded by the user-supplied key as
well, and its purpose is to increase the workload of any detection attempts. We use the
technique described in [1] to spread the embedded bits uniformly in the covertext: the
number of bits we skip is in the range [®,x £<=], wherew, is the number of bits
remaining in the covertext, and,, the remainintj”length of the message. This interval
is updated each time 8 bits of message are embedded.

The Decoding Process To extract the message, Hydan uses the user password to
seed the random-walk algorithm, and extracts the size of the embedded data first. This
size is decrypted, and Hydan then proceeds to extract the relevant amount of data from
the covertext. Care is taken to keep the random-walk intervals and other variables iden-
tical to those obtained in the embedding process by using the same techniques.

4 Analysis

Although Hydan currently does not attempt to respect the statistical distribution of in-
structions when embedding a message, it is of interest to see what distribution those
instructions have in the ‘wild, as any large deviation in instruction distribution can
provide an easy means of detection of secret information.

We analyzed the executables in some readily available operating system distribu-
tions (OpenBSD 3.4, FreeBSD 4.4, NetBSD 1.6.1, Red Hat Linux 9, and Windows XP
Professional) and recorded the number of instances of each instruction we have equiva-
lents for. We then calculated the distribution of each instruction within their sets, as well
as the distribution of each set globally. We give the results for OpenBSD in Appendix
A; the other operating systems exhibit a similar instruction distribution.

The first column in the table is an identifier for the set of equivalent instructions. The
instructions themselves are present in the second column. Looking at ther32t1
for example, we can see thatdr r32, r/m32 ”is equivalent to three other instruc-
tions, one of whichisSub r32, r/m32 .”Inthe case of additions and subtractions,
the regular &add register, imm " refers to the instance wheimm s a positive
number, whereas the negative form refers to a negative immediate value. See Appendix
A for details about the most relevant sets of instructions.

Examining the data, we can readily see that not all instructions are created equal. In
fact, it is often the case that only one instruction in each set is overwhelmingly present
in the wild. It is therefore quite easy to detect Hydan, especially as the message size
increases. Some compilers even insert a tag intodbmment section, making it
easier for an attacker to know what distribution to expect. To make detection of Hydan
harder, we could limit ourselves to using those sets of instructions that have a more
amenable distribution in the wild, and respecting their own internal distributions with
an encoding scheme. The drawback is that the encoding rate would greatly suffer, as
the amount of information we can encode cannot exceed the frequency of the rarest
instruction in each set. For example, the OpenBSD distribution dro%%gym if we
want to stealthily embed data. The other distributions are more amenable to stealth
however, as shown in Table 2.

oS |Original Encoding RatgStealthy Encoding Rat¢B per bit
OpenBSD @ =555 66.0
FreeBSD o @ 61.2
NetBSD + 55 9.81
Windows XP = = 1.24

Table 2. Original and Stealthy Encoding Rates

As is evident, it is difficult to stealthily encode substantial amounts of data with
instruction substitution alone. However, embedding short messages such as keys and
signatures is still feasible, especially for NetBSD, Linux, and Windows XP. We describe
some techniques for improving the stealthiness of the encoding process in Section 5.

5 Further Discussion

The strength of any information-hiding system is a function of its data rate (the amount
of information that can be embedded in a covertext of a given size), stealth and re-
silience [9]. In this section, we describe Hydan’s currently implemented characteristics,
as well as ways to improve them.

Data Rate Our current embedding rate is an averagq—}gf, i.e.,we can embed, on
average] bit of information per110 bits of code. Since we currently only use the sets
of equivalent instructions to embed messages, the data rate is highly dependent on what
instructions are present in the executables. Our analysis shows that the distribution of
instructions is very similar in most binaries on a given operating system, and even across
UNIX operating systems: the OpenBSD, FreeBSD, NetBSD, and Red Hat distributions
are only different by a few percentage points. This is easily explainable: they all make
use of the same compiler (GCC, various versions). The Windows XP distribution is
the most different as different compilers are used. Figure 1 shows the repartition of
bandwidth amongst the different instruction sets.

There are several ways to improve the data rate. One approach is to simply find more
sets of functionally equivalent instructions, especially if we disregard our restriction on

60.00%

50.00% e

40.00% I

O FreeBSD
ELinux
30.00% H | /4 |ONetBSD

[0 OpenBSD
B WindowsXP

20.00% I

10.00% |

0.00% - l

or addsub- addsub- sub add cmp xorsub mov toac addsub-
1 2 3

Fig. 1. Instruction Distribution

maintaining the size of the executable. However, replacing a single instruction with two
or more equivalent instructions would be suspiciously inefficient from the compiler’s
point of view. Detecting such a sequence would alert an attacker to the presence of
hidden information. On the other hand, compiled code is not always optimized as much
as it could be, and a run through GCC compiled code revealed several inefficiencies that
can be used to encode data. One of them is the use of multiple additions and subtractions
when one would suffice.

We could replace one of the instructions with the net operation, and use the other
one as a bogus instruction solely for the purpose of encoding data. Or we could use
this obviously redundant sequence itself to encode data: we could keep both operations,
but modify whether they were additions or subtractions, which instruction the larger
immediate value is placed into, and the relative sizes of the immediate operands. All
told, a maximum oB4 bits could be embedded into these two instructions alone (two
in the choice of operation, one for the position of the larger immediate value3land
into the difference in size). One can also simply swap instructions that are independent
of each other, by building a codebook of such groups of instructions, as is done in [11].

Analyzing the binary’s control flow graph yields two other ways we can improve
the data rate. The simplest approach is to identify code areas that are never executed
(dead-code analysis). The other approach is to identify functionally independent code
blocks and reorder them.

Dead-code analysis is simple to perform as we would simply tag every instruction
that is ever reachable — regardless of input — by recursively following every call and
jump in the code. The instructions that are left can be modified without fear of chang-
ing the functional equivalence of the executable. This method would only yield the

minimum amount of dead code possible, as there is probably more dead code depend-
ing on input and other factors. One way to increase the amount of dead code available
for use by Hydan is to use statically linked binaries, as the whole of the library is linked
in. In many cases, most of the code included in the library is not used. Once we have
located the dead code, we can replace it with assembly mimicry to encode our message.

Identifying functionally independent code blocks would allow us to reorder them
in the executable. For example, the ordering of functions is defined by the ordering
of their declaration in the source code, and by the order in which the object files
were assembled. We can thus reorder the location of those functions in the assem-
bly code without changing the functionality of the code. One method is to consider
each reorderable block as a number. The sorted list of numbers represent the zero-
state. Assuming we haw¥ reorderable blocks, the number of bits we can encode is
Nypits = floor(loga(n!)). We take Ny;:s bits of input, and decompose that number
along the factorials of N — 1, ..., 1). For example, itV = 5, thenN,;;s = 6. If the next
6 bits of input are 10110 (decimal54), its decomposition i24!4+1x3!+ 02! +0x1!.

Each factor now refers to the index of an item in the sorted sublist directly following
it. If we place each item in the list one by one according to those indices, we obtain a
re-ordered list with an encodel,;;; of data. Continuing the example, N = 5, the
sorted list could be: “abcde”, and the factors are 2, 1, 0, 0. The first factor means that the
third item in the list should be at the first position in the encoded list. So we now have
the list “cabde”. Next, we consider only the sublist “abde”, having taken care of the first
listitem. According to the factors, we are now to have the second item head the list, thus
obtaining: “bade”. The next two items remain untouched as they are where they need to
be. Our encoded list is therefore: “cbade”. Decoding this list follows a similar process,
where we construct the factors by looking at the relative positioning of each list item
according to the list that follows it. Following this process, we can reliably encode a
bit-stream into an ordered set. Two similar approaches have been described in [13, 14].
Our measurements show that there are on avesadgdunctions in each executable.
Thus, we can increase our encoding rate frﬁlgpto 8—10 by using function reordering in
conjunction with instruction substitution.

There are several other elements in an executable that we can reorder, such as argu-
ments to functions, the order with which elements are pushed and popped off the stack
[10], the register allocation choice, thgot, .plt, vtables .ctors and.dtorstables. We
can also reorder the data in tluatg .rodatg and.bsssections. Most of these sections
are specific to ELF, but there are equivalent data structuraitandPE/COFFE By
counting the number of such entries in typical binaries, we estimate that ordering the
functions, and thegot, .plt, .ctors, .dtorsables alone would yield us an encoding rate
of 5. This is a significant improvement over the instruction-substitution technique.

By reordering the data sections, we can further improve the encoding rate, as there
are typically many more data objects than there are function calls or table entries. How-
ever, it is difficult to accurately determine the bounds of data blocks when we only
have access to the program binary. Compiler output being predictable, we can however
attempt to determine those bounds heuristically. This is an area for future research.

Stealth ~ Since the instruction distribution is fairly uniform across executables, it is
very difficult to embed any large amount of data while avoiding detection when using

single instruction substitution. In fact, we would only be able to embed the smallest
amounts of data as some of the replacement instructions almost never appear in the
wild. Thus, unless used to embed signatures, keys or other small amounts of data, we
believe that the single instruction substitution method is not suited for stealth. The addi-
tional encoding methods described in the previous section have, however, a much larger
stealthy bandwidth. For example, replacing dead-code sections with assembly mimicry
is a quite powerful and easy to implement method. In that case, stealthiness is limited
only by the intelligence of the mimicry algorithm. Typical algorithms use context-free
grammars (CFGs) to determine mimicry patterns, and as such their theoretical security
is based on the fact that there are no known polynomial-time algorithms that predict
membership in a class defined by CFGs [13].

Any form of ordering described above is also very stealthy, as this order is not plat-
form dependent (except perhaps for thesh/pop order, where IBM used this order
to claim a signature for their PC-AT ROM when litigating against software pirates [10]).
The ordering is otherwise determined mainly by the source code, which is different for
every executable, and therefore provides a good source of “controlled” randomness that
we can exploit to encode information.

There is one caveat: generally, there are not nearly as many executables as there are
data files é.g.,music or image files). It would thus be easier to detect hidden data by
cataloging as many possible instances of executables, and checking for differences. Fur-
thermore, it would be fairly easy to check statically linked binaries for different function
orderings, since there is a limited number of versions of any particular likzayy,libc
to compare against. However, if this technique is used as software watermarking for
registration purposes, where a signature is embedded into the executable in order to
identify its owner in case of piracy, every executable’s hash signature will be different.

Resilience As was observed in [15], achieving protection of large amounts of em-
bedded data against intentional attempts at removal may ultimately be infeasible. The
techniques we have described rely on statically embedding data into a binary exe-
cutable. The location of this data is easy to find and modify, since we only embed into
specific instructions. In fact, there is no way to protect against overwriting all poten-
tially hidden data, by randomly permuting any instruction or other aspect of the binary
that could be used by Hydan. If we expect a message to be encoded in a bigamy (

a watermark/fingerprint, or a digital signature), we can easily detect corruption by ap-
pending a message authentication code to the encoded data. We could also use ECC to
try to recover parts of the message in case of overwrites. But a removal attempt does not
cripple the software. A potentially more fruitful technique would be to use the dynamic
watermarking techniques, as described in [9]. The implementation of such techniques
would be more difficult inx86, as they require access to source code to be effective.
This is an area of future research.

6 Concluding Remarks

We presented Hydan, a system for embedding daiB@program binaries by using
functionally equivalent instructions as redundant bits. We analyzed the program binaries
of the OpenBSD, FreeBSD, NetBSD, Red Hat Linux, and Windows XP Professional

operating systems to estimate the encoding rate of such a system. We discussed our im-
plementation of Hydan and its resistance to discovery and removal attacks. Applications
include steganographic communication, program registration, and filesystem security.

We determined that we can embed 1 bit for every 110 bits of program code. In
comparison, standard steganographic techniques using JPEG as the cover medium can
achieve an encoding rate q‘; due to the large amount of redundant bits in typical
images. However, we have identified several potential improvements to Hydan that may
lead to an encoding rate gf in program binaries.

Our plans for future work include finding new techniques to increase the capacity of
the program binary cover, and investigating the use of of dynamic watermarking tech-
niques in machine code. The Hydan implementation can be freely downloaded from:

http://www.crazyboy.com/hydan/

Acknowlegements We are greatly indebted to Michael Mondragon Tdre Bastard
disassembletibdisasm and much guidance. Thanks to El Rezident for the PE/COFF
parsing code. We also thank Josha Bronson and Vivek Hari for their help in obtaining
the FreeBSD and WindowsXP instruction statistics. Niels Provos provided valuable
feedback while this work was in progress.

References

1. Provos, N.: Defending Against Statistical Steganalysis. In: Proceedings of the 10th USENIX
Security Symposium. (2001)
2. Cachin, C.: An Information-Theoretic Model for Steganography. LNG35(1998) 306—
318
3. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding — A survey. Proceedings
of the IEEE87 (1999) 1062-1078
. Moulin, P., O'Sullivan, J.: Information-theoretic analysis of information hiding (1999)
5. Samson, P.R.: Apparatus and method for serializing and validating copies of computer soft-
ware. US Patent 5,287,408 (1994)
6. Davidson, R.L., Myhrvold, N.: Mehod and system for generating and auditing a signature
for a computer program. US Patent 5,559,884 (1996)
7. Moskowitz, S., Cooperman, M.: Method for stega-cipher protection of computer code. US
Patent 5,745,569 (1996)
. Holmes, K.: Computer software protection. US Patent 5,287,407 (1994)
9. Collberg, C., Thomborson, C.: On the Limits of Software Watermarking. Technical Report
164, Department of Computer Science, The University of Auckland (1998)
10. Council for IBM Corporation: Software birthmarks. Talk to BCS Technology of Software
Protection Special Interest Group (1985)
11. Stern, J.P.,, Hachez, G., Koeune, F., Quisquater, J.J.: Robust object watermarking: Applica-
tion to code. In: Information Hiding. (1999) 368-378
12. Hachez, G.: A comparative study of software protection tools suited for e-commerce with
contributions to software watermarking and smart cards (2003)
13. Wayner, P.: Disappearing Cryptography. 2nd edn. Morgan Kaufmann, San Francisco, Cali-
fornia (2002)
14. Kwan, M.: gifshuffle.http://www.darkside.com.au/gifshuffle/ (2003)
15. Bender, W., Gruhl, D., Lu, A.: Techniques for data hiding. IBM Systems JoGBd!996)

A

oo

Appendix A: Instruction Statistics

The folowing is a description of the more important sets of equivalent instructions. For
clarity, the 8 and 32-bit versions of instruction sets are shown on the same line, and
the lesser-used instructions are omitted from the table. Instructions in each set are only
equivalent, and used by Hydan, if they follow certain constraints:

e The following instruction sets’ operands must both point to registers:

e add[8, 32] ,and[8, 32] ,add[8, 32] ,cmp[8, 32] ,mov[8, 32] ,
or[8, 32] ,shbb[8, 32] ,sub[8, 32] ,xor[8, 32]

e addsub[8, 32][-1, -2] : The addsub sets all refer to the equivalence of ad-
dition with negative subtraction. There are several such sets since instructions differ
depending on the size of their operands. The “negative form” represents instances
where the immediate value is negative.

e toac[8, 32] : The listed instructions have the same effect (namely, set the flag
register according to the result) when their arguments are idengigal; test
%eax, %eax”

r/m register/memory
r[8,32] |register
imm[8,32]immediate valug

Table 3. Statistics legend.

[Set of Instructiongnstruction Name | Bits|Dist w/in SetGlobal Disf]
add32 add r/m32, r32 31909 100.00% 1.06%

add r32 , r/m32 0 0.00%
addsub32-1 add eax, imm32 4576 84.669 0.18%

negative form 547 10.129

sub eax, imm32 282 5.22%

negative form 0 0.00%
addsub32-2 add r/m32, imm32 7356 44,899 0.55%

negative form 1470Q 8.97%

sub r/m32, imm32 7560 46.149

negative form 0 0.00%
addsub32-3 add r/m32, imm8 |96079¢ 60.869 52.609

negative form 509372 32.279

sub r/m32, imm8 108266 6.86%

negative form 174 0.01%

[Set of Instructiongnstruction Name

| Bits|Dist w/in SeGlobal Disf]

addsub8 add al , imm8 1698 35.269 0.16%
negative form 1041 21.629
sub al , imm8 2076 43.129
negative form 0 0.00%

and32 and r/m32, r32 2683 100.00% 0.09%
and r32 , r/m32 0 0.00%

and8 and r/m8 , r8 70 100.00% 0.00%
and r8 , r/m8 0 0.00%

cmp32 cmp r/m32, r32 49784 100.00% 1.66%
cmp r32 , r/m32 0 0.00%

cmp8 cmp r/m8 | r8 1302 100.00% 0.04%
cmp r8 , r/m8 0 0.00%

mov32 mov r/m32, r32 435702 100.00% 14.52%\
mov r32 , r/m32 0 0.00% |

mov8 mov r/m8 , r8 264Q 100.00% 0.09%
mov r8 , r/m8 0 0.00%

or32 or r/m32, r32 10653 100.00% 0.35%
or r32 , r/m32 0 0.00%

sbb32 sbb r/m32, r32 1021 100.00% 0.03%
sbb r32 , r/m32 0 0.00%

sub32 sub r/m32, r32 46750 100.00% 1.56%
sub r32 , r/m32 0 0.00%

toac32 test r/m32, r32 593610 100.00% 19.789
or r/m32, r32 0 0.00%
or r32 , r/m32 0 0.00%
and r/m32, r32 0 0.00%
and r32 , r/m32 0 0.00%

toac8 and r/m8 , r8 2012 7.12% 0.94%
and r8 , r/m8 0 0.00%
test r/m8 , r8 26230 92.88¢
or r/m8 , r8 0 0.00%
or r8 , r/m8 0 0.00%

xor32 xor r/m32, r32 3729 100.00% 0.12%
xor r32 , r/m32 0 0.00%

xorsub32 xor r/m32, r32 182524 100.00% 6.08%
xor r32 , r/m32 0 0.00%
sub r/m32, r32 0 0.00%
sub r32 , r/m32 0 0.00%

Table 4.0penBSD Instruction Statistics (592 binaries)

