Creating efficient fail-stop cryptographic protocols *
Technical Report MS-CIS-96-32

Angelos D. Keromytis
University of Pennsylvania
Jonathan M. Smith
University of Pennsylvania

April 4, 1996

Abstract

Fail-stop cryptographic protocols are characterized
by the property that they terminate when an ac-
tive attack is detected, rather than releasing infor-
mation valuable to the attacker. Since such a con-
struction forces attacks (other than denial-of-service)
to be passive, the protocol designer’s concerns can be
restricted to passive attacks and malicious insiders.
A significant advantage of such protocols is that by
stopping and not attempting to recover, proofs about
protocol behavior and security properties are greatly
simplified.

This paper presents a generic method of converting
any existing (cryptographic) protocol into a fail-stop
one, or designing new protocols to be fail-stop. Our
technique uses cryptographic hashes to validate se-
quences of messages by reflecting message dependen-
cies in the hash values. An informal proof of cor-
rectness is given. We apply it to an early version of
Netscape’s Secure Socket Layer (SSL) cryptographic
protocol. We also suggest a possible application to
TCP streams as a high-performance alternative to
the per-packet authentication of IPSEC.

The modified protocols require small increases in
message size and the number of cryptographic op-
erations relative to the initial non-fail-stop protocols.

*Copyright ©1996, Angelos D. Keromytis and Jonathan
M. Smith. Permission is granted to redistribute this docu-
ment in electronic or paper form, provided that this copy-
right notice is retained. Authors’ email addresses are ange-
los@dsl.cis.upenn.edu and jms@central.cis.upenn.edu. This re-
search was supported by DARPA under contract #N66001-96-
C-852.

1 Fail-stop protocols

Cryptographic protocols are widely used in many ad-
vanced applications, such as electronic banking, net-
worked software distribution, and wireless personal
communications systems. Due to the complexity of
conditions they may encounter, careful reasoning and
formal means such as proofs are used to validate the
design of a cryptographic protocol. Such validation is
easier if the set of threat conditions is reduced. If this
reduction is via assumptions which ignore reality, the
validation becomes worthless when the assumptions
are falsified. Techniques resulting in the construction
of protocols which by design reduce the complexity of
threat conditions are thus extremely attractive.

One such idea is a fail-stop cryptographic protocol,
recently introduced by Gong and Syverson [FS]:

A protocol is fail-stop if any attack inter-
fering with a message sent in one step will
cause all causally-after messages in the next
step or later not to be sent.

As Gong and Syverson show, fail-stop protocols pos-
sess a very useful security property, namely:

active attacks cannot cause the release of
secrets within the run of a fail-stop protocol

The fail-stop property lets a protocol designer re-
strict his or her concerns to passive (eavesdropping)
attacks, a significant reduction in the class of threats
to the protocol’s security. There is, of course, no
free lunch: the protocol must terminate when active
attacks occur, rather than attempting to continue.
However, when embedded in a larger system, this
termination can be handled by higher-level detection
and resolution mechanisms. We believe that reliable

termination is greatly preferred to unknown and inse-
cure behavior in the face of active attacks on security.

1.1 Specifying fail-stop behavior
Syverson and Gong state the following specifications
for a fail-stop protocol:

1. The content of each message has a header con-
taining the identity of its sender, the identity of
its intended recipient, the protocol identifier and
its version number, a message sequence number,
and a freshness identifier.

2. Each message is encrypted under the key shared
between its sender and intended recipient.

3. An honest process follows the protocol and ig-
nores all unexpected messages.

4. A process halts any protocol run in which an ex-
pected message does not arrive within a specified
timeout period.

The above specifications assume that the two commu-
nicating parties share a secret encryption key used
with a symmetric key cryptosystem (such as DES
[FIPS46]).

The freshness identifier can be a nonce issued by the
intended recipient or a time stamp (if the clocks are
assumed to be securely and reliably synchronized—
but see [LG92]).

1.2 Outline of this paper

Section 2 presents our method for chaining the mes-
sages of a protocol run. This makes the messages
sequenced and non-reusable outside the context of
this protocol run, thereby making message tamper-
ing and replay attacks impossible [PS]. Section 3
gives a detailed example of the methods applied to
the SSL cryptographic protocol. Section 4 proposes
applications to a large class of protocols, those which
provide reliable message streams. Section 5 makes
some observations about the method, and addresses
some potential criticisms. Section 6 concludes the
paper and summarizes its contributions.

2 Message chaining

Fail-stop cryptographic protocols, as specified by
Gong and Syverson, require repeating considerable

information in each message of the protocol. This
has several weaknesses. First, the size of the mes-
sages increases. Second, the amount of encryp-
tion/decryption required also increases [PET]. Third,
and perhaps most consequential, there is more plain-
text for an attacker to mount known plaintext attacks
[LGI0] [PPC].

Instead of including all the information of their spec-
ification in each protocol message, we can rely on
one-way hash functions, such as MD5 [MD5] or SHA
[SHA] to preserve the sequencing of the protocol mes-
sages.

A Messages B

The initiator of the protocol run starts by sending the
first message including all the aforementioned infor-
mation (some of which might already be included in
the original protocol). Additionally, a hash of the en-
tire message (including the new fields) is sent. That
value is also kept as local state.

The responder verifies these values and then proceeds
with the normal flow of the protocol. From there on,
each message exchanged contains the one-way hash
result of the new message and the state of the sender
of that particular message. The receiver of each mes-
sage calculates the hash of the message and his state
and compares it with the hash value he received. If
they’re not the same, then some active attack is as-
sumed to be taking place.

Naturally, the hash values cannot be sent along with
the message in the clear; an attacker could tamper
with those. There are three alternatives to securing
them:

1. Sign the hash values with one’s private key, if
the peer is known to have one’s public key, when
using a public key cryptosystem (such as RSA
[RSA] [RSA1]).

2. Encrypt the hash value with a shared secret key
using a symmetric cryptosystem.

3. Use keyed hashes (where the key has to be used
in each hash function application). Care must

be taken to use a strong way of keyed-hashing
[BCK].

2.1 The hash function

Here we assume that the hash function used has four
desirable properties:

e Collision resistance: an attacker cannot create
another message with the same hash value.

e Entropy preservation: the effect that some value
has in the hash result does not disappear, at least
not before a reasonably large number of applica-
tions of the hash function.

e Non commutativity: reordering the messages
will make the results invalid.

e Given subset of the input to the hash function
and the result, an attacker can not find what the
missing input bits are.

Depending on the particular protocol, additional
properties might be required from the hash function
[RJA].

2.2 Correctness of our method

Keeping in mind that the verification at each step of
a protocol is of the form:

e H(Key, State, Message) L Message. Hash

There are three methods of active attacks a malicious
entity can attempt:

1. Find the key. We have already made the (weak,
as cryptographic hash functions go) assumption
that this is not possible.

2. Inject a new message such that the verification
succeeds. This means that the attacker is capa-
ble of creating collisions on the hash function
even when a secret quantity (the Key) is in-
volved. Again, this is a relatively weak assump-
tion we have already made.

3. Affect the State kept by either of the legitimate
protocol parties, so that a captured message can
be replayed. Manipulating the State to some de-
sired value - even if it were possible - would not
allow the attacker to introduce a new message of
his own, since the Key used is unknown to him.

Also, the chance of the State chancing to be the
same as the one at a previous step of the proto-
col is negligible (approximately (1/2)™?, where
n is the length in bits of the output of the hash
function).

However, manipulating the State to some partic-
ular value means that the previous round of the
protocol has been tampered with successfully ®.
This in turn (because of the reasons given above)
means that the round before that has been suc-
cessfully attacked.

Following this argument, the attacker would
have to affect the first message in the protocol.
More specifically, he would have to substitute it
with another message from a previous or paral-
lel run of the protocol which uses the same Key.
The reasons this is not possible are:

e the first message can not be tampered with,
since it involves usage of a secret key and
the hash function is collision free

e it contains enough information to distin-
guish it from any other first-message of the
same protocol

The above are not intended as a formal proof of cor-
rectness of our method, but rather as a line of rea-
soning which we believe is sufficiently convincing.

2.3 Other attacks

There is one final point of concern: although it is
impossible for an attacker to inject a message in the
middle of a protocol run under our scheme, it is still
possible to use a captured message as the first mes-
sage in a protocol. Of course, the protocol must allow
this attack by message insertion in the first place, and
such an attack is precluded if it is impossible for an
attacker to remove the hash value from a message (he
can discard that field if it’s a keyed hash for example,
but not if it’s encrypted in CBC mode [CBC] with all
other message fields).

If the protocol designer is also worried about insider
attacks, he or she should ensure that any valuable
pieces of information (such as a digital signature) is
inseparable from the hash value. For example, in the
case of a digital signature, one would use the hash
value in the signature computation.

I'We assume the attacker does not have access to the inter-
nals of either of the legitimate protocol parties.

3 An example: Netscape’s SSL

An early version of the SSL protocol [SSL] included
the following messages:

1. A—» B: {Kab}Kb
2. B — A: {Nb}Kab
3. A—>B: {CA, {Nb}Ka_l}Kab

Here, A and B are a client and a server respectively,
K is B’s public key, K, is A’s public key, CA is
a certificate of A’s public key, K, ! denotes signing
with A’s secret key, K,p is a session secret key and
Ny is a nonce/challenge. There are more messages
in the protocol, but as they are irrelevant to client
authentication we will ignore them.

This version of the SSL protocol has a flaw, noted
in [PET]. If C is a malicious server and A tries to
communicate with it, then C can impersonate A to
another server B:

1. A - C: {K.}k,
2. C —» B: {Ku.}k,
3. B— C: {Np}k,.
4. C = A: {M}k,.
5. A = C:{CA {No}g-1}k..
6. C = B: {CA, {Np} -1}k,

at which point C has convinced B that he is A. Ap-
plying our method would not be sufficient, since C
is an internal attacker (someone A wants to commu-
nicate with directly). A slight change is required: in
message 3, A will sign not only the nonce but also the
history of the protocol up to that point. This will en-
sure that the signature and the protocol history are
inseparable to an internal attacker as well as to an
external one.

1. A - B: {Kuw,A,B,P,HI(Ks,A,B,P)}k,
2. B = A: {Ny, H2(Ny, H1)} &,
3. A B: {CA, {Nb7H3(CA7H2)}K;1}Kab

where P in message 1 is the protocol identifier number
and other protocol-run identifying information (such
as network addresses/ports). Also notice that in the
same message, K,, acts as a nonce, in addition to
being the session key.

This solution is similar in concept to the one proposed
in [PET]. The current version of SSL does not have
this flaw.

4 Application to stream proto-
cols

Our technique can be applied to stream protocols
(such as TCP) [TCP] over packet switched networks
such as the Internet. Instead of authenticating each
individual packet separately [[PSEC], we can authen-
ticate the whole data stream in the same way. How-
ever, there are some issues that need to be addressed:

e The hash value should be calculated only over
the invariant (between possible retransmissions)
portions of the packet. Consequently, the under-
lying network layers and infrastructure should
not modify the packet (or if they do, the remote
end should reconstruct it in exactly the same
form as it was transmitted). Under this rule,
IP [IP] packet fragmentation is permitted.

e User-application delivery of out of sequence pack-
ets is not permitted, since they cannot be au-
thenticated before all previous packets have been
received. This ordering requirement does not
pose any problem, as it reflects the usual seman-
tics of stream protocols.

e Acknowledgments do not mean that a packet was
accepted as authenticated, but rather that it was
received without any transmission errors.

e Only those portions of the packet that are in-
cluded in the hash value computation are con-
sidered trustable.

We believe that the best place do do this in the IP
protocol stack is at the TCP layer. We would then ad-
ditionally include in the hash computation the source
and destination IP addresses (which violates the lay-
ering model) and create good random initial sequence
numbers (which can be considered nonces). If used
in other layers of a protocol stack (such as the net-
work or the application), it might be necessary to
include additional information in the first message to
make the protocol distinguishable from any other, or
make sure that it does not interfere with the normal
operation of the network (e.g. in the case of packet
retransmissions).

5 Observations and Discussion

The method we showed in the previous section is a
superset of message authentication. In the case of
one message sent, the hash value is equivalent to a

MAC. For each successive message sent (in either di-
rection), the check made by the receiver is equivalent
to checking a MAC over the particular message and
the receiver’s state. So, for message X, the receiver
checks the validity of message X and his local state.
Since we assume that an attacker cannot modify the
hash value in an undetectable way, changes made in
messages X and X-1 (the previous message in the
protocol run) will be detected in this check. Further-
more, the state cannot be influenced by an attacker
since an attempt to do so would have been detected
in a previous step of the protocol.

At any time, the local state depends on the messages
sent and received at that point, the specific order they
were sent in, the initiator’s and responder’s identities,
a freshness identifier, a protocol identifier and a pro-
tocol version number (all these were included in the
first message only). Because of the required prop-
erties of the hash function, duplication of all these
fields in subsequent messages is not necessary. Addi-
tionally, message sequence numbers are also not nec-
essary, because inclusion of the state in the hash value
computation ensures data sequencing.

6 Conclusion

We have presented a method of designing fail-stop
protocols based on message-chaining. The method re-
lies on a representation of the state of a cryptographic
protocol in a secure hash value, and was demon-
strated on a familiar cryptographic protocol, SSL, as
a proof-of-concept example. The message-chaining
idea of method is sufficiently general to be applicable
to non-cryptographic protocols, such as the Internet
protocol for reliable datastreams, TCP.

Ensuring that a protocol is fail-stop allows the de-
signer to restrict his or her concerns to malicious
insiders and passive (eavesdropping) attacks. Our
method can be used to construct efficient implemen-
tations of such fail-stop protocols, as it neither greatly
increases the size of the messages nor the number of
cryptographic operations required.

7 Acknowledgments

The authors would like to thanks Dave Farber, Li
Gong and Paul Syverson whose ideas and previ-
ous work influenced this paper. Thanks also go to
Bill Arbaugh, Alex Garthwaite, Scott Alexander and
Jonathan Shapiro for reviewing earlier versions of this

paper.

References

[F'S]

[PET]

[FIPS46]

[MD5]

[SHA]

[BCK]

[RIA]

[LGI0]

[LG92]

[PPC]

[RSA]

[RSAI1]

“Fail-Stop Protocols: An Approach to
Designing Secure Protocols”, Gong, Li
and Syverson, Paul, Proceedings of IFIP
DCCA-5, September 1995

“Prudent Engineering Practice for Cryp-
tographic Protocols”, Abadi, Martin and
Needham, Roger, IEEE Computer Society
Symposium on Research in Security and
Privacy, 1994

“NBS FIPS PUB 46 - Data Encryption
Standard”, National Bureau of Standards,

U.S. Department of Commerce, January
1977

“The MD5 Message Digest Algorithm”,
R.L. Rivest, RFC 1321, April 1992

“NIST FIPS PUB 180 - Secure Hash
Standard”, National Institute of Standards
and Technology, U.S. Department of Com-
merce, May 1993

“Keying Hash Functions for Message Au-
thentication”, Mihir Bellare, Ran Canetti
and Hugo Krawczyk, Advances of Cryptol-
ogy, Crypto ’96 Proceedings

“The Classification of Hash Functions”,
Ross Anderson, Proceedings of IMA Con-
ference on Cryptography and Coding, 1993

“Verifiable-Text Attacks in Cryptographic
Protocols”, Li Gong, Proceedings of the
IEEE INFOCOM 90, June 1990

“A Security Risk of Depending on Syn-
chronized Clocks”, Li Gong, ACM Operat-
ing Systems Review, v26nl, January 1992

“Protecting Poorly Chosen Secrets from
Guessing Attacks”, Li Gong, T. Mark A.
Lomas, Roger M. Needham and Jerome H.
Saltzer, IEEE Journal on Selected Areas in
Communications, viInd, June 1993

“A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems”,
R.L. Rivest, A. Shamir and L.M. Adle-
man, Commaunications of the ACM, v21n2,
February 1978

“On Digital Signatures and Public Key
Cryptosystems”, R.L. Rivest, A. Shamir
and L.M. Adleman, MIT/LCS/TR-212,
January 1979

[TCP]

[TP]

[IPSEC]

[WMF]

[CBC]

[SSL]

[UEPS]

[CRDS]

“A Taxonomy of Replay At-
tacks”, Paul Syverson, Proceedings of the
Computer Security Foundations Workshop
VII (CSFW7), June 1994

“Transmission Control Protocol”, Postel,
J.B., RFC 793, September 1981

“Internet Protocol”, Postel, J.B., RFC
791, September 1981

“Security Architecture for the Internet”,
R. Atkinson, RFC 1825, July 1995

“A Logic of Authentication”, M. Burrows,
M. Abadi and R. Needham, ACM Transac-
tions on Computer Systems, v8nl, Febru-
ary 1990

“Applied Cryptography: Protocols, Algo-
rithms and Source Code in C, 2nd edition”,
Bruce Schneier, John Wiley & Sons Inc.,
NY 1996

“The SSL Protocol”, K.E.B. Hickman,
RFC, Netscape Communications Corp.,
October 199/

“UEPS - A Second Generation Electronic
Wallet”, Anderson, R.J., Computer Secu-
rity - ESORICS 92, Springer LNCS v648

pp 411 - 418

“Making Smartcard Systems Robust”, An-
derson, R.J., Proceedings of Cardis 9/

