
DHCP++: Applying an e�cient implementation method for fail-stop

cryptographic protocols

William A. Arbaugh Angelos D. Keromytis Jonathan M. Smith�

University of Pennsylvania

August 20, 1998

Abstract

The DHCP protocol is used by hosts to dynamically allo-
cate an IP address and con�gure client hosts. The protocol
greatly eases the administration of an IP subnetwork and
is thus widely used.
The basic approach of the DHCP protocol is for a client

to broadcast a request for an address, and for one or more
servers to respond with addresses. This creates signi�cant
opportunities for security risks due to active attackers.
We have designed a new, e�cient implementation

method for the fail-stop cryptographic protocols originated
by Gong and Syverson. The implementation method uses
cryptographic hashes of the state of the sender and receiver
and the exchanged messages to detect if any deviation from
expected behavior has taken place. If it has, an attack is
assumed and the protocol ceases execution. We present a
proof outline of protocol security using our method.
We have applied our method to DHCP, resulting in

DHCP++. DHCP++ uses our fail-stop implementation
technique to prevent any attacks that could otherwise vio-
late DHCP's security assumptions. The resulting protocol
operates entirely within the context of DHCP. The paper
analyzes the threats eliminated by this enhancement, and
measurements against DHCP show that the incremental
performance costs are minimal.

�Copyright c
1997, William A. Arbaugh, Angelos D. Keromytis
and Jonathan M. Smith. Permission is granted to redistribute
this document in electronic or paper form, provided that this
copyright notice is retained. Authors' email addresses are
fwaa,angelos,jmsg@dsl.cis.upenn.edu. This research was supported
by DARPA under contract #N66001-96-C-852.

1 Fail-stop protocols

Cryptographic protocols are used in many advanced appli-
cations such as electronic banking, networked software dis-
tribution, and wireless personal communications systems.
Due to the complexity of conditions they may encounter,
careful reasoning and formal means such as proofs are used
to validate the design of a cryptographic protocol. Such
validation is easier if the set of threat conditions is reduced.
Techniques resulting in the construction of protocols which
by design reduce the complexity of threat conditions are
thus extremely attractive.
One such technique is a fail-stop cryptographic protocol,

introduced by Gong and Syverson [FS]:

A protocol is fail-stop if any attack interfering
with a message sent in one step will cause all
causally-after messages in the next step or later
not to be sent.

As Gong and Syverson show, fail-stop protocols possess
a very useful security property, namely:

active attacks cannot cause the release of secrets
within the run of a fail-stop protocol

The fail-stop property lets a protocol designer restrict se-
curity concerns to passive (eavesdropping) attacks, a signif-
icant reduction in the class of threats to the protocol's se-
curity. The cost is that the protocol must terminate when
active attacks occur, rather than attempt to continue. We
believe that reliable termination is greatly preferred to un-
known and insecure behavior in the face of active attacks
on security, and when embedded in a larger system, pro-
tocol termination can be handled by higher-level detection
and resolution mechanisms.

1.1 Specifying fail-stop behavior

Syverson and Gong state the following speci�cations for a
fail-stop protocol:

2 MESSAGE CHAINING 1

1. The content of each message has a header containing
the identity of its sender, the identity of its intended
recipient, the protocol identi�er and its version num-
ber, a message sequence number, and a freshness iden-
ti�er.

2. Each message is encrypted under the key shared be-
tween its sender and intended recipient.

3. An honest process follows the protocol and ignores all
unexpected messages.

4. A process halts any protocol run in which an expected
message does not arrive within a speci�ed timeout pe-
riod.

The above speci�cations assume that the two commu-
nicating parties share a secret encryption key used with a
symmetric key cryptosystem (such as DES [FIPS46]). It
should be noted that this is not the only method for gen-
erating fail-stop protocols, but rather the simplest one.
The freshness identi�er can be a nonce issued by the in-

tended recipient or a time stamp (if the clocks are assumed
to be securely and reliably synchronized [LG92]).

1.2 Outline of this paper

Section 2 presents our method for chaining the messages
of a protocol run. This makes the messages sequenced
and non-reusable outside the context of this protocol run,
thereby making message tampering and replay attacks in-
feasible [PS]. Section 3 brie
y discusses the DHCP proto-
col. Section 4 presents our extensions to DHCP. Section 5
discusses our implementation of DHCP++ and, section 6
concludes the paper and summarizes its contributions.

2 Message chaining

Fail-stop cryptographic protocols, as speci�ed by Gong
and Syverson, require repeating considerable information
in each message of the protocol. This has undesirable con-
sequences. First, the size of the messages increases. Sec-
ond, the amount of encryption/decryption required also in-
creases [PET]. Third, and possible of most concern, there
is more plaintext for an attacker to mount known plaintext
attacks [LG90] [PPC].
However, rather than include all the information of their

speci�cation in each protocol message, we can rely on one-
way hash functions, such as MD5 [MD5] or SHA [SHA] to
preserve the sequencing of the protocol messages.
The initiator of a modi�ed protocol run starts by send-

ing the �rst message including all the aforementioned in-
formation (some of which might already be included in the
original version of the protocol). Additionally, a hash of

the entire message (including the new �elds) is sent. This
value is also kept as local state.

The responder veri�es these values and then proceeds
with the normal
ow of the protocol. From there on, each
message exchanged contains the one-way hash result of the
new message and the state of the sender of that particular
message. The receiver of each message calculates the hash
of the message and the local state and compares it with
the hash value received. If they're not the same, then some
active attack is assumed to be in progress.

Naturally, the hash values cannot be sent along with the
message unprotected; an attacker could tamper with them.
There are three alternatives to securing them:

1. Sign the hash values with one's private key, if the peer
is known to have one's public key (or can securely ob-
tain or verify it, by using some certi�cate directory or
some certi�cation scheme [X509] [SPKI]), when using
a public key cryptosystem such as RSA [RSA]).

2. Encrypt the hash value with a shared secret key using
a symmetric cryptosystem.

3. Use keyed hashes (where the key has to be used in
each hash function application), again using a shared
secret key. Care must be taken to use a strong way of
keyed-hashing [BCK]. The advantages of this method
can be faster computation (since typically hash func-
tions outperform encryption functions) and avoidance
of restrictions in export or use of cryptography.

2.1 The hash function

Here we assume that the hash function used has four de-
sirable properties:

� Collision resistance: an attacker cannot create an-
other message with the same hash value.

� Entropy preservation: the e�ect that some value has in
the hash result does not disappear, at least not before
a reasonably large number of applications of the hash
function.

� Non commutativity: reordering the messages will
make the results invalid.

� Given subset of the input to the hash function and
the result, an attacker can not �nd what the missing
input bits are.

Depending on the particular protocol, additional prop-
erties might be required from the hash function [RJA].

3 DYNAMIC HOST CONFIGURATION PROTOCOL 2

2.2 Correctness

Keeping in mind that the veri�cation at each step of a
protocol is of the form:

� H(Key, State, Message)
?
= Message.Hash

There are three methods of active attacks a malicious
entity can attempt:

1. Find the key (by cryptanalysis or exhaustive search).
We have already made the assumption that this is not
possible.

2. Inject a new message such that the veri�cation suc-
ceeds. This means that the attacker is capable of cre-
ating collisions on the hash function even when a se-
cret quantity (the Key) is involved. Again, this is a
relatively weak assumption we have already made.

3. A�ect the State kept by either of the legitimate pro-
tocol parties, so that a captured message can be re-
played. Manipulating the State to some desired value
- even if it were possible - would not allow the attacker
to introduce a new message of his own, since the Key
used is unknown. Also, the chance of the State being
the same as the one at a previous step of the protocol
is negligible (approximately (1=2)n=2, where n is the
length in bits of the output of the hash function).

However, manipulating the State to some particular
value means that the previous round of the protocol
has been tampered with successfully 1. This in turn
(due to the reasons given above) means that the round
before that has been successfully attacked.

Following this argument, the attacker would have to
a�ect the �rst message in the protocol. More specif-
ically, the message would have to be replaced by an-
other message from a previous or parallel run of the
protocol which used the same Key. This is not possi-
ble:

� The �rst message cannot be tampered with, since
it involves usage of a secret key (in a symmetric
or asymmetric algorithm), and the hash function
is collision free.

� The �rst message contains enough information
to distinguish it from any other �rst-message of
the same protocol.

While hardly a proof of correctness, we outline the di-
rection such a proof will take.

1We assume the attacker does not have access to the internal
storage of either of the legitimate protocol parties.

2.3 Other attacks

There is one �nal point of concern: although it is impos-
sible for an attacker to inject a message in the middle of
a protocol run under our scheme, it is still possible to use
a captured message as the �rst message in a protocol. Of
course, the protocol must allow this attack by message in-
sertion in the �rst place, and such an attack is precluded
if it is impossible for an attacker to remove the hash value
from the message (an unencrypted keyed hash �eld, for ex-
ample, can be discarded, but not if it's encrypted in CBC
mode [CBC] with all other message �elds).
If the protocol designer is also worried about insider at-

tacks, the protocol should be designed such that any cryp-
tographically valuable message components (such as a dig-
ital signature) are inseparable from the hash value. For
example, in the case of a digital signature, one would in-
clude the hash value in the signature computation.
A similar method is used in SSLv3 [SSL], but neither

any connection to failstop properties nor a proof of security
were given.

3 Dynamic Host Con�guration

Protocol

The DHCP protocol [DHCP] provides clients the ability
to con�gure their networking and host speci�c parameters
dynamically during the boot process. The typical parame-
ters are the IP addresses of the client, gateways, and DNS
server. DHCP, however, supports up to 255 con�guration
parameters, or options. Currently, approximately one hun-
dred options are de�ned for DHCP [DHCPOPT]. One of
these options is an authentication option which is described
in Section 5.1.
The initial message exchange between the client and the

server is shown in Figure 1.
The client begins the process by sending a DHCPDIS-

COVER message as a broadcast message on its local area
network. The broadcast message may or may not be for-
warded beyond the LAN depending on the existence of
relay agents at the gateways. Any or all DHCP servers
respond with a DHCPOFFER message. The client selects
one of the DHCPOFFER messages and responds to that
server with a DHCPREQUEST message, and the server
acknowledges it with a DHCPACK.
In addition to providing networking and host speci�c

parameters, DHCP can provide the name and server lo-
cation of a bootstrap program to support diskless clients.
After the client receives the IP address of the boot server
and the name of the bootstrap program, the client uses
TFTP [TFTP] to contact the server and transfer the �le.

It should be obvious that any malicious host on the same

4 DHCP++ 3

local network as the requester can claim to be a DHCP
server and provide false information to the client. Ad-
ditionally, since the transfer of the bootstrap is not pro-
tected, an attacker can cause the booting machine to load
a tampered kernel, completely compromising its security.
Finally, since there is no access control, anyone can con-
nect a laptop to such a network an acquire an valid IP
address. This problem is particularly prominent in uni-
versity campus networks, where physical security to the
network infrastructure is hard to enforce.

ACK

REQUEST

OFFER

OFFER

ServerClient

Time DISCOVER

Figure 1: DHCP Message Exchange

4 DHCP++

We �rst describe our certi�cate format, which is a subset of
SPKI [SPKI]. We then describe our extensions to DHCP.

4.1 Certi�cates

Certi�cates are typically used to provide a binding of a
public key to an identity [X509] or to grant authoriza-
tion [SPKI]. In our implementation we used a subset of
SPKI. The reasons for this decision were:

� The certi�cates �t in one DHCP option payload. This
preserved backward compatibility.2

� SDSI/SPKI provides for the notion of a capabil-
ity [CAP], such that the certi�cate carries the au-
thorizations of the holder, eliminating the need for
an identity infrastructure and Access Control Lists.
Maintaining ACLs in a distributed environment is a
complex and di�cult task, especially at the low level

2Since the certi�cate format is still under development, we actu-
ally used a subset of all the features, and a mapping between the
Advanced Transport Format (example in Figure 2) and a pure bi-
nary format (which we call BTF, for Binary Transport Format), to
reduce the certi�cate size. We call this subset SDSI/SPKI Lite.

((cert (issuer (hash-of-key (hash sha1

clientkey)))

(subject (hash-of-key (hash sha1

clientkey)))

(tag (client (cnonce cbytes)

(msg-hash

(hash sha1 hbytes))))

(not-before 09/01/97-0000)

(not-after 09/01/97-0000))

(signature (hash sha1 hashbytes)

(public-key dsa-sha1 clientkey)

(sigbytes)))

Figure 2: Client Authentication Certi�cate

at which DHCP operates. In our extension of DHCP,
we use the capabilities SERVER and CLIENT, with
the obvious meanings.

� The code necessary for handling SDSI/SPKI certi�-
cates is small enough to (potentially) �t in a smart-
card.

In DHCP++ we use only two types of certi�cates. The
�rst is an authorization certi�cate. This certi�cate, signed
by a trusted third party or certi�cate authority, grants to
the key holder (the machine that holds the private key)
the capability to generate the second type of certi�cate -
an authentication certi�cate.
The authentication certi�cate, examples of which are

given in Figures 2 and 3, demonstrates that the client or
server actually holds the private key corresponding to the
public key identi�ed in the authorization certi�cate. A
nonce �eld is used along with a corresponding nonce in
the server authentication certi�cate to provide freshness.
The msg-hash �eld contains the hash value described in
section 2. Also, using the msg-hash in the authentication
certi�cate eliminates a signature and veri�cation operation
since the entire message no longer needs to be signed. The
additional server �elds are used to pass optional Di�e-
Hellman [DH] parameters to the client so that these pa-
rameters need not be global values. While clients are free
to set the validity period of the authentication certi�cate
to whatever they desire, we expect that clients will keep
the period short. Short certi�cate expirations are also the
chosen method of certi�cate revocation (as opposed to Cer-
ti�cate Revocation Lists).

4.2 Security Extensions to DHCP

A DHCP client and server wish to communicate and es-
tablish a shared secret after mutual authentication. There
has been no prior contact between the client and the server

4 DHCP++ 4

((cert (issuer (hash-of-key (hash sha1

serverkey)))

(subject (hash-of-key (hash sha1

serverkey)))

(tag (server (dh-g gbytes)

(dh-p pbytes)

(dh-Y ybytes)

(msg-hash

(hash sha1 hbytes))

(cnonce cbytes)

(snonce sbytes)))

(not-before 09/01/97-0900)

(not-after 09/01/97-0900))

(signature

(hash sha1 hashbytes)

(public-key dsa-sha1 serverkey)

(sigbytes)))

Figure 3: Server Authentication Certi�cate

other than to agree on a trusted third party, or a public
key infrastructure, to sign their authorization certi�cates,
CAR. The server and the client also need to have a copy
of the trusted third party's public key, PCA.
The protocol presented is done as part of the usual

DHCP protocol exchange, augmented to include the au-
thentication option in all the messages.

� In the �rst message (DHCP DISCOVER), the client
sends to the server the client's authorization and au-
thentication certi�cates, CAR and CAN .

� The server receives the message and veri�es the
client's signature on the authentication certi�cate and
that the hash contained in the authentication cer-
ti�cate matches that of the message M , as per sec-
tion 2 . The signature of the CA on the authorization
certi�cate (or chain of certi�cates) is also veri�ed at
this stage. If all are valid and the timestamp on the
authentication certi�cate is within bounds, then the
server sends to the client a message (DHCP OFFER)
containing its authorization and authentication cer-
ti�cates. The server's authentication certi�cate may
include the optional DH parameters, g and p, and Y ,
where Y = gy mod p. If the DH parameters are not
identi�ed in the certi�cate, then default values for g
and p are used.3 The server's nonce, snonce, is also
included in the message.

� The client receives this message and veri�es the signa-
tures on the authentication and authorization certi�-

3Currently, we are using the same default values as those used in
SKIP [SKIP].

cates, and that the hash in the server's authentication
certi�cate matches the message hash combined with
the state hash. If all are valid and the timestamp value
of the authentication certi�cate is within bounds then
the client sends a signed message (DHCP REQUEST)
to the server containing its DH parameter X where
X = gx mod p, and the combination of its state hash
with the hash of the message. The server receives the
message and veri�es the signature and the hash re-
ceived. If both are valid, then the server can generate
the shared secret, k, using DH, k = Xy mod p. The
client similarly generates the shared secret, k = Y x

mod p.

The shared secret, k, can now be used to authenticate
messages between the server and the client until such time
as both agree to change k. Figure 4 depicts the entire
exchange between the client and the server with the DHCP
messages identi�ed.

The use of snonce also permits the server to reuse Y over
a limited period. This reduces the computational overhead
on the server during high activity periods. The potential
for a TCPSYN like denial of service attack [TCPSYN] is
mitigated in the same manner by the authentication cer-
ti�cate. The authorization certi�cate also prevents clients
from masquerading as a server because of the client/server
capability tag. This is a bene�t not possible with basic
X.509 certi�cates.

The protocol, as described above, is fail-safe. This
means that an attacker can replay the �rst message and
cause the server to reply. The attacker cannot generate the
third message however, since he cannot generate a valid
signature and cannot replay the third message from the
previous protocol run without being detected. If the server
keeps the nonce sent by the client, cnonce, for as long as
the client's authentication certi�cate is valid (which should
be quite short, in the order of a few minutes at most), then
the protocol becomes fail-stop.

4.3 Subsequent Message Authentication

After the establishment of the shared secret through the
protocol described above, subsequent DHCP messages are
authenticated through the use of a SHA1 HMAC [HMAC]
similar to the one used in the IPSEC Authentication
Header [AH], augmented with a one up counter to pre-
vent replays. The counter is initially set to zero when the
shared secret, k, is derived. Subsequent TFTP messages
make use of the IPSEC Authentication Header.

6 CONCLUSION 5

DHCP-ACK / TFTP

P CAP

VClient

Y=g mod py

VCA CAR

Client

CAN

Client

()

()

x
k = Y mod p

CAN

Server

CAR

Server

X=g mod px

ServerV ()

CAV ()

ClientV Client(S (M))

k = X mod p
y

CAR
Client

CAN
Client

CAR CAN
Server

Client Server

,

SHA1MAC(M, k)

, CState , SState

,
CState = H(M)

 = 0 = 0

hash = H(M), SState = hash?

SState = H(M, SState)

CState = H(M, CState)
Client

CState = hash?

hash = H(M, SState)?

hash = H(M, CState),

X, hash, S (M)

, hash

Server
, hash

DHCP-DISCOVER

DHCP-OFFER

DHCP-REQUEST

CA

Figure 4: Authentication Message Exchange

5 Implementation

Moving from a high level design to an implementation re-
quires a great deal of work. In this section we take the
protocol and certi�cates described in the previous section
and describe their implementation. We also provide the
message formats and type information. We conclude the
section by providing measured performance of the system.

5.1 DHCP Authentication Option

DHCP is extensible through the use of the variable length
options �eld at the end of each DHCP message. The for-
mat and use of this �eld is currently de�ned by an Internet
RFC [DHCPOPT]. An option for authentication is also
de�ned by a draft RFC [DHCPAUTH].

The DHCP authentication option was designed to sup-
port a wide variety of authentication schemes by using
single byte protocol and length �elds. Unfortunately, a
single byte value for the size in octets of authentication in-
formation severely limits the ability to include public key
certi�cates, with reasonable key sizes, in the data �eld of
the option. Fortunately however, we do so by using the
BTF format brie
y described earlier, and using multiple
authentication option �elds. While this latter approach
technically violates the DHCP authentication option pro-
tocol, it does not cause any interoperability problems. An
alternate approach would have required increasing the the
option size �eld from one to two bytes. While interoper-
ability issues could be mitigated, the approach still pre-
sented a signi�cant change to the DHCP protocol.

Since we must use multiple authentication option �elds
in a DHCP message, we must add a �eld to identify the
information contained in the option. The resulting authen-

tication option format is shown in Figure 5. The client and
server use this option format to exchange the information
required by our protocol.

Length90

0

DHCP++ Information

3124168

DHCP++ TypeDHCP++

Figure 5: Authentication Option Format

In addition to using BTF formatted SPKI certi�cates,
we support the use of a new DHCP option to permit the
continuation of the previous option �eld. Through the use
of this option, any information that exceeds the 256 bytes
available in a DHCP option can be extended into the next
�eld. This permits the use of X.509v3 (or other) certi�-
cates if desired.

5.2 Performance

We did some performance measurements using both stan-
dard DHCP (with no security) and DHCP++. We used
Pentium-2 PCs with 64MB of RAM, running Linux. For
the cryptographic operations we used CryptoLib 2.0beta.
The 1024 bit DSA [DSA] signatures were computed in
20ms and veri�ed in 30ms. The DH public exponent gener-
ation took 17ms, and the shared secret key was computed
in 52ms. The end result is that DHCP++ takes less than
a second more than (insecure) DHCP.

6 Conclusion

We have described the design and implementation of a se-
cure version of the DHCP protocol called DHCP++, which
has wide practical applications. We developed a novel and
e�cient implementation technique for the fail-stop crypto-
graphic protocols originated by Gong and Syverson, which
used message-chaining to increase performance by reducing
the size of messages relative to Gong and Syverson's spec-
i�cation without increasing the number of cryptographic
operations.
The basis of the technique is representing the state of

a cryptographic protocol as a secure hash value. We �rst
augmented DHCP with our security extensions, and then
hardened the protocol by application of our fail-stop tech-
nique. As discussed in Section 5, the performance impact
is minimal, while transforming all active attacks on the
enhanced DHCP protocol into protocol terminations. The
result, DHCP++, allows system designers to focus their

REFERENCES 6

attention on passive (eavesdropping) attacks and attacks
by malicious insiders.
An alternative approach to securing DHCP would in-

volve using the standard IPSec [IPSEC] mechanisms, using
some temporary address while running the key manage-
ment protocol [ISAKMP]. The main drawbacks to such
a solution from our point of view is the complexity of
ISAKMP (for which there is no proof of correctness), the
code size (our solution has been fully implemented in the
PC BIOS) and the synchronization problems involved with
using a temporary IP address in the presence of multiple
machines booting at the same time (as may be the case
after a power failure).

7 Acknowledgments

The authors would like to thank Dave Farber, Li Gong and
Paul Syverson whose ideas and previous work in
uenced
this paper.

References

[FS] \Fail-Stop Protocols: An Approach to Designing Secure
Protocols", Gong, Li and Syverson, Paul, Proceedings
of IFIP DCCA-5, September 1995

[PET] \Prudent Engineering Practice for Cryptographic Pro-
tocols", Abadi, Martin and Needham, Roger, IEEE
Computer Society Symposium on Research in Security
and Privacy, 1994

[FIPS46] \NBS FIPS PUB 46 - Data Encryption Standard",
National Bureau of Standards, U.S. Department of Com-
merce, January 1977

[MD5] \The MD5 Message Digest Algorithm", R.L. Rivest,
RFC 1321, April 1992

[SHA] \NIST FIPS PUB 180 - Secure Hash Standard", Na-
tional Institute of Standards and Technology, U.S. De-
partment of Commerce, May 1993

[BCK] \Keying Hash Functions for Message Authentication",
Mihir Bellare, Ran Canetti and Hugo Krawczyk, Ad-
vances of Cryptology, Crypto '96 Proceedings

[RJA] \The Classi�cation of Hash Functions", Ross Ander-
son, Proceedings of IMA Conference on Cryptography
and Coding, 1993

[LG90] \Veri�able-Text Attacks in Cryptographic Protocols",
Li Gong, Proceedings of the IEEE INFOCOM '90, June
1990

[LG92] \A Security Risk of Depending on Synchronized
Clocks", Li Gong, ACM Operating Systems Review,
v26n1, January 1992

[PPC] \Protecting Poorly Chosen Secrets from Guessing At-
tacks", Li Gong, T. Mark A. Lomas, Roger M. Needham
and Jerome H. Saltzer, IEEE Journal on Selected Areas
in Communications, v11n5, June 1993

[RSA] \A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems", R.L. Rivest, A. Shamir and L.M.
Adleman, Communications of the ACM, v21n2, Febru-
ary 1978

[PS] \A Taxonomy of Replay Attacks", Paul Syverson, Pro-
ceedings of the Computer Security Foundations Work-
shop VII (CSFW7), June 1994

[IPSEC] \Security Architecture for the Internet", R. Atkinson,

[CBC] \Applied Cryptography: Protocols, Algorithms and
Source Code in C, 2nd edition", Bruce Schneier, John
Wiley & Sons Inc., NY 1996

[SSL] \The SSL Protocol", K.E.B. Hickman, RFC, Netscape
Communications Corp., October 1994

[DHCP] \Dynamic Host Con�guration Protocol", Droms, R.,
RFC 2131, March 1997

[DHCPOPT] \DHCP Options and BOOTP Vendor Exten-
sions", Alexander, S. and Droms, R., RFC 2132, March
1997

[ASSIGNED] \Assigned Numbers", Reynolds, J. and Postel,
J., RFC 1700, October 1994

[TFTP] \The TFTP Protocol (Revision 2)", Sollins, K. R.,
RFC 1350, July 1992

[X509] \X.509: The Directory Authentication Framework",
Consultation Committee, ITT, ITU, Geneva 1989

[SPKI] \Simple Public Key Infrastructure", Carl M. Ellison,
Bill Frantz, Ron Rivest and Brian M. Thomas, Work in
Progress, April 1997

[CAP] \Capability Based Computer Systems", Levy, H. M.,
Digital Press, 1984

[DH] \New Directions in Cryptography", Di�e, W. and Hell-
man, M. E., IEEE Transactions on Information Theory,
Volume 22 p. 644{654, November 1976

[DSA] \Digital Signature Standard", National Institute of
Standards, FIPS-186, May 1994

[AH] \IP Security Authentication Header", Stephen Kent and
Randall Atkinson, Work in Progress, October 1997

[HMAC] \HMAC: Keyed{Hashing for Message Authentica-
tion", Krawczyk H., Bellare M. and Canetti R., RFC
2104, February 1997

[SKIP] \Assigned Numbers for SKIP Protocols", Ashar Aziz,
Tom Markson and Hemma Prafullchandra, Work in
Progress

[TCPSYN] \Attack Class: Address Spoo�ng", Heberlein, L. T.
and Bishop, M. Proceedings of the 19th National Infor-
mation Systems Security Conference, p. 371{377, Octo-
ber 1996

[DHCPAUTH] \Authentication for DHCP Messages", Droms,
R., Work in Progress, August 1997

[ISAKMP] \Internet Security Association and Key Manage-
ment Protocol (ISAKMP)", D. Maughan, M. Schertler,
M. Schneider and J. Turner, Work in Progress, January
1998

