Security in Active Networks

D. Scott Alexander!, William A. Arbaugh?, Angelos D. Keromytis?, and
Jonathan M. Smith?

1 Bell Labs, Lucent Technologies
600 Mountain Avenue
Murray Hill, NH 07974 USA

salex@research.bell-labs.com

% Distributed Systems Lab
CIS Department, University of Pennsylvania
200 S. 33rd Str., Philadelphia, PA 19104 USA

{waa,angelos, jms}@dsl.cis.upenn.edu

Abstract. The desire for flexible networking services has given rise to
the concept of “active networks.” Active networks provide a general
framework for designing and implementing network-embedded services,
typically by means of a programmable network infrastructure. A pro-
grammable network infrastructure creates significant new challenges for
securing the network infrastructure.

This paper begins with an overview of active networking. It then moves
to security issues, beginning with a threat model for active networking,
moving through an enumeration of the challenges for system designers,
and ending with a survey of approaches for meeting those challenges.
The Secure Active Networking Environment (SANE) realizes many of
these approaches; an implementation exists and provides acceptable per-
formance for even the most aggressive active networking proposals such
as active packets (sometimes called “capsules”).

We close the paper with a discussion of open problems and an attempt
to prioritize them.

1 What is Active Networking ?

In networking architectures a design choice can be made between:

1. Restricting the actions of the network infrastructure to transport, and
2. easing those restrictions to permit on-the-fly customization of the network
infrastructure.

The data-transport model, which has been successfully applied in the IP Internet
and other networks, is called passive networking since the infrastructure (e.g., IP
routers) is mostly indifferent to the packets passing through, and their actions
(forwarding and routing) cannot be directly influenced by users. This is not to
say that the switches do not perform complex computations as a result of re-
ceiving or forwarding a packet. Rather, the nature of these computations cannot

dynamically change beyond the fairly basic configuration options provided by
the manufacturer of the switch.

In contrast, active networking allows network-embedded functionality other
than transport. For current systems, this functionality ranges from WWW proxy
caches, multicasting [Dee89] and RSVP [BZB'97] to firewalls. Since each of
these independently designed and supported functions could be carried out as
an application of a more general infrastructure, the architecture of such active
infrastructures is now being investigated aggressively.

The basic principle employed is the use of programmability, as this allows
many applications to be created, including those not foreseen by the designers
of the switch. There are a number of forms this programmability can take, in-
cluding treating each packet as a program (active packets or “capsules”) and
programming or reprogramming network elements on-the-fly with select pack-
ets. Note that the latter approach subsumes the former, as a program may be
loaded that treats all subsequent packets as programs.

1.1 Why is Active Network Security Interesting?

From a security perspective, a large scale infrastructure with user access to
programming capabilities, even if restricted, creates a wide variety of difficult
challenges. Most directly, since the basis of security is controlled access to re-
sources, the increased complexity of the managed resources makes securing them
much more difficult. Since “security” is best thought of as a mapping between
a policy and a set of predicates maintained through actions, the policy must be
more complex than, in as much as they exist, equivalent policies of present-day
networks, resulting in an explosion in the set of predicates.

For example, the ability to load a new queuing discipline may be attractive
from a resource control perspective, but if the queuing discipline can replace that
of an existing user, the replacement policy must be specified, and its implemen-
tation carefully controlled through one or more policy enforcement mechanisms.

Additionally, such a scenario forces the definition of principals and objects
with which policies are associated. When compared with the policy at a basic
IP router (no principals, datagram delivery guarantees, FIFO queuing, etc.) it
can be seen why securing active networks is difficult.

1.2 Virtual and Real Resources

As the role of active networking elements is to store, compute and forward, the
managed resources are those required to store packets, operate on them, and
forward them to other elements. The resources provided to various principals
at any instant cannot exceed the real resources (e.g., output port bandwidth)
available at that instant. This emphasis on real resources and time implies that
a conventional <object, principal, access> 3-tuple for an access control list (ACL)
is inadequate.

To provide controlled access to real resources, with real time constraints, a
fourth element to represent duration (either absolute or periodic) must be added,

giving <object, principal, access, QoS guarantees>. This remains an ACL, but is
not “virtualized” by leaving time unspecified and making “eventual” access ac-
ceptable. We should point out that this new element in the ACL can be encoded
as part of the access field. Similarly, we need not use an actual ACL, but we may
use mechanisms that can be expressed in terms of ACLS and are better-suited
for distributed systems.

2 Terminology

The term trust is used heavily in computer security. Unfortunately, the term has
several definitions depending on who uses it and how the term is used. In fact,
the U.S. Department of Defense’s Orange Book [DODS85], which defined sev-
eral levels of security a computer host could provide, defines trust ambiguously.
The definition of trust used herein is a slight modification of that by Neumann
[Neu95]. An object is defined as trusted when the object operates as expected
according to design and policy. A stronger trust statement is when an object is
trustworthy. A trustworthy object is one that has been shown in some convincing
manner, e.g., a formal code-review or formal mathematical analysis, to operate
as expected. A security-critical object is one which the security — defined by
a policy — of the system depends on the proper operation of the object. A
security-critical object can be considered trusted, which is usually the case in
most secure systems, but unfortunately this leads to an unnecessary profusion
of such objects.

We note the distinction between trust and integrity: Trust is determined
through the verification of components and the dependencies among them. In-
tegrity demonstrates that components have not been modified. Thus integrity
checking in a trustworthy system is about preserving an established trust or
trust relationship.

2.1 Threat Model

An active network infrastructure is very different from the current Internet
[AAKS98a]. In the latter, the only resources consumed by a packet at a router
are:

1. the memory needed to temporarily store it, and
2. the CPU cycles necessary to find the correct route.

Even if IP [Pos81] option processing is needed, the CPU overhead is still quite
small compared to the cost of executing an active packet. In such an environment,
strict resource control in the intermediate routers was considered non-critical.
Thus, security policies [Atk95] are enforced end-to-end. While this approach has
worked well in the past, there are several problems. First, denial-of -service at-
tacks are relatively easy to mount, due to this simple resource model. Attacks
to the infrastructure itself are possible, and result in major network connec-
tivity loss. Finally, it is very difficult to provide enforceable quality-of-service
guarantees. [BZB197]

Active Networks, being more flexible, considerably expand the threat possi-
bilities, because of the increased numbers of potential points of vulnerability. For
example, when a packet containing code to execute arrives, the system typically
must:

Identify the sending network element.

— Identify the sending user.

— Grant access to appropriate resources based on these identifications.
— Allow execution based on the authorizations and security policy.

In networking terminology, the first three steps comprise a form of admission
control, while the final step is a form of policing. Security violations occur when
a policy is violated, e.g., reading a private packet, or exceeding some specified
resource usage. In the present-day Internet, intermediate network elements (e.g.,
routers) very rarely have to perform any of these checks. This is a result of the
best-effort resource allocation policies inherent in IP networking.

Denial-of-Service Attacks. Cryptographic mechanisms have proven remark-
ably successful for functions such as identification and authentication. These
functions typically (although not necessarily) are used in protocols with a wvir-
tual time model, which is concerned with sequencing of events rather than more
constrained sequencing of events with time limits (the real ¢time model). The
cases where time limits are observed are almost always for reasons of robust-
ness, e.g., to force eventual termination. Since such timeouts are intended for
extreme circumstances, they are long enough so that they can cope with any
reasonable delay.

In an environment where a considerable fraction (and perhaps eventually a
majority) of the traffic will be continuous media traffic, security must include re-
source management and protection with an eye to preserving timing properties.
In particular, a pernicious form of “attack” is the so-called “denial-of-service” at-
tack. The basic principle applied in such an attack is that while wresting control
of the service is desirable, the goal can be achieved if the opponent cannot use
the service. This principle has been used in military communications strategies,
e.g., the use of radio “jamming” to frustrate an opponent’s communications, and
most recently in denying service to Internet Service Provider servers using a TCP
SYN flood attack [Pan96, DRI96]. Another very effective (even crippling) attack
on a computer system can occur due to scheduling algorithms which implicitly
embed design assumptions.

To look at an example in some detail, consider the so-called “recursive shell”
shown in Figure 1.

The shell script invokes itself. This is in fact a natural programming style,
except that the process of invoking a shell script consists mainly of executing
two heavyweight system calls, fork() and exec(), which, respectively, create
a new copy of the current process and replace the current process with a new
process created from an executable file. Since the program spends the majority
of its time executing system calls, which in UNIX cause the operating system

to execute on behalf of the user (at high priority) the system’s resources are
typically consumed by this program (including CPU time and table space used
for holding process control blocks).

With an active network element, it is easy to imagine situations where user
programs (or errant system programs) run amok, and make the network elements
useless for basic tasks. The solution, we believe, is to constrain real resources
associated with active network programs. For example, if we limited the principal
(e.g., a “user”) invoking the recursive shell script to 10% of the CPU time, or 10%
of the system memory, the process would either limit its effects on the CPU to a
10% degradation, or fail to operate (since it could not invoke a new process) when
it hit the table space limitation. Fortunately, a number of new operating systems
[MMO*94, LMB"96] have appeared which provide the services necessary to
contain one or more executing threads within a single scheduling domain.

#!/bin/sh
$0 #invoke ourselves

Fig. 1. A recursive shell script for UNIX

2.2 Challenges for the System Designer

Independent of the specific network architecture, the designer of a network has
a set of tradeoffs they must make which define a “design space.” We consider
five here:

1. Flexibility. Flexibility is a measure of the system to perform a variety of
tasks.

2. Usability. Usability is a measure of the ease with which the system can be
used for its intended task(s).

3. Performance. The system will have some quantitative measures by which it
is evaluated, such as throughput, delay, delay variation.

4. Cost. A networking system will have quantifiable economic costs, such as
costs for construction, operation, maintenance and continuing improvements.

5. Security. Since network systems are shared resources the designer must pro-
vide mechanisms to protect users from each other according to a policy.

It is our belief that, as in this list, security is often left until last in the
design process, which results in not enough attention and emphasis being given
to security. If security is designed in, it can simply be made part of the design
space in which we search for attractive cost/performance tradeoffs. For example,
if acceptable flexibility requires downloadable software, and acceptable security
means that only trusted downloadable software will be loaded, our cost and
performance optimizations will reflect ideas such as minimizing dynamic checks

with static pre-checks or other means. If security is not an issue, there is no
point in doing this.

The designer’s major challenge is finding a point (or set of points) in the
design space which is acceptable to a large enough market segment to influence
the community of users. Sometimes this is not possible; the commercial empha-
sis on forwarding performance is so overwhelming that concessions to security
slowing the transport plane are simply unacceptable. Fortunately, organizations
have become sufficiently dependent on information networks that security does
sell.

In the context of active networks, the major focus of security is the set of
activities which provide flexibility; that is, the facility to inject new code “on-
the-fly” into network elements. To build a secure infrastructure, first, the in-
frastructure itself (the “checker”) must be unaltered. Second, the infrastructure
must provide assurance that loaded modules (the dynamic checking) will not vi-
olate the security properties. In general, this is very hard. Some means currently
under investigation include domain-specific languages which are easy to check
(e.g., PLAN), proof-carrying code [NL96, Nec97], restricted interfaces (ALIEN),
and distributed responsibility (SANE). Currently, the most attractive point in
the design space appears to be a restricted domain-specific language coupled to
an extension system with heavyweight checks. In this way, the frequent (per-
packet) dynamic checks are inexpensive, while focusing expensive scrutiny on
the extension process. This idea is manifest in the SwitchWare active network
architecture [AAHT98].

2.3 Possible Approaches

Security of Active Networks is a broad evolving area. We will mention only
some of the most directly relevant related work. In addition to the related works
sections of the papers listed, we suggest Moore [M0098] as a source of additional
information in this area.

Software fault isolation as a safety mechanism for mutually-suspicious mod-
ules running in the same address space was introduced in [WLAG93]. This tech-
nique involves inserting run-time checks in the application code. While it has
been successfully demonstrated for RISC architectures, application of the same
techniques to CISC architectures remains problematic.

Typed assembly language [MWCGI8] propagates type safety information to
the assembly language level, so assembly code can be verified. However, there
are several security properties (e.g., resource usage, which is a dynamic measure)
that do not easily map into the type-checking model because of the latter’s static
nature.

Proof-carrying code [Nec97] permits arbitrary code to be executed as long as
a valid proof of safety accompanies it. While this is a very promising technique,
it is not clear that all desirable security properties and policies are expressible
and provable in the logic used to publish the policy and encode the proof. Used
in conjunction with other mechanisms, we believe that it will prove a very useful
security tool.

PLAN [HKM"98, HM] is a part of the SwitchWare [AAHT98, SFG*96]
project at the University of Pennsylvania. The PLAN project is investigating
the tradeoffs brought about by using a different language for active packets than
is used for active extensions. They have designed a new language called PLAN
(which is loosely based on ML [MTH90]). PLAN is designed so that pure PLAN
programs will not be able to violate the security policy. This policy is intended to
be sufficiently restrictive that node administrators will be willing to allow PLAN
programs to run without requiring authentication. Because this limits the op-
erations that can be performed, PLAN programs can call services which can
either be active extensions or facilities built into the system. These services may
require authentication and authorization before allowing access to the resources
they protect.

The Safetynet Project [WJGO98] at the University of Sussex has also de-
signed a new language for active networking. They have explicitly enumerated
what they feel are the important requirements for an active networking language
and then set about designing a language to meet those requirements. In partic-
ular, they differ from PLAN in that they hope to use the type system to allow
safe accumulation of state. They appear to be trying to avoid having any service
layer at all.

Java [GJS96] and ML [MTHO0, Ler] (and the MMM [Lou96] project) provide
security through language mechanisms. More recent versions of Java provide
protection domains [GS98]. Protection domains were first introduced in Multics
[Sch72, Sch75, MSS77, Sal74]. These solutions are not applicable to programs
written in other languages (as may be the case with a heterogeneous active
network with multiple execution environments), and are better suited for the
applet model of execution than active networks. The need for a separate bytecode
verifier is also considered by some a disadvantage, as it forces expensive (in the
case of Java, at least) language-compliance checks prior to execution. In this
area, there is some research in enhancing the understanding of the tradeoffs
between compilation time/complexity, and bytecode size, verification time, and
complexity.

It should be noted that language mechanisms can (and sometimes do) serve as
the basis of security of an active network node. Other language-based protection
schemes can be found in [BSP*95, CLFL94, HCC98, LOW98, LR99, GB99].

3 SANE Architecture

Previous attempts at system security have not taken a holistic approach. The
approaches typically focused on a major component of the system. For instance,
operating system research has usually ignored the bootstrap process of the host.
As a result, a trustworthy operating system is started by an untrustworthy boot-
strap! This creates serious security problems since most Operating Systems re-
quire some lower level services, e.g., firmware, for trustworthy initialization and
operation. A major design goal of SANE [AAKS98a] was to reduce the number
and size of components that are assumed as trustworthy. A second major design

goal of SANE was to provide a secure and reliable mechanism for establishing
a security context for active networking. An application or node could then use
that context in any manner it desired.

No practical system can avoid assumptions, however, and SANE is no dif-
ferent. Two assumptions are made by SANE. The first assumption is that the
physical security of the host is maintained through strict enforcement of a phys-
ical security policy. The second assumption SANE makes is the existence of a
Public Key Infrastructure (PKI). While a PKI is required, no assumptions are
made as to the type of PKI, e.g., hierarchical or “web of trust.”[Com89, LR97,
Zim95, BFIK98, BFIK99]

The overall architecture of SANE for a three-node network is shown in Fig-
ure 2.

The initialization of each node begins with the bootstrap. Following the
sucessful completion of the bootstrap, the operating system is started which
loads a general purpose evaluator, e.g., a Caml [Ler] or Java [GJS96] runtime.
The evaluator then starts an “Active Loader” which restricts the environment
provided by the evaluator. Finally, the loader loads an “Active Network Evalua-
tor” (ANE) which accepts and evaluates active packets, e.g., PLAN [HKM™98§],
Switchlet, or ANTS [WGT98]. The ANE then loads the SANE module to estab-
lish a security context with each network neighbor. Following the establishment
of the security context, the node is ready for secure operation within the active
network.

It should be noted that the services offered by SANE can be used by most
active networking schemes. In our current system, SANE is used in conjunction
with the ALIEN architecture [Ale98]. ALIEN is built on top of the Caml runtime,
and provides a network bytecode loader, a set of libraries, and other facilities
necessary for active networking.

The following sections describe the three components of SANE. These include
the AEGIS [AFS97, AKFS98] bootstrap system, the ALTEN [Ale98] architecture,
and SANE [AAH'98, AAKS98a] itself.

3.1 AEGIS Bootstrap

AEGIS [AFS97] modifies the standard IBM PC process so that all executable
code, except for a very small section of trustworthy code, is verified prior to
execution by using a digital signature. This is accomplished through modifica-
tions and additions to the BIOS (Basic Input/Output System). In essence, the
trustworthy software serves as the root of an authentication chain that extends
to the evaluator and potentially beyond, to “active” packets. In the AEGIS boot
process, either the Active Network element is started, or a recovery process is
entered to repair any integrity failure detected. Once the repair is completed, the
system is restarted to ensure that the system boots. This entire process occurs
without user intervention. AEGIS can also be used to maintain the hardware
and software configuration of a machine.

It should be noted that AEGIS does not verify the correctness of a software
component. Such a component could contain an exploitable flaw. The goal of

Operating System Operating System

Libraries] SAX j# — — — — — — — — — — — — SAX [Libraries

\ .
S lac

Caml / Java \:)Caml [Java J
N ——
o
Caml / Java
 ———
Active Packets Security Association Exchange (SAX)

Fig. 2. SANE Network Architecture

AEGIS is to prevent tampering of components that are considered trustworthy
by the system administrator. AEGIS verifies the integrity of already trusted
components. The nature of this trust is outside the scope of this paper.

Other work on the subject of secure bootstrapping includes [TY91, Yee94,
Cla94, LAB92, HKK93]. A more extensive review of AEGIS and its differences
with the above systems can be found in [AFS97, AKFS98].

AEGIS Layered Boot and Recovery Process. AEGIS divides the boot
process into several levels to simplify and organize the BIOS modifications, as
shown in Figure 3. Each increasing level adds functionality to the system, pro-
viding correspondingly higher levels of abstraction. The lowest level is Level 0.
Level 0 contains the small section of trustworthy software, digital signatures,
public key certificates, and recovery code. The integrity of this level is assumed
as valid. We do, however, perform an initial checksum test to identify PROM
failures. The first level contains the remainder of the usual BIOS code and the

CMOS. The second level contains all of the expansion cards and their associated
ROMs, if any. The third level contains the operating system boot sector. These
are resident on the bootable device and are responsible for loading the operating
system kernel. The fourth level contains the operating system, and the fifth and
final level contains the ALIEN architecture and other active nodes..

The transition between levels in a traditional boot process is accomplished
with a jump or a call instruction without any attempt at verifying the integrity
of the next level. AEGIS, on the other hand, uses public key cryptography and
cryptographic hashes to protect the transition from each lower level to the next
higher one, and its recovery process through a trusted repository ensures the
integrity of the next level in the event of failures [AKFS98].

The trusted repository can either be an expansion ROM board that contains
verified copies of the required software, or it can be another Active node. If the
repository is a ROM board, then simple memory copies can repair or shadow
failures. In the case of a network host, the detection of an integrity failure causes
the system to boot into a recovery kernel contained on the network card ROM.
The recovery kernel contacts a “trusted” host through the secure protocol de-
scribed in [AKFS98, AKS98] to recover a signed copy of the failed component.
The failed component is then shadowed or repaired, and the system is restarted
(warm boot).

Libraries/ Switchlets

Core Switchlet

Active
Networ k
Element

Legend
~ s —————=— Control Transition
~_ _-7 - - - - == Recovery Transition

Fig. 3. AEGIS boot control flow

3.2 The ALIEN Architecture

The basis of the ALTEN approach is that we take a general model of computa-
tion and restrict it. Caml provides the general model and ALIEN provides the
restrictions.

More precisely, Caml provides a model of computation equivalent to that of
a Turing machine. By itself, this computation model is secure since it involves
no shared resources. In practice, since we are running on a real machine, we have
denial-of-service attacks that arise because our CPU and memory resources are
finite. Additionally, the actual Caml environment also includes a runtime sys-
tem that, among other features, provides access to operating system primitives,
which, in turn, provide access to shared resources. Further, under this runtime,
memory is a shared resource. The role of ALIEN is to control the access to these
shared resources and thereby ensure that a loaded program (called “switchlet”)
does not exceed its resource limits (ALIEN is not responsible for determining
those limits).

ALIEN itself is built of three major components. The Loader provides the
interface to the Objective Caml runtime system. The Core Switchlet builds on
the Loader both by providing the security-related restrictions required and by
providing more generally useful interfaces to low-level functions. Finally, the
libraries are sets of utility routines. Each of these pieces will be briefly covered
in turn in the following paragraphs.

The Loader. The Loader provides the core of ALTEN’s functionality. It provides
the interface to the operating system (through the language runtime) plus some
essential functions to allow system startup and loading of switchlets, as shown in
Table 1. Thus, it defines the “view of the world” for the rest of ALIEN. Moreover,
since security involves interaction with either the external system or with other
switchlets, the Loader provides the basis of security.

It should be noted that Loader provides mechanisms rather than policy;
policies in the Core Switchlet can be changed by changing pieces of the Core
Switchlet.

startup routines [initialize system
switchlet loading|dynamically load switchlets consistent with ALIEN security
system console |console read loop

Table 1. Loader functionality

The Core Switchlet. Above the Loader is the Core Switchlet. It is responsible
for providing the interface that switchlets see. It relies upon the Loader for
access to operating system resources, and then layers additional mechanisms
to add security and, often, utility. In providing an interface to switchlets, it

determines the security policies of the system. By including or excluding any
function, it can determine what switchlets can or cannot do. Since it is loadable,
the administrator can change or upgrade its pieces as necessary. This also allows
for changes in the security policy.

The policies of the Core Switchlet are enforced through a combination of
module thinning and type safety. Type safety ensures that a switchlet can only
access data or call functions that it can name. This allows implementations of
ALIEN that run in a single address space, thus avoiding the overheads normally
associated with crossing hardware-enforced boundaries. [NFP99].

Module thinning allows the Core Switchlet to present a limited interface to
switchlets. Combining this with type safety, switchlets can be prevented from
calling functions or accessing data even though they share an address space.
It is even possible to differentiate switchlets so as to provide a rich interface
to a trusted switchlet or to provide a very limited interface to an anonymous
switchlet. Similar approaches have been taken in [LR99, BSPT95, vE99].

In many ways, the interface that the Core Switchlet presents to switchlets and
libraries is like the system call interface that a kernel presents to applications.
Through design of the interface the system can control access to underlying
resources. With a well-designed interface, the caller can combine the functions
provided to get useful work done. Table 2 shows the functionality provided by
the Core Switchlet.

language primitives policy for access to the basic functions of the language
operating system access|policy for access to the operating system calls

network access policy and mechanism for access to the network

thread access policy for access to threads primitives

loading support policy and mechanism to support loading of switchlets
message logging policy and mechanism for adding messages to the log file

Table 2. Core Switchlet functionality

Because we are implementing a network node, access to the network is par-
ticularly important. Generally this consists of allowing switchlets to discover
information about the interfaces on the machines and the attached networks,
receive packets, and send packets. One element of this task which is particularly
important is the demultiplexing of incoming packets. The Core Switchlet must
be able to determine whether zero, one, or more than one switchlet is interested
in an arriving packet. If more than one switchlet is interested in the packet,
policy should dictate which switchlet or switchlets receive a copy of the packet.
Security is an important element of the decision as a switchlet should be able
to be certain that it will get all packets that it should receive under the policy,
and should not be able to get any packets that it should not receive under the
policy. Without such security, denial-of-service attacks and information stealing
are quite easy.

The Library. The library is a set of functions which provide useful routines
that do not require privilege to run. The proper set of functions for the library is
a continuing area of research. Some of the things that are in the library for the
experiments we have performed include utility functions and implementations of
IP and UDP [Pos80].

Locating Functionality. When expanding our implementation, it is not always
obvious in which layer the new functionality belongs. In this section, we present
the principles we use to make this determination. Our first principle is that if the
functionality can be implemented in a library, it should be. Said another way,
if the functions exposed by the Core Switchlet or available from other libraries
provide the infrastructure needed to implement the new functionality, a library
is warranted.

If the new functionality relies on some element of the runtime not made avail-
able to unprivileged code, then either the Loader or the Core Switchlet must be
expanded. Because these elements define the common, expected interface avail-
able at the switch, we attempt to keep them small to minimize the required
resources. Therefore, our second principle is that we prefer to break off the
smallest reasonable portion of the new functionality (consistent with security)
that can be implemented in the privileged parts of the system. The remainder
becomes a library. In our experience this also aids generality, as the privileged
portion is often useful to other libraries developed later. For example, to imple-
ment [P, we built a small module inside the Core Switchlet which reads Ethernet
frames from the operating system. It also demultiplexes the frames based on the
Ethernet type field to increase generality. The remainder of IP, which processes
headers, could then be made a non-privileged library.

Our third principle is that if this privileged functionality sets policy, it needs
to go into the Core Switchlet. As discussed above, policy must be set in the
Core Switchlet so that the loading mechanism can be used as needed to change
policy. Our final principal is any functionality that provides pure mechanism is
placed in the Core Switchlet unless it is needed before the Core Switchlet can
be running.

3.3 SANE Services

SANE builds on AEGIS and ALIEN in order to provide security services for an
active network. We believe that these services are required for the deployment of
a robust active infrastructure. This is not to say that they contain all the security
mechanisms one would ever want. Rather, they are basic building blocks needed
for possibly more advanced mechanisms. These services include:

— Cryptographic primitives, provided as ALIEN libraries. A number of sym-
metric [NBS77] and public-key [NIS94] cryptosystems and hash [NIS95] func-
tions are made available for use by programmers and other system com-
ponents. These are building blocks for cryptographic protocols and other
mechanisms that provide higher-order security primitives.

— Packet authentication. This can be achieved through signing the packet with
a public-key algorithm, or using some secret key method, like a MAC. Au-
thentication can be used in a number of different contexts:

e When dynamically loading switchlets over the network, to ensure code
integrity and proper access authorization/resource allocation.

e Similarly, when transmitting data over the network, to ensure data in-
tegrity, and packet-flow isolation. This latter may form the basis for
economic traffic-management schemes, if the authentication mechanisms
prove lightweight enough.

Public-key authentication allows for zero-roundtrip authentication, since no
negotiation is required, but is relatively heavy-weight computationally and
is subject to some replay attacks in the absence of node-persistent state or
synchronized clocks [Syv94, Gon92] in the network switches. This form of
authentication is well-suited to mobile-agent types of applications, such as
some active network management schemes [PJ96], or where data generated
on a switch needs to be securely combined with the code.

Secret-key based authentication is faster, and thus better suited for bulk
transport. For scalability reasons however, it needs to be automated, and
thus needs some public-key infrastructure to base the authentication on.
The cost of the automated key establishment can be easily amortized after
transmitting even a small amount of data.

— Packet confidentiality (encryption). The same issues with regards to public
vs. secret key authentication are present here. The uses of this service are
analogous to the packet authentication service.

— A key establishment protocol (KEP), which allows two principals in the
network to establish secret keys and exchange certificates. The protocol is
also used in bootstrap failure-recovery in AEGIS [AKFS98] and is based on
the Station-to-Station [DvOW92] protocol, using Diffie-Hellman [DH76] key
exchange and DSA [NIS94] (or other) public-key signatures. This protocol
is used in three different roles:

1. Secure boostrap component recovery in AEGIS, as we discussed in Section3.1.

2. Secure neighbor discovery once the node boots. Similar to verifying the
network cards and software components in AEGIS, at this stage the node
verifies the immediate network topology and establishes trust between
“adjacent” switches. The shared secret keys established in this manner
can be used for hop-by-hop secure transmission of data or code, which is
a requirement for some mobile-agent types of applications. Other critical
infrastructure information can be secured by this mechanism as well, e.g.,
routing updates.

3. Session-key establishment, principal authentication and authorization.
The shared secret keys can be used to secure the communications of
any two principals in the network. Furthermore, principals can authen-
ticate each other and exchange authorization credentials. For exam-
ple, a user can verify the identity of a switch he needs to load a pro-
gram on, while the switch can determine whether the user has per-
mission to do so, and what other restrictions apply. We make use of

KeyNote [BFIK98, BFIK99] credentials to provide this functionality.
These credentials specify the resource usage and access control policies
that ALIEN enforces.

— Administrative domains allow a set of network elements under the same
administrative control to restrict security requirements when communicating
with each other. In such a configuration, “border” elements act as present-
day firewalls and can require e.g., a number of iterations of KEP to establish
all the problem credentials. They can then mark the active packets such that
further negotiation in order to determine credentials is not needed by the
“interior” switches. In essense, these “active firewalls” act as introducers of
“outsiders” in a closed system. Administrative domains are built on top of
secure packet exchange, in conjunction with the key management protocol.

— Naming services allow for unsupervised but collision-free! (secure) identi-
fication of programs. The basis of this approach is to combine hashes of
the code, public keys (and signatures), and user-defined strings to gener-
ate “names” for pieces of code. Thus, a certain program can have different
names, each with different semantics and trust dependencies. Such a service
is necessary in an active network environment where different users’ modules
can explicitly interact with, or even depend on, each other. For more details,
see [AAKS98a].

4 Conclusions and Future Work

This paper has presented an overview of the programmable network architectures
called “Active Networks” and illustrated the security issues facing the architects
of such systems. While the goal of Active Networks is to increase the set of
design options available in distributed systems, the flexibility of a programmable
infrastructure introduces considerable burdens for control and management. We
have outlined, and illustrated in some detail, strategies for coping with some of
these issues. Many issues currently remain unresolved, and are thus important
directions for future work.

First and foremost is the requirement that newly configured functionality not
damage the network as an aggregate, in addition to not damaging the network
element into which it is configured. The means for attacking such problems
remains unclear, but two of the more promising approaches are the use of formal
languages and methods for distributed concurrent systems (such as CSP [Hoa78,
Hoa84]), and the use of economic methods to deal with aggregate costs which
accrue in a distributed fashion.

The second important direction is time-sensitive resource access, where Qual-
ity of Service (QoS) is part of the resource access model to which the security
architecture applies. Much of the fundamental work of computer security has
been based on a time-independent model of resource access, to which symbolic

! To the extent that the cryptographic hash functions employed are resistant to colli-
sions.

logic and formal methods can be applied. However, as any user of information,
whether “secure” or “insecure” is well aware, if the information doesn’t get there
in time, it is useless. If the service is not provided, it has failed. Thus we have to
push our security models to reflect time, so that service (or the attackers goal,
“denial-of-service”) is as first class as identification or access control in network
security architectures.

Finally, we must worry about scale. Some of the solutions we have discussed
here work well in the small but must be automated to permit scaling to large
systems. For example, the SANE model of permitting resource access to trusted
entities presumes trust establishment and trust specification. In a (multi-) mil-
lion node network, such trust management must be carried out automatically,
and must be globally specified using human-comprehensible policies rather than
node-node relationships.

5 Acknowledgements

Portions of this paper are updated from [AAKS98a] and [AAKS98b]. This work
was supported by DARPA under Contract #N66001-96-C-852, with additional
support from the Intel Corporation.

References

[AAHT98] D.S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. D. Keromytis,
J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith. The Switch-
Ware Active Network Architecture. IEEE Network Magazine, special issue
on Active and Programmable Networks, 12(3):29-36, 1998.

[AAKS98a] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith. A
Secure Active Network Environment Architecture: Realization in Switch-
Ware. IEEE Network Magazine, special issue on Active and Programmable
Networks, 12(3):37-45, 1998.

[AAKS98b] D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis, and
Jonathan M. Smith. Safety and Security of Programmable Network In-
frastructures. IEEE Communications Magazine, 36(10):84 — 92, 1998.

[AFS97] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure and Reliable
Bootstrap Architecture. In Proceedings 1997 IEEE Symposium on Security
and Privacy, pages 65-71, May 1997.

[AKFS98] W. A. Arbaugh, A. D. Keromytis, D. J. Farber, and J. M. Smith. Auto-
mated Recovery in a Secure Bootstrap Process. In Proceedings of Network
and Distributed System Security Symposium, pages 155—-167. Internet So-
ciety, March 1998.

[AKS98] W. A. Arbaugh, A. D. Keromytis, and J. M. Smith. DHCP++: Applying
an efficient implementation method for fail-stop cryptographic protocols.
In Proceedings of Global Internet (GlobeCom) 98, November 1998.

[Ale98] D. S. Alexander. ALIEN: A Generalized Computing Model of Active Net-
works. PhD thesis, University of Pennsylvania, September 1998.
[Atk95] R. Atkinson. Security Architecture for the Internet Protocol. RFC 1825,

August 1995.

[BFIK98]

[BFIK99]

[BSP+95]

[BZB*97]

[Cla94]

[CLFLY4]

[Com89]

[Dee89)
[DHT76]
[DODS5]
[DRI96]

[DvOW92]

[EFR197]

[GBYY)

[GIS96]
[Gon92]

[GS98]

[HCC98]

[HKK93]

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The KeyNote Trust-Management System. Work in Progress,
http://www.cis.upenn.edu/~angelos/keynote.html, June 1998.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The role of trust
management in distributed systems security. In Secure Internet Program-
ming [VJ99], pages 7777

B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker,
S. Eggers, and C. Chambers. Extensibility, safety and performance in the
spin operating system. In Proc. 15th SOSP, pages 267284, December
1995.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSer-
Vation Protocol (RSVP) — Version 1 Functional Specification. Internet
RFC 2208, 1997.

Paul Christopher Clark. BITS: A Smartcard Protected Operating System.
PhD thesis, George Washington University, 1994.

J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing
and Protection in a Single-Address-Space Operating System. In ACM
Transactions on Computer systems, November 1994.

Consultation Committee. X.509: The Directory Authentication Frame-
work. International Telephone and Telegraph, International Telecommu-
nications Union, Geneva, 1989.

S. E. Deering. Host extensions for IP multicasting. Internet RFC 1112,
1989.

W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, IT-22(6):644-654, Nov 1976.
DOD. Trusted Computer System Evaluation Criteria. Technical Report
DOD 5200.28-STD, Department of Defense, December 1985.

Daemon9, Route, and Infinity. Project neptune. Phrack Magazine, 7(48),
1996.

W. Diffie, P.C. van Oorschot, and M.J. Wiener. Authentication and Au-
thenticated Key Exchanges. Designs, Codes and Cryptography, 2:107-125,
1992.

Carl M. Ellison, Bill Frantz, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. Simple Public Key Certificate. =~ Work in Progress,
http://www.pobox.com/~cme/html/spki.html, April 1997.

R. Grimm and B. Bershad. Providing policy neutral and transparent ac-
cess control in extensible systems. In Secure Internet Programming [V J99],
pages 77-77

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison Wesley, Reading, 1996.

L. Gong. A Security Risk of Depending on Synchronized Clocks. ACM
Operating Systems Review, 26(1), January 1992.

L. Gong and R. Schemers. Implementing Protection Domains in the Java
Development Kit 1.2. In Proc. of Network and Distributed System Security
Symposium (NDSS), pages 125-134, March 1998.

C. Hawblitzel, C. Chang, and G. Czajkowski. Implementing Multiple Pro-
tection Domains in Java. In Proc. of the 1998 USENIX Annual Technical
Conference, pages 259-270, June 1998.

Hermann Hartig, Oliver Kowalski, and Winfried Kiithnhauser. The Birlix
security architecture. Journal of Computer Security, 2(1):5-21, 1993.

[HKM 98]

[HM]
[HoaT8]

[Hoag84]
[LAB92]

[Ler]

[LMB96]

[Lou96]

[LOW9S]

[LRO7]

[LR9Y]

[MMO™T94]

[Mo098|

[MSS77]

[MTH90]

[MWCGOS]

[NBS77]
[Nec97]

[Neu95]

M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN:
A Programming Language for Active Networks. Technical Report MS-
CIS-98-25, Department of Computer and Information Science, University
of Pennsylvania, February 1998.

Mike W. Hicks and Jonathan T. Moore. PLAN Web Page.
http://www.cis.upenn.edu/switchware/PLAN/.

C. A. R. Hoare. Communicating Sequential Processes. Communications
of the ACM, 21(8):666-677, August 1978.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1984.
Butler Lampson, Martin Abadi, and Michael Burrows. Authentication in
Distributed Systems: Theory and Practice. ACM Transactions on Com-
puter Systems, v10:265-310, November 1992.

Xavier Leroy. The Caml Special Light System (Release 1.10).
http://pauillac.inria.fr/ocaml.

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The Design and Implementation of an Op-
erating System to Support Distributed Multimedia Applications. IEEE
Journal on Selected Areas in Communications, 14(7):1280-1297, Septem-
ber 1996.

Frangois Louaix. A Web Navigator with Applets in Caml. In Fifth WWW
Conference, 1996.

J. Y. Levy, J. K. Ousterhout, and B. B. Welch. The Safe-Tcl Security
Model. In Proc. of the 1998 USENIX Annual Technical Conference, pages
271-282, June 1998.

B. Lampson and R. Rivest. Cryptography and Information Security Group
Research Project: A Simple Distributed Security Infrastructure. Technical
report, MIT, 1997.

X. Leroy and F. Rouaix. Security properties of typed applets. In Secure
Internet Programming [VJ99], pages 77-?7

A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, T. A. Proeb-
sting, and J. H. Hartman. Scout: A communications-oriented operating
system. Technical report, Department of Computer Science, University of
Arizona, June 1994.

J. Moore. Mobile Code Security Techniques. Technical Report MS-CIS-
98-28, University of Pennsylvania, May 1998.

D.D. Clark M.D. Schroeder and J.H. Saltzer. The MULTICS Kernel De-
sign Project. In Sizth ACM Symposium on Operating Systems Principles,
pages 43-56, 1977.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed
Assembly Language. In Proc. of the 25th ACM Symposium on Principles
of Programming Languages, January 1998.

Data Encryption Standard, January 1977.

George C. Necula. Proof-Carrying Code. In Proceedings of the 24th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 106-119. ACM Press, New York, January 1997.
Peter G. Neumann. Architectures and Formal Representations for Secure
Systems. Final Report. SRI Project 6401 A002, SRI International, October
1995.

[NFP99]

[NIS94]
[NIS95]

[NL96]

[Pan96]
[PJ96]
[Pos80]
[Pos81]
[Sal74]
[Sch72]

[Sch75]

[SFGT96]

[Syv94]

[TY91]

[VE99]

[VJ99]

[WGTOS]

[WJIGOOS]

[WLAGY3)

[Yee94]

[Zim95]

R. De Nicola, G. L. Ferrari, and R. Pugliese. Types as specifications of
access policies. In Secure Internet Programming [VJ99], pages 77—77
Digital Signature Standard, May 1994.

Secure Hash Standard, April 1995. Also known as: 59 Fed Reg 35317
(1994).

George C. Necula and Peter Lee. Safe Kernel Extensions Without Run-
Time Checking. In Second Symposium on Operating System Design and
Implementation (OSDI), pages 229-243. Usenix, Seattle, 1996.

Cracker Attack Paralyzes PANIX. RISKS Digest. Volume 18. Issue 45.,
September 1996.

C. Partridge and A. Jackson. Smart Packets. Technical report, BBN,
1996. http://www.net-tech.bbn.com-/smtpkts/smtpkts-index.html.

Jon Postel. User Datagram Protocol. Internet RFC 768, 1980.

Jon Postel. Internet Protocol. Internet RFC 791, 1981.

J. H. Saltzer. Protection and the Control of Information Sharing in Mul-
tics. In Communications of the ACM, pages 388-402, July 1974.

M. D. Schroeder. Cooperation of Mutually Suspicious Subsystems in a
Computer Utility. PhD thesis, MIT, September 1972.

M.D. Schroeder. Engineering a Security Kernel for MULTICS. In Fifth
Symposium on Operating Systems Principles, pages 125-132, November
1975.

J. M. Smith, D. J. Farber, C. A. Gunter, S. M Nettles, D. C. Feldmeier, and
W. D. Sincoskie. SwitchWare: Accelerating Network Evolution. Technical
Report MS-CIS-96-38, CIS Dept. University of Pennsylvania, 1996.

P. Syverson. A Taxonomy of Replay Attacks. In Proceedings of the Com-
puter Security Foundations Workshop VII (CSFW7), June 1994.

J.D. Tygar and Bennet Yee. DYAD: A System for Using Physically Se-
cure Coprocessors. Technical Report CMU-CS-91-140R, Carnegie Mellon
University, May 1991.

T. von Eicken. J-kernel a capability based operating system for java. In
Secure Internet Programming [VJ99], pages 7777

Jan Vitek and Christian Jensen. Secure Internet Programming: Security
Issues for Mobile and Distributed Objects. Lecture Notes in Computer
Science. Springer-Verlag Inc., New York, NY, USA, 1999.

David J. Wetherall, John Guttag, and David L. Tennenhouse. Ants: A
toolkit for building and dynamically deploying network protocols. In IEEE
OpenArch Proceedings. IEEE Computer Society Press, Los Alamitos, April
1998.

Tan Wakeman, Alan Jeffrey, Rory Graves, and Tim Owen. De-
signing a Programming Language for Active Networks. submitted
to Hipparch special issue of Network and ISDN Systems, June 1998.
http://www.cogs.susx.ac.uk/projects/safetynet/papers/isdn.ps.gz.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient Software-
based Fault Isolation. In Proc. of the 14th Symposium on Operating System
Principles, pages 203-216, December 1993.

Bennet Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon
University, 1994.

P. Zimmerman. PGP User’s Manual, 1995.

