
TechRep-MS-CS-00-21.doc (31/10/00 - 12:38)

The Shrink-Wrapped VPN Node

Technical Report MS-CIS-00-21

Digital Systems Laboratory
Department of Computer and Information Science

University of Pennsylvania

Vassilis Prevelakis
vp@aegis.cis.upenn.edu

Angelos Keromytis
angelos@dsl.cis.upenn.edu

Abstract

The wide availability of public domain IPsec implementations allows the creation of
VPNs based on low-cost platforms. However, setting up a VPN node involves a lot of
work such as the creation of IPsec Security Associations and associated tunnels, including
the necessary management of keys. Moreover, routing and firewall facilities must be
provided to ensure the isolation of the members of the VPN from the public Internet. In
this paper we present a drop-in VPN node that is compact, low-cost and requires little
administration or maintenance. We discuss the features and advantages of our system.
Next, we demonstrate how this system was used for the creation of a VPN linking
networks within the University campus with others located in outside locations (e.g. other
companies, home networks etc). Finally, we present our evaluation of the work performed
and describe our future plans.

1. Introduction

The predominance of the Internet has resulted in
unprecedented connectivity. Especially in
developed countries, this means that, regardless
of location, there is always a nearby connection
to the Internet. In turn, this changes the
economics behind the provisioning of closed
networks, whether they are within a given
company or organization, or linking different
corporate entities. The cost of connecting to
public networks decreases more rapidly than that
of private networks (i.e., networks consisting of
leased lines or circuits) thus making financially
more tempting going over the Internet rather than
using a private network. Moreover, as
consumers get higher speed connections to the
Internet (via cable modems, high speed DSL
lines, etc.) there is more pressure to use these
links to telecommute. In both cases the use of
VPNs is obligatory to safeguard the participants
from outside interference.

In the first case, cost is not the dominant
factor, but in the second one, where we are

dealing with VPNs consisting of large numbers
of nodes, cost considerations play a significant
role. In this paper we will examine ways whereby
both small and large scale VPNs can be deployed
cheaply and efficiently.

A typical VPN configuration is shown in
figure 1 where a number of LANs are linked to
the public Internet. The intention is that the hosts
in each LAN may communicate with hosts in all
the other LANs but communication with the rest
of the Internet should be restricted. This is
achieved by providing each network with a node
that implements the security policy of the VPN.
This usually means that the node maintains
secure tunnels (i.e. encrypted) with one or more
remote networks and also acts as a firewall
restricting connections with hosts outside the
VPN. In the next section we discuss the
requirements for such VPN nodes. Next, we
describe our drop-in VPN node that is a
hardware/software combination constructed by
integrating existing open-source components. We
then present a prototype VPN and discuss how
our system copes with the requirements we have
set. Finally we present comments on the design

- 2 -

and implementation of our system and our plans
for future enhancements.

2. Requirements

A major decision in the design of a VPN node is
whether it should be embedded in the access
device that links the LAN to the public Internet
or whether it should a standalone device that sits
between the network access device and the LAN.
The multitude of access technologies that are
available today and the low cost of the popular
access devices (router, cable modem, wireless
bridge etc.) makes it very difficult to justify the
embedded approach. While the addition of yet
another box has some obvious disadvantages it
does keep down the complexity of the VPN node
and also allows us to provision a single device
that is independent of the access technology used.
Moreover, given the low cost of Ethernet
adapters, our approach does not impose a
significant cost penalty.

The other requirements for the VPN node
were as follows:

• Low cost, probably a single board com-
puter (SBC) with two Ethernet ports.

• Minimal administrative overhead. This
implies easy configuration and no

administrator intervention after
installation. Moreover, the bulk of the
work for the construction of the
software distribution for the network
monitoring station should be devoted to
integration of existing tools and
packages, rather than the development
of new code that would have to be
maintained.

• Offer secure (encrypted) network
connections with the other members of
the VPN.

• Protect the VPN members from
interference from the public Internet.

• Be resistant to tampering; in cases
where there are indications that a station
has been hacked, it must be easy to
restore its original configuration.

• Offer a standard platform for the
execution of common network
management and monitoring tools. VPN
users should not have access to the
management information.

• Finally, regardless of the profile of the
end user, the node must be able to be
deployed with minimal overhead. The
complexity of the creation of a VPN

Remote users

Company
Network

Public
Network

VPN
Node

Firewall

VPN Node

Network
Access
Device

VPN Node

Network
Access
Device

VPN Node

Network
Access
Device

VPN Node

Network
Access
Device

VPN Node

Network
Access
Device

Figure 1. The VPN nodes are located between the network access device and the
internal network

- 3 -

station configuration should not be
greater than the preparation of a
company identification badge. In many
cases they would probably be produced
at the same time.

Existing commercial solutions do not offer
the right mix of open standards and low price. In
fact many VPN solutions have a per node pricing
model that is based on the assumption that
remote locations are company branches. Thus,
they have pricing structures that deal with tens or
hundreds of nodes. Scaling them to networks
with thousands of nodes produces outrageous
prices. Thus, we decided to investigate an open
source solution. The advantage of this approach
is that it offers enormous potential for
customization coupled with a low cost per node
since there are no software licensing costs.

3. The design of the VPN node
 Creating a system in-house has many pitfalls,
mainly related to the fact that the platform
design, implementation and support all have
hidden costs that must be brought out into the
open and accounted for. Just because a piece of
software is free does not mean that its
deployment in a production environment is
without cost.
 A lot of attention has to be given to the
integration, large scale production and
maintenance of the nodes, in order that a usable
system be achieved within the budget constraints
of the project.

The prime considerations in the design of the
VPN node has been simplicity and security. In
this section we will elaborate on these two issues
and examine their impact on the design of the
operating environment. We will also present the
major elements that constitute the VPN station
and discuss the various design decisions we had
to make.

3.1 Simplicity - Reliability
We attempted to keep the complexity of the
platform as low as possible for the following
reasons:

• A complex design is difficult to verify
and control. This implies that
maintaining the security posture of the
platform after its original roll-out will be
difficult.

• Network administrators come and go. A
non-standard platform such as the VPN
node will have to be easy to master,
otherwise new staff will not be able to
support it.

• The VPN node is intended for
production use. The administrators must
have confidence in the platform,
otherwise on every instance of a
problem they will suspect the platform
and thus waste time investigating the
platform instead of investigating the
problem.

3.2 Operating System

From the very beginning, the design team wanted
a platform that could accommodate tools for
remote monitoring and management. The
requirement that the station should operate in
residential environments, without a monitor,
keyboard or mouse effectively disqualified all
Windows platforms. From the available UNIX or
UNIX-like systems we eventually chose
OpenBSD 2.7 for the following reasons:

• Built-in support for the transport layer
security protocols (IPsec) that offer
secure communication channels between
stations. Since these channels are
created by the networking code in the
kernel, the encryption is transparent to
applications. Thus, programs such as
rlogin that have no encryption facilities
can take advantage of the built in
security offered by IPsec without any
modifications to the application code.

• Like other free UNIX clones, a large
number of programs such as tcpdump,
snmpd, ssh, etc. are either supported in
the base release or can be easily ported.

• Good security. The designers of
OpenBSD have paid a lot of attention to
the security profile of the system,
creating a robust environment that is
resistant to security related attacks. In
fact, on the OpenBSD web site
(http://www.openbsd.org/goals.html) it
is claimed that OpenBSD passes
Ballista's (now called Cybercop Scanner
by Network Associates, http://www.nai.
com/products/security/cybercop_scan-
ner) tests with flying colors.

- 4 -

3.3 IPsec
IPsec is a suite of protocols [RFC1825] that
provide encryption, authentication and integrity

checking at the network layer. The VPN employs
IPsec in tunnel mode with encryption (ESP)
[RFC1827] (figure 2). Tunneling consists of
encrypting and encapsulating a normal IP packet
within a IPsec packet (see figure 3) . Since both
the header and payload of the original packet are
encrypted, the internal structure of the private
network is concealed from intruders [Shah97].

The use of tunnel mode also allows us to use
the VPN nodes as routers sending packets from
the remote home LANs to the main corporate
network [Scot98]. Under this scenario addresses
from the internal corporate network may be

allocated to workstations at the employees’
homes.

Two sets of IPsec connections are
maintained for each VPN node. One carries the

VPN data while the other is used for the
management of the VPN node itself. By using
separate IPsec connections we ensure that users
cannot access the management information or be
in a position to contact other nodes through the

VPN.

3.4 Key Management

Running IPsec with statically defined SAs as we
did in [Prev99], is like running the Internet with
static routing tables. The resulting VPN is
extremely inflexible and keys are not changed as
often as they should because of the effort and
disruption to service. Moreover, since SAs
contain source and destination IP addresses, they
have to be changed each time the IP address of
one of the endpoints changes. Users that connect
to the Internet via dial-up connections or even

permanently connected users that are assigned IP
addresses via dhcp cannot use statically assigned
SAs.

Remote NetworkApplication Servers

VPN
Node

Encrypted Tunnel

Public
Network

VPN
Node

Network
Access
Device

Network
Access
Device

Figure 2. The IPSEC tunnel provides a secure connection between the two local area
networks over the public Internet.

IP Header Payload
Original IP datagram

Tunneled datagram

Datagram with ESP in tunnel
mode

New
IP Header IP Header Payload

Encrypted

Authenticated

New
IP Header IP Header Payload

ESP
Header

ESP
Trailer

ESP
Auth

Figure 3. IPsec using ESP in tunnel mode

- 5 -

Workarounds to the above problems exist
and are discussed in detail in [Prev99]. However,
these solutions lack elegance and are not suitable
for large scale VPNs.

Purchases via credit cards provide a good
analogy to the problem of setting up flexible
SAs. When purchasing an item, the customer
presents the merchant a credit card. The
merchant does not need to keep a record of all
the people that have a VISA card in order to
complete the transaction. Instead, the merchant
contacts the credit card company and gets an
authorization. In essence the credit card company
vouches for the customer.

In the same way, one of the endpoints (A) of
a VPN tunnel presents a certificate that is signed
by a certification authority (CA) acceptable to
the other side (B). There is no need for B to have
previous knowledge of A since the certification
authority vouches for the authenticity of (the
certificate presented by) A.

There are two differences with the credit
card example. The first is that there is no on-line
communication with the CA during the
negotiation. Endpoint B has the public key of the
CA and can thus verify the certificate presented
by A. The second difference is that A does not
trust B and so B must also present a certificate to
A. The second certificate must be signed by a CA
acceptable to A. In out system all certificates are
signed by the same CA but this need not be the
case.

A serious issue with certificates is
revocation, i.e. what happens if, for example, a
VPN node is lost or stolen. Our system does not
currently support certificate revocation but there
are two mechanisms that can prevent
compromised nodes from linking to the VPN.
The first is that certificates have limited lifetimes
and so, unless renewed, become worthless after a
specified interval. The second is that, by chang-
ing the policy file, we can prevent nodes from
accepting connections from blacklisted nodes.

3.5 Firewall
VPN nodes must be able to allow traffic

from the interior network to flow through the
VPN to the other internal networks, while at the
same time they should allow only a very
restricted set of incoming connections. On the
other hand, connections from other VPN nodes
must be accepted.

The VPN may be viewed as a transit
network located between the end-user
workstation and the internal network.

In the VPN node design we have used the
packet filtering functionality of the OpenBSD
kernel with a configuration that imposed three
classes of restrictions:

• public Internet (“outside” interface)

All packets are blocked except IPsec
packets, since IPsec has its own security
mechanisms, and ICMP echo and reply
messages but excluding the other ICMP
control messages.

• Transit packets flowing through the
VPN (“inside” interface).

While allowing the packets to be routed
though the VPN we generally do not
allow connections to the VPN nodes
themselves. Exceptions to this rule
include services such as dhcp that are
required for the operation of the node.
We also allow through certain types of
ICMP packets for network trouble-
shooting.

• Traffic between the VPN nodes
(“inside” interface).

This is mainly for management and
node administration. Generally no
restrictions are placed to this type of
traffic.

Given that we are enforcing no access
restrictions within the VPN, we were extremely
concerned about allowing access to the VPN
nodes from workstations located at the users
premises. When considering security mechanisms
there is always a need to strike a balance between
security and convenience. Making life difficult
for the end users would only mean that they
would avoid using the VPN or find ways to
disable or bypass various security mechanisms,
thus compromising the security posture of the
entire network. At the same time we did not wish
to allow unsophisticated users access to the VPN
nodes.

In the end we decided that users may access
their local VPN node only from their own
“inside” network. In this way only users suitably
authorized would be able to access the
configuration of their own VPN stations.

- 6 -

3.6 RAM-based system

In order to produce a simple and reliable system
we decided to dispense with the hard disk. The
reason behind this decision was twofold:
reliability and support. Although disk drives tend
to be reliable, they would have to operate
continuously throughout the life of the VPN
nodes. In a residential environment equipment
tend to be subject to all kinds of abuse (knocked
about, powered down without shutting down the
system, relocated while in operation, etc.). Hard
disks produce a fair amount of heat and noise and
are also more prone to failure in these conditions.

The second and more important reason was
related to the way that these machines were
intended to be used. For our purposes, hard disks
are already huge in terms of capacity and are
getting bigger all the time. This free space can
cause all kinds of trouble; for example, it may be
tempting to fill it with data that should not be
stored in the VPN node in the first place. This
means that stations can no longer be redeployed
easily because this information must be backed
up, or processed. Secondly, if a station is
compromised, the intruders will be able to use
this space as a bridgehead, transferring and
installing tools that will enable them to attack
other network assets.

On the other hand, diskless machines bring
with them a whole collection of problems and
administrative headaches. They are also basically
incompatible with our objective of using
standalone machines with encrypted tunnels for
all communications over the public Internet.

Instead, we use a RAM-based system where
the software is loaded once during boot and then
the system runs entirely on the system main
memory (RAM). The boot medium may be
floppy, CDROM, or a solid state disk (e.g.
Compact Flash). In the following paragraphs we
use the term floppy but the other media can be
used just as well. In fact, in our prototype system,
we are using Compact Flash as the boot medium.

In order to produce a RAM-based system,
we adopted the techniques used by the PICOBSD
project which is a collection of FreeBSD
configurations that can be accommodated within
a single boot floppy (http://www.freebsd.org/
~picobsd). The PICOBSD project provides
configurations for a dial-up router, dial-in router
(ISP access server), general purpose router and
firewall. The PICOBSD technique links the code

of all the executables that we wish to be available
at runtime in a single executable using the
cruchgen utility [Silv98]. The single executable
alters its behavior depending on the name under
which it is run (argv[0]). By linking this
executable to the names of the individual utilities
we can create a fully functional /stand directory.

The aggregation of the system executables in
a single file and the compression of the entire
kernel allows a large number of facilities to be
made available despite the small size of the boot
medium. For example in the VPN node
distribution we have decided to include the
following commands:

Category Commands

Shell Commands
(Korn Shell)

cat, chgrp, chmod, chown,
cp, echo, kill, ln, ls,
mkdir, more, pwd, rm, stty,
telnet, test, w

Administration date, dmesg, hostname,
passwd, ps, reboot, update,
vmstat

System
Configuration

dev _mkdb, mknod, pwd_mkdb,
swapctl, swapon, sysctl

Daemons getty, inetd, init, login,
snmpd, syslogd, telnetd,
dhcpd

Networking ifconfig, ipf, ipnat,
ipsecadm, netstat, ping,
route, traceroute, isakmpd,
wicontrol, dhclient

Filesystem mount, (cd9660, fdesc, ffs,
kernfs, mfs, msdos, nfs,
procfs), df, newfs, umount

The root of the runtime file system, together
with the executable and associated links, are
placed in a ramdisk that is stored within the
kernel binary. The kernel is then compressed
(using gzip) and placed on a bootable floppy.

etc
kernel

RAMDISK

floppy root

Ramdisk root

etc stand var

. . .
mfs.rc executables

configuration

Figure 4. The organization of the floppy-based distribution

- 7 -

This floppy also contains the /etc directory of the
running system in uncompressed form to allow
easy configuration of the runtime parameters
(Figure 4).

At boot time, the kernel is copied from the
floppy disk to main memory, uncompressed and
executed. The file system root is then located in
the ramdisk. The floppy disk is mounted and the
/etc directory copied to the ramdisk. At this point
the floppy is unmounted and may be removed.
The system is running entirely off the ramdisk
and goes “multi-user” running the /etc/rc* scripts.
Once the boot process is complete, user logins
from the console or the network may occur. The
floppy is usually write-protected so changes in
the system configuration do not survive reboots.
If, however, the floppy disk is not write
protected, there exists a utility that can copy the
contents of the ramdisk /etc directory to the
floppy, thus making the running configuration,
permanent.

This organization places the files that are
unlikely to change between VPN nodes in the
kernel where they are compressed, while leaving
the configuration files in the /etc directory on the
floppy. Thus, these files can be easily accessed
and modified. Moreover, a single diskette image

may be produced and the configuration of each
station applied to it just before it is copied to the
floppy.

4. Prototype network

The VPN nodes described in this paper have
been used to create the network shown in Figure
5 linking research teams from various locations
to the internal network of the University of
Pennsylvania.

Even in academic environments where the
security restrictions imposed by firewalls are
relatively lax, there is a need for the provision of
full connectivity between collaborating
researchers. When the VPN is running,
workstations in the three workgroups are able to
communicate using the full suite of IP protocols
(such as X11, NFS, telnet, rsh, rlogin).

As it can be seen in Figure 5, each of the
three locations is linked to the other two via
IPsec tunnels. This means that there is no need
for additional routing tables since all the
networks in the VPN are just one (virtual) hop
from each other.

By write-protecting the distribution medium
we ensure that its configuration cannot be altered.
Of course the running configuration can be
altered since all the files exist on the ramdisk (for
example, we can create new accounts, add IPsec
SAs etc.) but when the machine is rebooted, it

will revert to the original configuration on the
boot medium.

Merging workgroups from different
networks implies dealing with such issues as
whether the guests should be allowed access to

Network
Access
Device

Main Network

Firewall

VPN Node Workstation

VPN Node

Workstation

Univ. of Pennsylvania

Remote Location
with wireless Ethernet

Remote
Location

IPsec
Tunnels

Network
Access
Device

Public
Network

VPN NodeWorkstation

Figure 5. VPN nodes link the LANs of the three participating institutions.

- 8 -

the rest of the internal network as if they were
local users, or whether the workgroup networks
should be located outside the firewall (maybe in a
special DMZ). Another similar issue is whether
local researchers should be able to link their
usual workstations to the VPN or whether they
should be required to use dedicated workstations.

In situations where the VPN is linking
researchers from, e.g., different companies, these
issues would need to be seriously considered and
the effect on the corporate security policy
investigated before establishing the VPN
[Ches94]. In our case convenience was
considered more important than security and the
VPN workstations were placed in the internal
network. However, since the routes via the IPsec
tunnels were not advertised internally, only the
workstations in the VPN could communicate via
the IPsec tunnels.

4.1 Hardware Platform

The VPN software runs on standard PC
hardware. While most of the development was
carried out on decommissioned PCs, the size,

power requirements and, most importantly, the
noise from the power supply fan, make such
machines totally unsuitable for deployment in the
field.

Single board computers (SBCs) allow the
creation of small-factor convection-cooled
systems. These designs are mostly compatible
with the PC motherboards and cards so that there
is no need for software porting. Moreover, solid
state storage in the form of Flash RAM may be
added thus improving the reliability of the
system.

After looking at a number of products we
chose the NetCARD system by Cell Computing
(see figure 6). This single board computer is
about 14cm by 10cm and combines on board
Ethernet interface, Compact Flash and 2 PC-
CARD slots along with the usual PC-style
interfaces (floppy, IDE disk, etc.). We used this

system both with a floppy boot medium and with
a Compact Flash. The on-board Ethernet
interface was used to connect the VPN node to
the network access device, while an Ethernet PC-
CARD provided the inside-network connection.

WaveLAN
PC Card

Compact Flash
(boot device)

10/100
Ethernet

64Mb RAM

Pentium Class
Processor

(convection cooled)

Figure 6. The VPN node hardware.

- 9 -

We used the Lucent Orinoco PC-CARD that
provides wireless Ethernet, so that there was no
need for fixed wiring or hubs. We feel that
deployment at home would make the use of such
wireless devices a must.

4.2 Operation

As soon as power is applied and the power-on
tests are complete the PC BIOS loads the system
from the boot medium and hands control over to
the OpenBSD kernel. In order for the outside
interface to be configured, the VPN node must
find out the IP address provided by the ISP. If the
IP address is always the same, then it can be
included in the static configuration that is read
off the boot medium. Otherwise the system uses
dhclient to configure its interface. The inside
Ethernet interface uses a pre-assigned address
from the private internet range (RFC1918). The
system also runs dhcpd on the inside interface
so that workstations on the private network can
be auto-configured. The system then runs the
isakmpd daemon that creates the Security
Associations and sets up the IPSEC tunnels. The
packet filtering software ensures that the VPN is
isolated from the outside world. The node may

be powered down without the need for a
shutdown procedure (e.g. sync).

5. Conclusions - Future Plans

The work presented in this paper is a
continuation of the work described in [Prev99].

In the previous project a number of VPN stations
were deployed within the University of Piraeus as
part of a network of monitoring stations. The
purpose of these Secure Network Stations (SNS)
was to allow the creation of a secure network that
allows administrators to manage and troubleshoot
network elements such as routers, hubs, and
switches deployed throughout the University
campus. The SNS system has been in operation
for more than a year.

The SNS nodes have different configurations
from the VPN nodes discussed in this paper
because they serve different roles. For example,
SNS nodes need to forward SNMP traffic from
the network elements and allow connections from
inside the secure network to reach network
elements located outside the SNS perimeter.
Moreover, the system uses static SAs with
manual keying which necessitates the production
and distribution of updated configurations on a
regular basis.

VPN
Node

Branch Office LAN

VPN
Node

Branch Office LAN

VPN
Node

Main Office LAN

Firewall

Public
Network

VPN
Node

Branch Office LAN

Figure 7. The VPN nodes link remote locations to the central office over a
public network.

- 10 -

Nevertheless, the experience gained from
their use helped in refining the requirements for
the systems described in this paper. One notable
decision that was directly influenced by the
previous design was to have a fully connected
mesh of IPsec tunnels linking every node to all
the others. Most VPN solutions tend to link a
central office with a number of remote locations
with the IPsec tunnels arranged in a star (see
Figure 7).

The many-to-many links allow the VPN to
be resilient to failures of individual nodes and in
the case where there is significant traffic between
the remote nodes there is better utilization of the
VPN resources as all packets go through at most
one IPsec tunnel to their destination.

Another system that offers similar
functionality to the one we have presented here is
the Moat from the AT&T Labs [Denk99]. Like
our system, the Moat also utilizes small single
board computers running a lightweight version of
Linux and create VPNs allowing AT&T research
personnel to telecommute. The Moat follows the
one-to-many VPN layout probably because it is
not envisaged that there will be significant traffic
between employees working at home. Remote
stations with floating IP addresses (as is the case
of most dial-up Internet connections) are treated
by dynamically rewriting the IPsec configuration
files. This requires that a central cite is always
operational so that the VPN nodes can get the
information they need to create their
configuration files. In our system, the use of
certificates, allows any two stations to negotiate
SAs and create IPSEC tunnels. Additionally, the
use of built-in facilities such as the isakmpd
daemon make the system easier to maintain and
port across Operating System releases.

In the following paragraphs we will discuss
other enhancements that we plan to integrate in
the near future.

5.1 VPN and non-VPN PCs on the home
network

Internet connections at home are seldom used by
only one person or for only one task (e.g. work).
By placing the VPN-node between the home
network and the ISP connection we are
effectively forcing everybody to go though the
company network. This is not entirely without
merit because it means that the home computers
are shielded behind the company firewall.

However, there may be cases where we wish to
have access to sites or services that are blocked
by the company firewall. In such cases it would
be a good idea to be able to allow only certain
PCs or network segments to belong to the VPN,
while the rest would work as if they were directly
connected to the ISP.

 There are three possibilities that we are
currently investigating. The first is to plug the
non-VPN PCs directly to the ISP feed. This
allows us to have the non-VPN PCs behave as if
the VPN did not exist. However, in this case the
non-VPN PCs are exposed to attacks emanating
from the public Internet.

Moreover, if the ISP allows the user to have
more then one IP address per connection this
setup can be straightforward. If, however, we
have only one address, then we need some piece
of equipment to do network address translation
(NAT). Since we already have a powerful router
as part of our VPN-node we may as well use it
for this task as well. To be able to perform NAT
we would need another network interface. This
may be either in the form a separate Ethernet
card or as a logical interface on the outside
Ethernet card. The extra card solution allows us
to do some packet filtering as well, so it offers
the possibility of increased security.

5.2 Routing versus Bridging

Currently VPNs are created by joining separate
networks via tunnels. Packets destined for a non-
local network in the VPN are routed through one
or more IPsec tunnels. While this may seen
adequate for most practical purposes, the
existence of the tunnels is visible, since they exist
in the IP layer. This implies that routing tables
must be employed (and hence software like
routed or gated to manage those tables) to
determine how the packets will be shuttled from
one location to the next. However, if the tunnels
are placed below the IP layer, then we can create
a virtual LAN linking all the stations in the VPN.
In this case all the workstations will belong to
same IP network and behave as if they were
connected to same Ethernet segment.

This behavior can be accomplished by
configuring the VPN nodes as bridges rather than
routers. The integration of IPSEC with bridging
is already present in OpenBSD [Kero00] and we
are currently working in the integration of these
mechanisms in the VPN-node framework.

- 11 -

References

[Ches94] Cheswick, William and Steven
Bellovin, “Firewalls & Internet
Security, Repelling the Wily
Hacker,” Addison-Wesley
Professional Computing Series,
1994.

[Denk99] Denker, John S., Steven M.
Bellovin, Hugh Daniel, Nancy L.
Mintz, Tom Killian and Mark A.
Plotnick, “Moat: A Virtual Private
Network Appliance and Services
Platform,” LISA’99: 13th Systems
Administration Conference,
Washington, November 1999.

[Kero00] Keromytis, Angelos D, Jason L.
Wright, “Transparent Network
Security Policy Enforcement,”
USENIX Annual 2000 Technical
Conference - Freenix Refereed
Track, San Diego, California, June
18-23, 2000.

[Prev99] Prevelakis, Vassilis “A Secure
Station for Network Monitoring and
Control,” The 8th USENIX Security
Symposium, Washington, D.C.,
USA, August 1999.

[RFC1825] Atkinson, R. “Security Architecture
for the Internet Protocol,” Internet
Engineering Task Force, August
1995.

[RFC1827] Atkinson, R. “IP Encapsulating
Security Payload (ESP),” Internet
Engineering Task Force, August
1995.

 [Scot98] Scott, Charlie, Paul Wolfe and Mike
Erwin, “Virtual Private Networks,”
O’Reilly & Associates, Inc. 1998.

[Shah97] Shah Deval and Helen Holzbaur,
“Virtual Private Networks: Security
With an Uncommon Touch,” Data
Communications, Sept. 97,

[Silv98] Silva James da, “Cruchgen,”
OpenBSD User Manual, 1998.

