
SAuth: Protecting User Accounts
from Password Database Leaks

Georgios Kontaxis
Columbia University

kontaxis@cs.columbia.edu

Elias Athanasopoulos
Columbia University

elathan@cs.columbia.edu

Georgios Portokalidis
Stevens Inst. of Technology

gportoka@stevens.edu

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

ABSTRACT

Password-based authentication is the dominant form of ac-
cess control in web services. Unfortunately, it proves to be
more and more inadequate every year. Even if users choose
long and complex passwords, vulnerabilities in the way they
are managed by a service may leak them to an attacker.
Recent incidents in popular services such as LinkedIn and
Twitter demonstrate the impact that such an event could
have. The use of one-way hash functions to mitigate the
problem is countered by the evolution of hardware which
enables powerful password-cracking platforms.

In this paper we propose SAuth, a protocol which em-
ploys authentication synergy among different services. Users
wishing to access their account on service S will also have to
authenticate for their account on service V , which acts as a
vouching party. Both services S and V are regular sites vis-
ited by the user everyday (e.g., Twitter, Facebook, Gmail).
Should an attacker acquire the password for service S he will
be unable to log in unless he also compromises the password
for service V and possibly more vouching services. SAuth is
an extension and not a replacement of existing authentica-
tion methods. It operates one layer above without ties to a
specific method, thus enabling different services to employ
heterogeneous systems. Finally we employ password decoys
to protect users that share a password across services.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication

General Terms

Security

Keywords

Authentication; Synergy; Password Leak; Decoys

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’13, November 04–08, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2477-9/13/11 ...$15.00.

http://dx.doi.org/10.1145/2508859.2516746.

1. INTRODUCTION
Password theft can cause annoyance, financial damages,

data loss, and loss of privacy [5, 9]. Services employing
passwords urge their users to choose complex combinations,
never write them down, change them frequently, select a dif-
ferent password on each service they use and verify the au-
thenticity of the site before logging in. However, even users
that manage to follow all these rules risk having their pass-
words stolen. Security pitfalls in a series of popular services
have resulted in frequent and massive password leaks [4, 8,
16, 20]. Even though services usually store a digest or hash
of the password (excluding rare incidents [12]), the emer-
gence of powerful password-cracking platforms [14, 44] has
enabled attackers to recover the original passwords in an ef-
ficient manner [13]. What is more, password-reuse practices
by the users have enabled domino-like attacks [17,34].

We propose Synergetic Authentication (SAuth), an au-
thentication mechanism based on the synergy between dif-
ferent services that complements their individual procedures
for verifying the identity of a given user. To successfully log
into service S one is required to successfully authenticate
both with S and a cooperating vouching service V . For ex-
ample, a user logging into his Gmail account, after success-
fully submitting his password to the Gmail server, he will be
required to also submit his Facebook password to the Face-
book server. Once Gmail receives notice from Facebook that
the same user has managed to authenticate successfully it
will have an additional assurance that the user is the actual
owner of those accounts. Our approach is founded upon the
way most users access the web. In particular, users remain
concurrently and constantly authenticated with many ser-
vices such as e-mail and social networks [24,42] unless they
explicitly log out. A service the user is already logged on
can transparently vouch for him, e.g., through client-side
cookies. In the above example, had the user been already
logged in to Facebook, he would just be required to enter
his Gmail password to access his e-mails. Facebook would
use his user agent cookies to transparently authenticate him
and subsequently vouch for him to Gmail. At the same time,
an attacker that has compromised the user’s password for S
is unable to access that account as he is lacking the pass-
word for vouching service V and thus cannot complete the
authentication process. In other words, for an attacker to
compromise one account, he must acquire multiple account
passwords for that user located in different databases of dis-
tinct services.

Password-based authentication has received a lot of criti-
cism lately with many large services like Google and PayPal
looking for alternative means to authenticate users [7,15,35].
Some alternatives that have been proposed in the past in-
clude public-key mechanisms, such as TLS client certifi-
cates [19], graphical passwords [25,38], and many more. Un-
fortunately, none of the proposed alternatives has proven
sufficiently enticing [29]. Passwords have been the de facto
method for authenticating users for many decades, and have
proven to be resilient to change.

Two-factor authentication [22] has probably been the most
successful proposal to complement password-based systems
by requiring that an additional password is provided, ac-
quired through a second independent channel. Unfortu-
nately the overhead both in cost and effort to deploy and
maintain such system has led to adoption only by high-value
services such as banking sites and e-mail providers. More-
over, it scales poorly when users are required to manage mul-
tiple secondary factors for distinct services. Finally, a study
has shown that it can push users to weaker passwords [57].

Single-sign-on services like OpenID, as well as the OAuth-
based interfaces of social networking services [6,46], offer the
alternative of maintaining a single online identity, protected
by one, hopefully strong, password. Users of such services,
instead of creating separate, new accounts and passwords
with third-party services, authenticate with a trusted iden-
tity provider (e.g., Facebook), that vouches for them. How-
ever, these identity providers present a single point of failure,
may carry privacy-related risks, and can also suffer vulner-
abilities themselves [55]. A recent study [54] attributes the
limited adoption of such services to concerns regarding their
availability and relinquishing control of the user base as part
of outsourcing authentication.

SAuth does not suffer from any of the above problems, as
it complements, rather than substitutes, existing authentica-
tion procedures at each site. Therefore, it does not degrade
the security of a service, but allows heterogeneous authen-
tication systems to operate at each site, while preserving
each party’s user accounting system. Finally, it encourages
symmetric relations between services as it enables all partic-
ipating sites to operate both as relying and vouching parties
if they wish to.

To address the issue of password reuse [41,53], which can
render vouching ineffective if a user recycles the same pass-
word across all vouching services, we employ decoy pass-
words. Each service automatically generates multiple decoy
passwords that are similar to the one chosen by the user.
Furthermore, for the decoys to blend in, they receive no
special treatment by the service and are thus considered as
legitimate credentials for user authentication. Note how-
ever that the user is never aware of them. Enabling decoy
passwords requires no changes in the database schema, can
be implemented with wrappers to existing password man-
agement functions and introduces multiple password entries
per user instead of a single one. An attacker cracking the
passwords will be unable to identify the actual one and re-
sort to online guessing against the vouching services 1.

Overall, this work makes the following contributions:

1In this paper we model an on-line guessing attack according
to the NIST specification [32] (see Section 6.1).

• We design, implement, and evaluate SAuth, a frame-
work employing synergy between sites for stronger au-
thentication.

• SAuth builds on widely used technologies and is or-
thogonal to the underlying authentication framework.
Beyond providing stronger authentication, SAuth can
be used as an alert system for password breaches.

• We leverage decoy passwords to tackle password reuse
practices among the cooperating sites participating in
an SAuth session.

The rest of the paper is organized as follows. We provide
background information in §2. We present the design of
SAuth in §3 and its implementation in §4. We discuss decoy
passwords in §5 and evaluate their use in §6. Related work
is presented in §7 and conclusions are in §8.

2. BACKGROUND
Password-based authentication has changed little in the

many decades it is in use and today it is more popular than
ever, with countless web applications using passwords to au-
thenticate their users. In brief, when a user first registers
with a service, he selects a username and password with
which he will authenticate. The application stores the user-
name in plain-text form, attaches a random prefix called
salt to the password, gets the digest of this prefixed pass-
word using a cryptographic hash function such as MD5 or
SHA1, stores the hash output along with the salt in the
database and discards the plain-text password. Note that
recently these general-purpose hash functions have received
criticism [10] and alternatives such as bcrypt [48] have been
proposed. The salt prefix ensures that even if a password
is shared by multiple users, a different hash will be gener-
ated and stored in the database, and identical passwords
cannot be inferred by their hash product. What is more, it
defeats rainbow tables where the hashes for a large set of
dictionary words and password-space permutations are pre-
computed and then compared against a password hash in
real time. Upon login, users transmit their username and
password to the service in plain text, hopefully through a
secure communication protocol such as TLS. Subsequently
the web service uses the stored salt and the provided pass-
word to compute their digest and compare it to the stored
digest in the database. Note that unfortunately there are
cases where passwords are simply stored verbatim in the
database [3].

2.1 Password Leaks
In recent years we have witnessed an increasing amount

of password leaks [8, 12, 16, 20] from major Internet sites.
Between early 2012 and now these incidents have been oc-
curring at an alarming rate of roughly one every couple of
months. We use the term password leak to describe the
exfiltration of user passwords stored by some service’s ac-
counting system. This can be due to malicious insiders or
front-end bug exploitation, e.g., through SQL injection.

It is important to stress that password leaks are different
in nature from phishing or social engineering attacks which
may also be used to compromise user passwords. Leaks hap-
pen on the server side and usually lead to large-scale pass-
word exfiltration. As they don’t involve the client side, in

contrast to phishing attacks, even diligent users may have
their password compromised.

2.2 Password Cracking
Following a successful database leak the attacker has in his

possession all the elements necessary to attempt to crack the
stolen passwords; he holds their digests, the corresponding
salt values and has knowledge of the hashing function used.

Subsequently he can employ various cracking methodolo-
gies [44] ranging from brute-force attacks to dictionary at-
tacks and a combination of the two. In the first case he can
simply compute the salted hashes for all possible permuta-
tions in the given password space, e.g., passwords 1 to 8
characters in length involving upper and lower case English
letters, numbers and symbols. Whenever a computed hash,
for which the attacker knows the input, matches one of the
hashes in the stolen set, that user’s password is revealed.
Clearly this approach requires abundant processing power
and a lot of time. Alternatively, the attacker can compute
the salted hashes for a pre-constructed dictionary of poten-
tial passwords. As users tend to choose passwords that are
easy to remember [28], more often than not they select words
such as “password” or phrases such as “letmein” or people’s
names. Therefore a dictionary-based attack can be very fast
and efficient. Finally, a hybrid approach involving permu-
tations of dictionary words can crack passwords that meet
the bare minimum of otherwise complex password policies.
“password1” or “letmein!” and “s3cur3” are such examples.

Even if an attacker designs his password cracking process
in such an elaborate manner he still requires ample pro-
cessing power to achieve high success rates in a reasonably
short amount of time. The parallel architectures of modern
GPUs can greatly shorten the password cracking process.
Recently, GPU-based architectures were able to crack eight-
character-long NTLM passwords for Microsoft Windows in
just about five hours [14]. At the same time, cracking plat-
forms utilizing the resources and scalability of the cloud have
emerged [1]. Overall the sophistication of password crack-
ing methodologies, along with the availability of increasingly
more powerful hardware, significantly extends an attacker’s
capability to reveal complex passwords.

To mitigate the increase in the processing power of crack-
ing platforms, alternatives to the standard cryptographic
hash functions have been proposed. As general purpose
functions like MD5 or SHA1 were designed to be fast and
efficient, they serve in favor of the attacker who wants to
compute a large number of digests in a short amount of
time. On the other hand, adaptive hash functions, such as
bcrypt [48] and scrypt [47], can be configured in terms of
the work factor they introduce. In other words, as process-
ing power increases over time these functions can be tuned
to take constant amount of time. Therefore it is possible to
slow down the cracking process significantly. Note however
that these functions have a much lesser impact on dictionary
attacks compared to brute-force attacks.

Our proposal does not make any assumptions about the
way the password is stored in the database or the particu-
lar hash function employed. Nevertheless we assume that,
as the way users select passwords favors password-cracking,
leaked password hashes, or at least a significant portion of
them, will eventually be cracked.

2.3 Out of Scope Threats

Figure 1: Overview of synergy-enhanced authentica-
tion. A user, with accounts in services S and V (e.g.,
Twitter and Google) tries to log in S. A standard au-
thentication process takes place which involves the
user’s password for S (step 1a). Subsequently ser-
vice S initiates our proposed protocol which involves
service V vouching for the user (step 1b). The user
is redirected to V with which he also engages in a
standard authentication process (step 2a) at the end
of which service V generates a vouching token for
the user to return to S (step 2b). Finally, service
S allows the user to access his account if and only
if the vouching token from V is verified (step 3a)
and optionally returns a persistent authentication
token (e.g., cookie) that will bypass this authentica-
tion process for subsequent interactions (e.g., HTTP
requests) with S.

We do not attempt to address password compromise due
to social engineering, phishing, or man-in-the-middle at-
tacks. Social engineering exploits the human psychology and
we argue that technical means may not be able to offer ade-
quate protection on their own. As far as phishing, malware,
and man-in-the-middle attacks are concerned we stress that
there are already sufficient protection mechanisms that can
be employed independently to our proposal. For example,
researchers have proposed PwdHash [50], BeamAuth [22]
and Visual Skins [39] against phishing. They employ some-
thing unique to the original site, such as a URL or its ap-
pearance, to alert the user or safeguard against transmitting
his password to the wrong site. Nevertheless, they do not
have any effect on the server side nor do they present any
benefit once the user’s password has been leaked.

3. SAuth ARCHITECTURE
Alice has registered and maintains accounts with web sites

S and V like she does today. We consider the case where
Alice tries to authenticate to S using SAuth, while V is
acting as a vouching party for Alice. We use the terms A→S

and A→V for indicating Alice as announced to S and V ,
respectively. We use this notation for stressing that Alice
has a different identity with each party. Below, we provide
the steps executed for Alice to successfully authenticate with
service S in the presence of service V , which is trusted by S
and has agreed to vouch for its own users to S. The process
is also depicted in Figure 1.

Figure 2: Overview of the association process to en-
able synergy-enhanced authentication. A user tries
to register for a new account in service S (e.g., Twit-
ter). Alternatively he logs in to an existing account
with S for which he wants to enable SAuth (step
1a). S generates a unique anonymous alias for the
user and redirects him to vouching service V (e.g.,
Google) (step 1b). The user is expected to authen-
ticate to V or create a new account (step 2a). Note
that the user may have already enabled SAuth in
his V account. Upon authentication or registration,
the anonymous alias from S is associated with the
current account on V and user is redirected back to
S with a confirmation message (step 2b). Finally,
S binds that alias to the user’s account and enables
SAuth (step 3) so that subsequent authentication
attempts can involve V as a vouching service and, if
so, will require the receipt of that alias from V .

1. Alice visits service S and is challenged for her authen-
tication credentials (e.g., an HTML form asking for her
name and password or a cookie storing an authentica-
tion token). Note that these authentication credentials
were established when Alice created her account, A→S,
on service S. This is currently a standard method for
authentication employed by web services. This step is
depicted as (1a) in Figure 1. After providing the cor-
rect credentials for A→S, the synergy-based authen-
tication protocol is initiated (step (1b) in Figure 1)
and Alice is prompted to choose from a list of trusted
vouching services, including service V , to complete the
enhanced authentication process. Notice, that Alice
has specified her vouching services in S when she reg-
istered or enabled SAuth. Alice chooses service V and
a vouching request is issued towards V by S, while the
user is being redirected to service V .

2. Service V receives the vouching request from S and
challenges the current user for her authentication cre-
dentials (step (2a) in Figure 1). Note that these au-
thentication credentials were established when Alice
created her account, A→V , on service V . After suc-
cessful authentication of user A→V , a verification re-
sponse is returned and the user is redirected back to
service S (step (2b) in Figure 1).

3. Service S receives a verification response from V sig-
naling that current user, A→S, has managed to prove
ownership of an account, A→V , on service V (step (3a)
in Figure 1). As any user can prove ownership of two

accounts on two distinct services, we require that ac-
counts A→S and A→V have been associated in the past
when user Alice opted in this enhanced authentication
process. This association means that if some user man-
ages to authenticate as A→S but then authenticates as
B→V , the enhanced authentication process will be ter-
minated by service S as unsuccessful. The only way
for the process to succeed is for the current user to
authenticate as both A→S, on service S, and A→V , on
service V . Once the enhanced authentication process
concludes with a positive result on service S the cur-
rent user is given an authentication token (e.g., HTTP
cookie), which replaces the need for challenging her au-
thentication credentials for every subsequent request,
currently a common practice in the web and elsewhere.
Note that at this point the current user has authenti-
cated fully on S and V in case both services are vouch-
ing for each other. If a different service is selected to
vouch for V then, as expected, the user has to follow
a similar process for authenticating with V .

SAuth is proposed as an opt-in feature, designed to com-
plement existing authentication methods. Sites providing
SAuth can let users enable the mechanism at registration or
at any later time. We now discuss the protocol details. We
assume that SAuth operates above SSL.

3.1 Protocol Details
Security and Trust. When service S receives a vouching

token from service V about some user, S trusts that V has
indeed authenticated the user and its security practices do
not allow some other user to generate the same vouching
token while interacting with V . If V fails to meet those
expectations, the security of the process followed by S is as
if SAuth was not in place at all and S was operating alone.
In other words, as S does not nullify its own authentication
system, even if V implicitly or explicitly misbehaves, S will
not be negatively impacted. As the first step in the SAuth
protocol involves correctly authenticating with the target
service, the security procedures of S take precedence over the
ones by vouching parties. Note that including more than one
vouching service reduces the dependence on a single external
party and increases the redundancy in the face of vouching
unavailability.

Activation. Registering for a new account in a synergy-
supporting service or enabling synergy-enabled authentica-
tion for an existing account entails an association step be-
tween the target service S and potential vouching services
V . When registering for a new account, the traditional regis-
tration process is carried out and then followed by the asso-
ciation step. Note that activation of SAuth can be deferred
for a later time to limit the workload for new users as it
is not strongly tied to the registration process. For exist-
ing accounts, only the association step needs to take place.
The association step is necessary so that a link is estab-
lished between the current account in the target service S
and an account the user controls in a vouching service V . As
mentioned earlier, a vouching party produces proof that the
current user has managed to successfully authenticate. This
alone is not useful to the target service as it is not necessary
for the owner of the account in S to be the owner of the
account in V . In other words, an attacker who manages to
steal the password for an account in S could authenticate
with his own account in V and have service V return that as

proof of authentication. For that matter, upon registration
of a new account or enabling of SAuth, service S generates
an anonymous alias for the user. The user is then expected
to provide that alias to a vouching service and associate it
with an account there. Once this association is made, the
vouching service will return this alias as part of the authenti-
cation proof to service S. Service S will check the returned
alias against the one bound to the account of the current
user and enable him to access the account if and only if the
two are a match (Fig. 2).

Authenticity. As the user agent, i.e., web browser, is
tasked to facilitate the communication between the target
site and vouching parties, special measures are necessary
to ensure the authenticity of protocol messages exchanged.
The reason is that the user agent is both untrusted and mo-
tivated to misbehave when challenged to prove his identity.
Secrecy is also important but, since the user is privy to all
exchanged information, it can be achieved through secure
layer, e.g., SSL, connections between the user and the sites.
To safeguard authenticity, each protocol message is required
to carry the service, signature and signed_fields param-
eters. The first one is the identifier of the sender service and
could be the service’s domain, a URI under that domain or
an alias. The second one is a cryptographic signature, such
as RSA-SHA1, computed over the rest of the parameters
using the private key of the service sending the message.
The final parameter is a list with the names of parameters
and the order in which they have been signed. As soon as
the user-agent relays a protocol message to the receiving
service, it will parse the signed_fields parameter, verify
the signature based on those fields and accept the values of
those fields while discarding all other fields. Verifying the
signature entails looking up the public key for the service,
specified by the service parameter. To do so efficiently we
employ the X.509 certificate it has for HTTP over SSL.

Password reset. In the general case, without SAuth
present, users have the ability to be reminded of their pass-
word or better yet reset it and choose a new one. For this to
happen, users may be asked some security questions, such as
the name of their pet, that they chose during account reg-
istration and subsequently receive an e-mail, to an address
they also chose during registration, with either their current
password or a secure URL to select a new password. Note
that this current practice is already one form of synergy-
based authentication, since the service places trust in the
e-mail provider and expects only the owner of that address
to be able to read the password-reset message. Unfortu-
nately, this model fails when an attacker manages to get
access to the e-mail address and then proceeds to initiate
password-reset procedures for the victim’s online accounts.
Enhancing the current model with SAuth means that the
service will proceed as detailed above only after the current
user proves ownership of an account in a vouching service.
Assuming the user hasn’t forgotten all of his passwords in
all the vouching services, he is first prompted by target ser-
vice S to authenticate with vouching service V before S
proceeds with the steps to reset the user’s password for S.
Note that this process is not meant to replace the current
security-question model, whose security has been questioned
by researchers [51], but to precede it and thereby couple it.

3.2 Usability

SAuth is built on standard technologies and is founded
upon the existing browsing habits of users. Thereby it does
not affect their perceived web experience. We are taking
advantage of the fact that users prefer to maintain concur-
rently many browser tabs open [58] and spend at least 57.4%
of their time in switching tabs [42]. This suggests the use
of multiple web applications in one session. Furthermore,
researchers have observed long-lived sessions in online social
networks [24], which is another indicator suggesting that
users are concurrently active in multiple sites.

What is more, in favor of users’ convenience, current web
applications maintain authentication state, usually in the
form of HTTP cookies, for each established session, which
can be destroyed only if the user is explicitly logged off or
decides to erase the browser cache. In other words, like the
user is not prompted for his password for every HTTP re-
quest the browser makes when rendering a site, he won’t
be interrupted when a service he is already logged in is in-
volved as a vouching party in SAuth. In addition, browsers
implement auto-completion features for filling out password
forms. Therefore, even if the user is not currently authenti-
cated with one or more of the services involved in a SAuth
session, this feature will alleviate his inconvenience.

Finally, one may be concerned with the involvement of
multiple accounts in different services if a user needs to regis-
ter for all of them at once to activate SAuth. We expect that
such cases will be rare in practice as vouching services will be
selected due to their popularity and dependability. As such
we expect that users will almost always have an account with
one of the supported vouching services so, when registering
with an SAuth-enabled service, they will not need to addi-
tionally register with one of the vouching services. Our use
case is aligned with the existing “sign in with Google” and
“sign in with Facebook” single-sign-on mechanisms; users
most probably will hold an account with one of those ser-
vices. Moreover, SAuth’s design enables users to include a
vouching service of their choosing by supplying its domain
name to the target service (Sec. 4). This clearly increases
the flexibility of SAuth. Nevertheless, in the unlikely case
that the user is unable to provide an account with an exist-
ing, or introduce a new, vouching party to the target service,
activating SAuth could also be deferred to the future.

3.3 Availability
The synergistic nature of SAuth creates dependencies be-

tween sites during their user authentication process. The
unavailability of a vouching site V means the target service
S will have to rely solely on its own authentication proce-
dure which, as mentioned earlier, is the first step in an SAuth
session and takes precedence over any vouching responses.
In other words, should a vouching site be unavailable, the
target service will still be able to function and operate, as
it would do without the use of SAuth. Administrators can
make a policy decision on whether they want to operate
without enhanced authentication, admit the user into his
account on a provisional basis with limited functionality, or
engage additional checks such as security questions. Note
that once a user is authenticated and receives back a to-
ken, for instance an HTTP cookie, he is not affected by any
changes in the availability of the vouching sites. He will not
have to initiate SAuth unless he relinquishes that token.

3.4 Password Compromise Alerts

The multi-party authentication process of SAuth enables
a warning system for when passwords from one or more par-
ties are compromised. In a password leakage an attacker
would gain access to all password hashes stored by a tar-
get site. We assume that he will eventually recover the
plain-text passwords using any of the techniques described
in Sec. 2.2. As he will still be lacking the corresponding pass-
words for the vouching sites he will resort to online guessing
attempts which will result in failed SAuth sessions. Even if
the user has chosen the same password for both the target
and vouching site, as described in Section 5, the attacker will
still end up guessing online. Note that for a vouching site
to receive a request from a target site, the user must have
already successfully authenticated with the latter. There-
fore, a vouching site dealing with a user repeatedly failing
to authenticate with it can suspect that the user is trying
to log in to an account he doesn’t own. Considering some
leniency for typing errors, this creates a reliable system for
triggering alerts. The vouching site is in a position to notify
the target site that a specific user is failing to authenticate
even through he has managed to do so at the target site.
At the same time, the target site will notice repeated SAuth
sessions failing at the vouching parties even though local au-
thentication goes through. Overall, the nature of the SAuth
design offers indications of anomalous activity that would
otherwise go unnoticed.

4. IMPLEMENTATION
We define the SAuth protocol messages as a set of URIs

[21] which makes it easier to project them on a URI-oriented
application-level protocol such as HTTP [11]. We assume
that the user is represented by an agent program, e.g., a web
browser. Although we focus on HTTP, as it is employed
by web services, our design can be applied to any other
application-level protocol provided it supports the concept
of end-point redirection. We group our messages into two
categories; registration and authentication messages defined
as registration and authentication URIs respectively.

For a target service and a vouching service to engage in
an SAuth session, they need to be aware of each other’s end-
points. Registration and authentication end-points may be
explicitly exchanged offline upon prior agreement, or they
may be retrieved automatically from an XML file, named
sauth.xml by convention, hosted under the domain of each
service and served over a secure network layer such as SSL,
e.g., https://www.example.org/sauth.xml. This enables
users of a target service to include a vouching service of
their choosing by supplying the voucher’s domain name in
the target service’s SAuth activation page. Alternatively,
users can select one of the pre-configured vouching services.

To realize the technical issues from the adoption of our
protocol by a web application we have implemented it in
its entirety in PHP and subsequently developed adopting
sample applications including both a front and back end.
We argue that once SAuth is offered as a module or library
it requires effort comparable to the use of OAuth and similar
authorization protocols, something which a plethora of sites
today uses. Our implementation is less than 1000 LoC.

Registration. A user who registers with S selects a
vouching party from a list of cooperating services or may
specify one of his choosing by specifying its domain name
as described earlier (Listing 1, line 1). Note that selection
of a vouching service or introduction of a new one is only

1 schema ://TARGET_SERVICE_S/registration
2 [username , password , vouching_service]
3

4 schema ://TARGET_SERVICE_S/registration
5 [action ="commit",service =

VOUCHING_SERVICE_V,alias=
FOREIGN_ALIAS ,nonce=NONCE ,signature ,

signed_fields="action,service ,alias ,
nonce"]

Listing 1: SAuth registration messages as URIs.

1 schema ://VOUCHING_SERVICE_V/authentication

2 [action =" register_alias", alias=
FOREIGN_ALIAS , service =
TARGET_SERVICE_S , nonce=NONCE ,

signature , signed_fields="action,
alias ,service ,nonce"]

3
4 schema ://TARGET_SERVICE_S/authentication

5 [username , password , vouching_service]
6
7 schema ://VOUCHING_SERVICE_V/authentication

8 [action ="vouch",service =TARGET_SERVICE_S ,
nonce=NONCE ,signature , signed_fields="

action,service ,nonce"]
9

10 schema ://TARGET_SERVICE_S/authentication

11 [action ="verify", alias=FOREIGN_ALIAS ,
service =VOUCHING_SERVICE_S, nonce=

NONCE , signature , signed_fields="
action,alias ,service ,nonce "]

Listing 2: SAuth authentication messages as URIs.

possible upon registering a new account with the target ser-
vice or after successfully authenticating to an existing one,
through SAuth if enabled. The response of service S to the
user-agent’s registration request is a redirection towards the
authentication end-point of the selected vouching service V
(Listing 2, line 1) with the parameter action set to instruct
the vouching service to first authenticate the user and then
associate the resulting account with an anonymous alias that
has been just generated. Service S also binds that alias with
the newly registered account once it receives confirmation
from V . Assuming the current user has an account with
service V , he provides his credentials to authenticate. If
the current user has enabled SAuth on service V , a synergy-
enhanced authentication process will follow. Note that if the
user does not have an account with V , he can optionally cre-
ate one at this point, but even if he does not, such cases can
be handled in the manner discussed in Sec. 3.2. Eventually
the user successfully authenticates or creates a new account
with V . Service V then redirects the user’s agent back to
service S while setting parameter action to signal service S
that it should bind the generated alias to the current user’s
account. This conveys to S that the alias has been associ-
ated with the user’s account on V and it will be part of a
future vouching authentication process (Listing 1, line 4).
This completes the registration process under SAuth. Note
that activating SAuth is not strongly tied to creating a user
account on S and can take place independently.

Authentication. To authenticate under the enhanced
process of SAuth a user initially visits the service he wants
to access, labeled as target service S. He is prompted for
his name and password. He is also asked to select a vouch-
ing service V (Listing 2, line 4). This selection may either

https://www.example.org/sauth.xml

1 [Authentication Request to example .com (S)]
2 POST /login HTTP/1.1
3 Host: www.example .com

4
5 username =bob&password =password &vouching_service=

example .org
6

7 [Authentication Response from example .com]
8 HTTP/1.1 303 See other
9 Location : https ://www.example .org/login?action=

vouch&service =example .com&nonce =...& signature
=...& signed_fields=action %2Cservice %2Cnonce

10
11 [Authentication Request to example .org (V)]
12 GET /login HTTP/1.1

13 Host: www.example .org?action =vouch&service =example
.com&nonce =...& signature=...& signed_fields=

action %2Cservice %2Cnonce
14

15 ...

Listing 3: Example use of HTTP redirection to relay
the first message of the SAuth protocol between the
target and vouching service through the user agent.

take place in the same screen as the log-in form or after his
credentials are authenticated by S. In the first case he is
given the option of selecting any of the vouching services S
supports. This is to avoid revealing to attackers the vouch-
ing service(s) a given user employs. In the second case, he is
given the option of selecting only from the vouching services
that have already been associated with his account through
a foreign alias. Note that if the user specified a vouching
party of his choosing through its domain name that party
will be available as an option at this point. Target service
S then redirects the user’s agent to V while setting the pa-
rameter action to signal that a vouching for current user is
expected from the remote service (Listing 2, line 7).

The user then presents his credentials in an authentica-
tion request towards service V for his respective account.
On successful local authentication with V , the service’s re-
sponse to the user agent redirects it to the target service S
while setting parameter action to signal that current user
has successfully authenticated with some account, that the
associated foreign alias is included in the response, and that
service S should verify this vouching response and decide
whether the returned foreign alias matches the alias bound
to the user’s account on S. On match, service S has success-
fully authenticated the user using SAuth and can optionally
return a persistent authentication token, such as an HTTP
cookie, to the user’s agent so that future interactions with
service S can skip the enhanced authentication in a manner
similar to the way users don’t have to type their password
for each HTTP request their web browser makes.

HTTP User-agent redirection. To facilitate message
relaying through the user agent in HTTP we employ 3xx
redirection messages [11]. For service S to redirect the user
agent to service V , it responds to the user agent’s request
with the 303 “See other” status code. It also includes the
Location header with its value being that of a URI under
the service V domain that targets the desired end-point and
carries the information it wants to communicate to V in the
form of parameters. Listing 3 presents an example where
the user agent is redirected to service V with a vouching
request after successfully authenticating to service S.

Cryptographic Signatures. As the user agent is re-
sponsible for relaying messages between the target service
and vouching services, it is necessary to ensure the integrity
of those messages. We assume that the secrecy of the mes-
sages is preserved as long as the user agent maintains SSL
connections with the two services and that there is no need
for the messages to be hidden from the user agent. We im-
plement cryptographic signatures using 1024-bit RSA key
pairs and the SHA-1 digest algorithm. Each protocol mes-
sage must contain the parameters service, signature and
signed_fields. The first parameter identifies the sender
and is used to retrieve the necessary information for veri-
fying the signature. The last parameter specifies which pa-
rameters are contained in the signature.

Web services use the same private key that supports their
HTTPS connections with clients and thus the correspond-
ing public key is protected under an X.509 public key certifi-
cate. For a service to verify a signature in SAuth, it uses the
service identifier to locate the corresponding URL for the
sender. If the hostname of the sender service is used as the
identifier, the service connects to the sender and downloads
its public-key certificate. There are other ways to resolve
an identifier to a hostname or URL but they are outside
the scope of this paper. After retrieving the certificate, the
service tries to verify the signature over the parameters spec-
ified by the signed_fields parameter. On success, the pa-
rameters are committed to the current user session. HTTP
parameters not covered by the signature are discarded. If
a parameter is specified twice, only the instance carrying a
value which causes the signature verification to succeed is
kept. Finally, if a signature fails the request is terminated
immediately and no processing takes place.

Apart from the integrity of protocol messages, it is very
important to ensure their freshness and avoid replay attacks.
For that matter, a nonce is generated per message and per
user and is bound to the current user’s session state that a
service maintains. That nonce is included as a parameter
to the protocol message sent to a remote service and the
respective response is expected to carry the same nonce.
Nonces do not survive the termination of a user session.

5. PASSWORD REUSE
SAuth is rendered moot when a user is sharing the same

password across web sites acting as vouching services. Un-
fortunately this is quite common in practice where a pass-
word is reused across six different web sites [40] on average.
In essence reuse intensifies the problem of password leak-
age [17,34]. Password managing software, nowadays offered
natively by web browsers, could remedy the situation but
usability issues are presently obstructing wide adoption.

5.1 Decoys
In the spirit of recent research [27, 43], we propose plac-

ing decoy passwords in databases to introduce uncertainty
about the actual passwords chosen by users. In other words,
anyone examining the password database, including an at-
tacker who has compromised it, will discover that every user
account has N passwords instead of one. Any of those pass-
words can successfully authenticate the user to the service
and that is a key difference between our proposal and Kam-
ouflage [27] as well as Honeywords [43]. That is because
decoy passwords carry no marks and receive no special treat-

(a) normal login (b) normal login (c) leaked (d) leaked
(pwd reuse) (pwd reuse)

(1) Single-site authentication PS−1 PS−1 1 ✗ 1 ✗

(2) Two-site authentication without decoys (PS2)−1 PS−1 PS−1
✓ 1 ✗

(3) Two-site authentication with decoys K1 ·K2 · (PS2)−1 PS−1 K2 · PS−1
✓ K1−1

✓

Table 1: Probabilities of different log-in events under current and our proposed authentication systems. Case
(a) refers to the normal scenario where someone without any prior knowledge of the password attempts to log
in to a service while case (b) is a special sub-case where the user of the target account is reusing his password
in more than one services. Cases (c) and (d) refer to the scenario where a service has been compromised and
the user’s password for that service leaked. Our approach (2) offers a significant increase in the security of
cases (a), (b) and (c) but not (d). For that matter we couple our proposed system with decoys which overall
decreases the probability of an attacker logging in all four cases.

ment from the service to eliminate heuristics that could dis-
tinguish them from the actual user-set passwords.

Decoy Generation. Generating decoys indistinguish-
able from actual data is an interesting research area. Bowen
et al. have worked on providing believable decoys at the
network and host level [30, 31]. Researchers have already
proposed techniques for generating sets of similar tokens in
an automated manner and applied them towards decoy pass-
words. In Honeywords [43] a tweaking algorithm with varia-
tions is used. The authors propose various transformations,
such as chaffing-by-tail-tweaking, which basically produce
new words similar to a core word, which is the original user’s
password. In Kamouflage [27] they extend the context free
grammar rules proposed by Weir et al. [56] for generating
similar passwords.

We consider the above works to be towards the right di-
rection and extend them in our approach. The key idea is
to identify the context of the password and randomly pro-
duce tokens that match it. However, it is important to keep
two requirements in mind. First, there should be no sin-
gle mask describing the set of decoy passwords. In other
words, it should not be possible to determine the structure
or the properties of all decoy passwords, including the actual
password, by looking at any small subset of them. There-
fore, we introduce variations in the structure and properties
of the actual password to achieve diversity. Second, ran-
dom generation might produce passwords that are unlikely
to be chosen by actual humans. For instance, analysis of the
leaked passwords from the RockYou service revealed that
just 4% of passwords begin with a digit as opposed to a
character. Randomly producing decoys with mixed charac-
ters and digits would produce a roughly equal amount of
tokens starting with a character and a digit. The attacker
could subsequently ignore any password starting with a digit
without risking discarding the actual password. Therefore,
we place weights on the generation process to favor human
norms.

The process of generating decoys begins by analyzing the
user-selected password. It is grammatically decomposed [56]
and new passwords are generated by applying transforma-
tions to the core parts of the initial password. Transforma-
tions can be applied in the same fashion that users change
their own password [59], like for example certain substitu-
tions such as leetspeak [26]. We can also generate the corre-
sponding parts of speech tags [45], and use them to produce
random permutations that are still grammatically similar
and valid. For example, “she runs fast” is written as “pro-
noun verb adverb” and could generate “she plays carefully”

or “he speaks loudly”. In the case where natural language
processing fails to identify the presence of human language,
we treat the password as a random string with certain statis-
tical properties. For example, “6rZ” can be written as “digit
lowercase uppercase” and generate “0xB” or “5cM” but not
“5cm”.

5.2 Incorporating Decoys
A site can transition gracefully into the use of decoy pass-

words. We have implemented generic wrappers of existing
hash functions. Currently sites need to have a function that
creates a password hash and one that validates it. Pass-
word decoys do not interfere with existing hashing schemes
nor do they dictate any changes in the database schema. In-
stead, a site needs to enable create(password, N) and val-

idate(hash) wrappers. The former takes as input a plain-
text password and a positive integer N, produces N similar
passwords and hashes each of them using the existing hash-
ing functionality of the site. The function returns a password
vector encapsulating N hashes per user and which is subse-
quently inserted into the database. The latter function looks
up a given hash key in the user’s password vector.

6. SECURITY EVALUATION
Here we evaluate the security of SAuth and compare it

with the current practice of single-site authentication. We
account for SAuth coupled with and without decoys and dis-
cuss the trade-offs. As already mentioned, there is no special
marking for the service to distinguish the actual password
from the decoys; any decoy password will successfully au-
thenticate the user although the user is never made aware
of them. Therefore if the number of generated decoys is
too large in relation to the password space, typing a random
password will result with good probability in authentication.

We consider the probability of two events, Gb and Gs, for
someone guessing both passwords in a two-entity enhanced
authentication process and someone guessing just the second
password provided the first one is stolen. Considering the
above, we wish the size of the decoy set to be as small as
possible for event Gb and as large as possible for the second
event, Gs. For a given password space, PS, and assuming
D(s) is the distribution of users that do share the same
password with both services:

P (Gb) =

1

PS
· 1

PS−1
≈ 1

PS
· 1

PS
, for all users,

1

PS
· 1 for D(s) of the users.

In other words, for all users the probability of success-
ful authentication is the probability of authenticating to the
first service and the probability of authenticating to the sec-
ond. However, for D(s) of the users, after successfully au-
thenticating to the first service, just trying the same pass-
word in the second will grant access to that user’s account
(we assume D(s) = 70% [40]). Similarly, the probability
when the first password is known becomes:

P (Gs) =

1 · 1

PS−1
≈ 1 · 1

PS
for all users,

1 · 1 for D(s) of the users.

This means that the original design of synergy-based au-
thentication will not be able to improve the security of ac-
counts that reuse the password in the vouching service against
a password-leak incident. It will however be able to signifi-
cantly improve the security in the case where different pass-
words are employed and also when no site has been compro-
mised.2 By introducing K1 and K2 decoys in each service,
respectively, the event probabilities become:

P (Gb) =

K1

PS
· K2

PS−1
≈ K1

PS
· K2

PS
for all users,

K1

PS
· 1

K1
= 1

PS
for D(s) of the users.

We assume no overlap between decoy sets K1 and K2.
As decoy sets are chosen at random without cooperation
between the different services there may be some overlap.
However, this is small and there is no hint for the attacker
to determine the existence of overlap or its size. Finally, the
probability of a successful login when the first password has
been leaked becomes:

P (Gb) =

1 · K2

PS−1
≈ 1 · K2

PS
for all users,

1 · 1

K1
for D(s) of the users.

Table 1 summarizes and compares the probabilities of dif-
ferent events, with SAuth in place or not. Rows marked
(1)-(3) characterize three different approaches, each one con-
taining four cases marked as columns (a)-(d). Our initial
approach (2) significantly improves the security of the au-
thentication system when someone is trying to guess both
passwords (column (a) in Table 1) unless the password is be-
ing reused in which case our approach offers the same secu-
rity guarantees as current systems (column (b)). Moreover,
while the original system would allow anyone with prob-
ability 1 to access the accounts of a service using leaked
credentials, SAuth significantly reduces the probability to
1/PS (column (c)). Unfortunately, if the user of the target
account has chosen to reuse his password in the vouching
service, our method is rendered ineffective. For that matter
we propose the decoy-enhanced approach (3) in which we
can see that we maintain the same order of security in cases
(a) through (b) and reduce probability 1 in case (c) to 1/K
where K is the size of the decoy password set.

6.1 Decoy Set Size

2Consider an attacker that performs non-targeted online dic-
tionary attack, where a single password is tried against all
users of a particular web site.

0e+00

5e-17

1e-16

1e-16

2e-16

3e-16

3e-16

4e-16

4e-16

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

P

Number of decoys

Probability (P) of successful authentication
 in both sites

D(s) users
All users

Figure 3: Probability of successful authentication in
target site S and vouching site V when decoy pass-
words are used. As we do not distinguish between
actual and decoy passwords, we require their num-
ber to be small over the password space.

In Honeywords [43] the authors suggest a typical set of 20
decoys and note that some sensitive accounts, such as the
administrator’s, may be associated with a larger set of 200
honey tokens. One could argue that adding more decoys
increases the level of protection for the actual password as
it creates more noise around it. In SAuth, where password
decoys can actually be used for user authentication, reason-
ing about the size of the decoy set is not as straightforward.
Here we theorize about the ideal size but then proceed to
propose a more practical approach.

Based on Table 1 one observes in Figure 3 that in the
absence of a security leak, and provided passwords are not
recycled, expanding the decoy set actually makes guessing
easier for an attacker (case (a)) as he can now figure out any
one of the decoys as opposed to finding the actual user pass-
word. Case (b) is independent of the number of decoys and
case (c), where the target site’s passwords have been leaked,
also requires a small number of decoys in relation to the
password space. To justify the need for decoys we examine
case (d) where users share the same password in both the
target service and the vouching service. Since the attacker’s
probability of success is reduced to 1/K we want as many
decoys as possible. Figure 4 presents this trade-off between
the security of users with unique and shared passwords fol-
lowing a password database leak. Note that the password
space drawn is 2 · 10−6% of the entire space and has been
selected as such to focus on the trade-off point between the
two cases. Ideally, the size of the decoy set should result in
an equal probability of success in both cases (c) and (d). In
other words, there should be no incentive for the attacker to
concentrate on either category of users. For example, given
70% probability that a user will reuse a certain password
and a password space in the order of 948 ([a-zA-Z0-9] and
symbols) we find that the decoy set should contain O(944)
decoys per user. For anything below that point, an attacker
would prefer to guess among the already leaked decoy set,
for a chance to attack 70% of the users of a service, rather
than attempting a completely random password in hopes
of falling within the decoy set of the second service. Note

0e+00

1e-08

2e-08

3e-08

4e-08

5e-08

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

P

Number of decoys

Probability (P) of successful authentication
 in both sites when password has been leaked

D(s) users
All users

Figure 4: Probability of successful authentication in
target service S following a password leak. Vouch-
ing site V and decoy passwords are employed. As
the size of the decoy set for each user increases, the
probability of attacking users who reuse their pass-
word across services is reduced. However, the prob-
ability of guessing a random password which falls
within the decoy set increases in relation to the size
of the password space. These conflicting require-
ments define the ideal size for the decoy set.

that this is a theoretical approximation which could however
become practical as storage technology advances.

In practice, according to NIST [32], an online guessing
attack for Level 1 should succeed with a probability of 1
in 1,024 and for Level 2 with a probability of 1 in 16,384.
Thus, a site that meets the specification for Level 1 under
case (d) should maintain at least 1,024 decoy passwords per
user, while a site that meets the specification for Level 2
should maintain at least 16,384 decoy passwords per user.
At the same time, the probabilities for case (c) are ≈ 10−12

and ≈ 10−11 respectively. Notice that even in the case of
Level 2, the site needs to store an additional megabyte of
information per user which we consider reasonable given that
it is less than the size of some photos that users might upload
online. 3

6.2 Network Overhead
SAuth introduces additional network messages during the

authentication process (see Fig. 1). During a traditional
authentication the network time required is tauth = RTTS

where RTTS is the round-trip time from browser to service
S. With SAuth in place this time is tsauth = 2RTTS +
RTTV , where RTTV is the round-trip time from browser to
the vouching service V . Note that a single SAuth session
can result in the user logging in to both the target site and
the vouching site, something which in the traditional case
requires t = RTTS + RTTV if done in succession. In other
words, SAuth introduces RTTS + RTTV which can be just
RTT if logging in to both services. Moreover, this overhead
is incurred only in the absence of a persistent authentication
token, e.g., a cookie, something which we expect to happen
rarely.

3We assume a hash key of 512 bits.

7. RELATED WORK
Decoy Passwords. In Kamouflage [27] the authors pro-

pose injecting dummy passwords in password managers to
protect the actual passwords if the master secret that un-
locks the database is compromised. Similarly, honeywords [43]
are fake passwords that are stored on the server together
with the authentic password. Honeywords require a trusted
third party for making sure, each time the user logs in, that
the password entered is the authentic one and not a decoy.

k-Secret Sharing. Shamir et al. [52] proposed splitting
up a secret into k pieces and distributing them to distinct
parties in such a way at any given moment if m < k pieces
are present the original secret can be reconstructed. The
same primitive has been applied to distributed user authen-
tication by splitting up the stored password into multiple
tokens [23,33]. Our proposal, SAuth, can be seen as a mani-
festation of this technique. In our terminology, the process of
verifying each piece of the original password is called vouch-
ing. Instead of generating a password and splitting it up,
we combine passwords the user already has to benefit from
the security of a long and distributed secret.

Bounded Retrieval. Crescenzo et al. [36] propose mak-
ing the authentication database too big for the attacker to
retrieve. The server maintains a set of very large random
files and each password is mapped to locations within them.
The sum of those locations represents the password’s digest
requiring the full database to brute-force leaked hashes.

Authentication/Authorization. OAuth 2.0 [18] en-
ables a third party to request access to a credential-restricted
resource from its owner and receive that access without
knowledge of the owner’s credentials. OpenID 2.0 [49] pro-
vides a way for an end user to prove ownership of a claimed
identity to a third party without a separate account. Face-
book Connect [46] builds on top of both OAuth and OpenID
to produce an authentication and authorization framework
combined with the social information and graph its users
form. BrowserID [2] or Mozilla Persona is a single-sign-on
mechanism which uses e-mail addresses to represent user
identities. PseudoID [37] employs blind cryptographic sig-
natures to eliminate this privacy concern.

In this paper we propose a federated login system which
may additionally facilitate the following use case; password-
less logins for a plethora of web services, much like Facebook
Connect works today, but instead of using a single sign-on
service, like Facebook, our system enables the use of a feder-
ated sign-on service which could include Facebook, Google
and Twitter all vouching during log-in and thus making it
harder for an attacker to exploit the single sign-on system.

8. CONCLUSION
We have presented SAuth, a novel protocol for synergy-

based enhanced authentication in the face a password database
leak. Users wishing to access their account on service S
also have to authenticate for their account on service V ,
which acts as a vouching party. Both services can be reg-
ular sites already visited by the user every day, such as e-
mail providers or social networks. The vouching process im-
plicitly takes place through the user’s browser and remains
transparent to a large degree. With SAuth, should an at-
tacker acquire the password for service S he will be unable
to log in unless he also compromises the password for V . To
mitigate password reuse habits we employ decoy passwords

to introduce uncertainty regarding the actual one. SAuth
is an extension and not a replacement of existing authen-
tication methods, operates one layer above them and thus
enables services to employ heterogeneous systems.

We make SAuth publicly available at http://www.cs.

columbia.edu/~kontaxis/sauth/.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd,

Anupam Datta, for the preparation of the final paper. We
also thank Mariana Raykova and Michalis Polychronakis for
early discussions. This work was supported by DARPA
through contract FA8650-11-C-7190. Any opinions, find-
ings, conclusions or recommendations expressed herein are
those of the authors, and do not necessarily reflect those of
the US Government or DARPA. It was also supported in
part by the FP7-PEOPLE-2010-IOF project XHUNTER,
No. 273765, and SysSec, funded by the European Commis-
sion under Grant Agreement No. 257007.

10. REFERENCES
[1] CloudCracker :: Online Hash Cracker. https://www.

cloudcracker.com.

[2] BrowserID. https://github.com/mozilla/id-specs/
blob/prod/browserid/index.md.

[3] Directory of web sites storing passwords in plain text.
http://plaintextoffenders.com.

[4] E-mail discussion at Debian about the wiki.debian.org
security breach. https://lwn.net/Articles/531727/.

[5] Gmail account security in Iran. http://
googleonlinesecurity.blogspot.com/2011/09/

gmail-account-security-in-iran.html.

[6] Google Accounts Authentication and Authorization.
https://developers.google.com/accounts/docs/

GettingStarted.

[7] Google Declares War on the Password. http://www.
wired.com/wiredenterprise/2013/01/google-

password/all/.

[8] Hacker Posts 6.4 Million LinkedIn Passwords. http://
www.technewsdaily.com/7839-linked-passwords-

hack.html.

[9] How apple and amazon security flaws led to my epic
hacking. http://www.wired.com/gadgetlab/2012/08/
apple-amazon-mat-honan-hacking/.

[10] How to Safely Store a Password. http://codahale.
com/how-to-safely-store-a-password/.

[11] HTTP 1.1. http://tools.ietf.org/html/rfc2616.

[12] IEEE data breach: 100K passwords leak in plain text.
http://www.neowin.net/news/ieee-data-breach-

100k-passwords-leak-in-plain-text.

[13] LinkedIn cleartext passwords. http://dazzlepod.
com/linkedin/.

[14] New 25 GPU Monster Devours Passwords In Seconds.
http://securityledger.com/new-25-gpu-monster-

devours-passwords-in-seconds/.

[15] PayPal Leads Industry Effort to Move Beyond
Passwords. https://www.thepaypalblog.com/2013/
02/paypal-leads-industry-effort-to-move-

beyond-passwords/.

[16] Sony Hacked Again, 1 Million Passwords Exposed.
http://www.informationweek.com/security/

attacks/sony-hacked-again-1-million-passwords-

ex/229900111.

[17] The Domino Effect of the Password Leak at Gawker.
http://voices.yahoo.com/the-domino-effect-

password-leak-gawker-10566853.html.

[18] The OAuth 2.0 Authorization Framework. http://
www.ietf.org/rfc/rfc6749.txt.

[19] TLS 1.2. https://tools.ietf.org/html/rfc5246.

[20] Twitter detects and shuts down password data hack in
progress. http://arstechnica.com/security/2013/
02/twitter-detects-and-shuts-down-password-

data-hack-in-progress/.

[21] URI. http://www.ietf.org/rfc/rfc2396.txt.

[22] B. Adida. Beamauth: Two-factor web authentication
with a bookmark. In Proceedings of the 14th ACM

conference on Computer and Communications

Security, 2007.

[23] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu.
Password-protected secret sharing. In Proceedings of

the 18th ACM conference on Computer and

Communications Security, 2011.

[24] F. Benevenuto, T. Rodrigues, M. Cha, and
V. Almeida. Characterizing user behavior in online
social networks. In Proceedings of the 9th ACM

SIGCOMM conference on Internet measurement

conference, 2009.

[25] R. Biddle, S. Chiasson, and P. Van Oorschot.
Graphical passwords: Learning from the first twelve
years. ACM Computing Surveys, 44(4), Sept. 2012.

[26] K. Blashki and S. Nichol. Game geek’s goss: Linguistic
creativity in young males within an online university
forum (94//3 933k’5 9055oneone). Australian Journal

of Emerging Technologies and Society, 3(2), 2005.

[27] H. Bojinov, E. Bursztein, D. Boneh, and X. Boyen.
Kamouflage: Loss-resistant password management. In
Proceedings of the 15th European Symposium On

Research In Computer Security, September 2010.

[28] J. Bonneau. Statistical metrics for individual password
strength. In Proceedings of the 20th international

conference on Security Protocols. Springer, 2012.

[29] J. Bonneau, C. Herley, P. C. v. Oorschot, and
F. Stajano. The quest to replace passwords: A
framework for comparative evaluation of web
authentication schemes. In Proceedings of the 33rd

IEEE Symposium on Security and Privacy, 2012.

[30] B. M. Bowen, V. P. Kemerlis, P. V. Prabhu, A. D.
Keromytis, and S. J. Stolfo. A system for generating
and injecting indistinguishable network decoys.
Journal of Computer Security, 20(2-3), 2012.

[31] B. M. Bowen, P. Prabhu, V. P. Kemerlis,
S. Sidiroglou, A. D. Keromytis, and S. J. Stolfo.
BotSwindler: tamper resistant injection of believable
decoys in VM-based hosts for crimeware detection. In
Proceedings of the 13th international conference on

Recent Advances in Intrusion Detection, 2010.

[32] W. E. Burr, D. F. Dodson, and W. T. Polk. Electronic
authentication guideline. US Department of
Commerce, Technology Administration, National
Institute of Standards and Technology, 2004.

[33] J. Camenisch, A. Lysyanskaya, and G. Neven.
Practical yet universally composable two-server

http://www.cs.columbia.edu/~kontaxis/sauth/
http://www.cs.columbia.edu/~kontaxis/sauth/
https://www.cloudcracker.com
https://www.cloudcracker.com
https://github.com/mozilla/id-specs/blob/prod/browserid/index.md
https://github.com/mozilla/id-specs/blob/prod/browserid/index.md
http://plaintextoffenders.com
https://lwn.net/Articles/531727/
http://googleonlinesecurity.blogspot.com/2011/09/gmail-account-security-in-iran.html
http://googleonlinesecurity.blogspot.com/2011/09/gmail-account-security-in-iran.html
http://googleonlinesecurity.blogspot.com/2011/09/gmail-account-security-in-iran.html
https://developers.google.com/accounts/docs/GettingStarted
https://developers.google.com/accounts/docs/GettingStarted
http://www.wired.com/wiredenterprise/2013/01/google-password/all/
http://www.wired.com/wiredenterprise/2013/01/google-password/all/
http://www.wired.com/wiredenterprise/2013/01/google-password/all/
http://www.technewsdaily.com/7839-linked-passwords-hack.html
http://www.technewsdaily.com/7839-linked-passwords-hack.html
http://www.technewsdaily.com/7839-linked-passwords-hack.html
http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking/
http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking/
http://codahale.com/how-to-safely-store-a-password/
http://codahale.com/how-to-safely-store-a-password/
http://tools.ietf.org/html/rfc2616
http://www.neowin.net/news/ieee-data-breach-100k-passwords-leak-in-plain-text
http://www.neowin.net/news/ieee-data-breach-100k-passwords-leak-in-plain-text
http://dazzlepod.com/linkedin/
http://dazzlepod.com/linkedin/
http://securityledger.com/new-25-gpu-monster-devours-passwords-in-seconds/
http://securityledger.com/new-25-gpu-monster-devours-passwords-in-seconds/
https://www.thepaypalblog.com/2013/02/paypal-leads-industry-effort-to-move-beyond-passwords/
https://www.thepaypalblog.com/2013/02/paypal-leads-industry-effort-to-move-beyond-passwords/
https://www.thepaypalblog.com/2013/02/paypal-leads-industry-effort-to-move-beyond-passwords/
http://www.informationweek.com/security/attacks/sony-hacked-again-1-million-passwords-ex/229900111
http://www.informationweek.com/security/attacks/sony-hacked-again-1-million-passwords-ex/229900111
http://www.informationweek.com/security/attacks/sony-hacked-again-1-million-passwords-ex/229900111
http://voices.yahoo.com/the-domino-effect-password-leak-gawker-10566853.html
http://voices.yahoo.com/the-domino-effect-password-leak-gawker-10566853.html
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6749.txt
https://tools.ietf.org/html/rfc5246
http://arstechnica.com/security/2013/02/twitter-detects-and-shuts-down-password-
http://arstechnica.com/security/2013/02/twitter-detects-and-shuts-down-password-
data-hack-in-progress/
http://www.ietf.org/rfc/rfc2396.txt

password-authenticated secret sharing. In Proceedings

of the 2012 ACM conference on Computer and

Communications Security. ACM, 2012.

[34] W. Cheswick. Rethinking passwords. Communications

of the ACM, 56(2), 2013.

[35] L. S. Clair, L. Johansen, W. Enck, M. Pirretti,
P. Traynor, P. McDaniel, and T. Jaeger. Password
exhaustion: predicting the end of password usefulness.
In Proceedings of the 2nd international conference on

Information Systems Security. Springer-Verlag, 2006.

[36] G. D. Crescenzo, R. J. Lipton, and S. Walfish.
Perfectly secure password protocols in the bounded
retrieval model. In Theory of Cryptography

Conference. Springer, 2006.

[37] A. Dey and S. Weis. Pseudoid: Enhancing privacy in
federated login. In Hot Topics in Privacy Enhancing

Technologies, 2010.

[38] R. Dhamija and A. Perrig. Deja vu: a user study
using images for authentication. In Proceedings of the

9th USENIX Security Symposium, 2000.

[39] R. Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. In Proceedings of

the Symposium on Usable Privacy and Security, 2005.

[40] D. Florencio and C. Herley. A large-scale study of web
password habits. In Proceedings of the international

conference on World Wide Web. ACM, 2007.

[41] S. Gaw and E. W. Felten. Password management
strategies for online accounts. In Proceedings of the

Symposium on Usable Privacy and Security, 2006.

[42] J. Huang and R. W. White. Parallel browsing
behavior on the web. In Proceedings of the 21st ACM

conference on Hypertext and Hypermedia, 2010.

[43] A. Juels and R. L. Rivest. Honeywords: Making
password-cracking detectable, 2013.

[44] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay,
T. Vidas, L. Bauer, N. Christin, L. F. Cranor, and
J. Lopez. Guess again (and again and again):
Measuring password strength by simulating
password-cracking algorithms. In Proceedings of the

33rd IEEE Symposium on Security and Privacy, 2012.

[45] C. D. Manning and H. Schütze. Foundations of

statistical natural language processing. MIT, 1999.

[46] M. Miculan and C. Urban. Formal analysis of
facebook connect single sign-on authentication
protocol. In Proceedings of the 37th International

Conference on Current Trends in Theory and Practice

of Computer Science. Springer, 2011.

[47] C. Percival. Stronger key derivation via sequential
memory-hard functions. http://tools.ietf.org/
html/draft-josefsson-scrypt-kdf-00.

[48] N. Provos and D. Mazières. A future-adaptive
password scheme. In Proceedings of the USENIX

Annual Technical Conference, 1999.

[49] D. Recordon and D. Reed. Openid 2.0: a platform for
user-centric identity management. In Proceedings of

the ACM workshop on Digital Identity Management,
2006.

[50] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger password authentication using
browser extensions. In Proceedings of the 14th

USENIX Security Symposium, 2005.

[51] S. Schechter, A. J. B. Brush, and S. Egelman. It’s no
secret. Measuring the security and reliability of
authentication via secret questions. In Proceedings of

the 30th IEEE Symposium on Security and Privacy,
2009.

[52] A. Shamir. How to share a secret. Communications of

the ACM, 22(11), 1979.

[53] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon,
M. L. Mazurek, L. Bauer, N. Christin, and L. F.
Cranor. Encountering stronger password requirements:
user attitudes and behaviors. In Proceedings of the

Symposium on Usable Privacy and Security, 2010.

[54] S.-T. Sun, Y. Boshmaf, K. Hawkey, and K. Beznosov.
A billion keys, but few locks: the crisis of web single
sign-on. In Proceedings of the New Security Paradigms

Workshop. ACM, 2010.

[55] R. Wang, S. Chen, and X. Wang. Signing me onto
your accounts through facebook and google: A
traffic-guided security study of commercially deployed
single-sign-on web services. In Proceedings of the 33rd

IEEE Symposium on Security and Privacy, 2012.

[56] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek.
Password cracking using probabilistic context-free
grammars. In Proceedings of the 30th IEEE

Symposium on Security and Privacy, 2009.

[57] H. Wimberly and L. M. Liebrock. Using fingerprint
authentication to reduce system security: An
empirical study. In Proceedings of the 32nd IEEE

Symposium on Security and Privacy, 2011.

[58] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security
toolbars actually prevent phishing attacks? In
Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM, 2006.

[59] Y. Zhang, F. Monrose, and M. K. Reiter. The security
of modern password expiration: an algorithmic
framework and empirical analysis. In Proceedings of

the 17th ACM conference on Computer and

Communications Security.

http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00

	Introduction
	Background
	Password Leaks
	Password Cracking
	Out of Scope Threats

	SAuth Architecture
	Protocol Details
	Usability
	Availability
	Password Compromise Alerts

	Implementation
	Password Reuse
	Decoys
	Incorporating Decoys

	Security Evaluation
	Decoy Set Size
	Network Overhead

	Related Work
	Conclusion
	Acknowledgments
	References

