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Abstract

Return-to-user (ret2usr) attacks exploit the operating sys-

tem kernel, enabling local users to hijack privileged ex-

ecution paths and execute arbitrary code with elevated

privileges. Current defenses have proven to be inade-

quate, as they have been repeatedly circumvented, in-

cur considerable overhead, or rely on extended hypervi-

sors and special hardware features. We present kGuard,

a compiler plugin that augments the kernel with com-

pact inline guards, which prevent ret2usr with low per-

formance and space overhead. kGuard can be used with

any operating system that features a weak separation be-

tween kernel and user space, requires no modifications

to the OS, and is applicable to both 32- and 64-bit ar-

chitectures. Our evaluation demonstrates that Linux ker-

nels compiled with kGuard become impervious to a va-

riety of control-flow hijacking exploits. kGuard exhibits

lower overhead than previous work, imposing on average

an overhead of 11.4% on system call and I/O latency on

x86 OSs, and 10.3% on x86-64. The size of a kGuard-

protected kernel grows between 3.5% and 5.6%, due to

the inserted checks, while the impact on real-life appli-

cations is minimal (≤1%).

1 Introduction

The operating system (OS) kernel is becoming an in-

creasingly attractive target for attackers [30, 60, 61, 64].

Due to the weak separation between user and kernel

space, direct transitions from more to less privileged pro-

tection domains (e.g., kernel to user space) are permissi-

ble, even though the reverse is not. As a result, bugs

like NULL pointer dereferences that would otherwise

cause only system instability, become serious vulnera-

bilities that facilitate privilege escalation attacks [64].

When successful, these attacks enable local users to ex-

ecute arbitrary code with kernel privileges, by redirect-

ing the control flow of the kernel to a user process.

Such return-to-user (ret2usr) attacks have affected all

major OSs, including Windows [60], Linux [16, 18],

and FreeBSD [19, 59, 61], while they are not limited to

x86 systems [23], but have also targeted the ARM [30],

DEC [31], and PowerPC [25] architectures.

There are numerous reasons to why attacks against the

kernel are becoming more common. First and foremost,

processes running with administrative privileges have be-

come harder to exploit due to the various defense mech-

anisms adopted by modern OSs [34,52]. Second, NULL

pointer dereference errors had not received significant at-

tention, until recently, exactly because they were thought

impractical and too difficult to exploit. In fact, 2009 has

been proclaimed, by some security researchers, as “the

year of the kernel NULL pointer dereference flaw” [15].

Third, exploiting kernel bugs, besides earning attack-

ers administrative privileges, enables them to mask their

presence on compromised systems [6].

Previous approaches to the problem are either im-

practical for deployment in certain environments or can

be easily circumvented. The most popular approach

has been to disallow user processes to memory-map the

lower part of their address space (i.e., the one including

page zero). Unfortunately, this scheme has been circum-

vented by various means [21, 66] and is not backwards

compatible [35]. The PaX [52] patch for x86 and x86-64

Linux kernels does not exhibit the same shortcomings,

but greatly increases system call and I/O latency, espe-

cially on 64-bit systems.

Recent advances in virtualization have fostered a

wave of research on extending virtual machine moni-

tors (VMMs) to enforce the integrity of the virtualized

guest kernels. SecVisor [62] and NICKLE [56] are two

hypervisor-based systems that can prevent ret2usr attacks

by leveraging memory virtualization and VMM intro-

spection. However, virtualization is not always practi-

cal. Consider smartphone devices that use stripped-down

versions of Linux and Windows, which are also vulnera-

ble to such attacks [30]. Running a complex VMM, like



SecVisor, on current smartphones is not realistic due to

their limited resources (i.e., CPU and battery life). On

PCs, running the whole OS over a VM incurs perfor-

mance penalties and management costs, while increas-

ing the complexity and size of a VMM can introduce

new bugs and vulnerabilities [44, 58, 71]. To address the

latter, we have seen proposals for smaller and less error-

prone hypervisors [65], as well as hypervisor protection

solutions [4, 67]. The first exclude mechanisms such as

SecVisor, while the second add further complexity and

overhead, and lead to a “turtles all the way down” prob-

lem,1 by introducing yet another software layer to protect

the layers above it. Addressing the problem in hardware

would be the most efficient solution, but even though In-

tel has recently announced a new CPU feature, named

SMEP [37], to thwart such attacks, hardware extensions

are oftentimes adopted slowly by OSs. Note that other

vendors have not publicly announced similar extensions.

We present a lightweight solution to the problem.

kGuard is a compiler plugin that augments kernel code

with control-flow assertions (CFAs), which ensure that

privileged execution remains within its valid boundaries

and does not cross to user space. This is achieved by

identifying all indirect control transfers during compi-

lation, and injecting compact dynamic checks to attest

that the kernel remains confined. When a violation is de-

tected, the system is halted by default, while a custom

fault handler can also be specified. kGuard is able to

protect against attacks that overwrite a branch target to

directly transfer control to user space [23], while it also

handles more elaborate, two-step attacks that overwrite

data pointers to point to user-controlled memory, and

hence hijack execution via tampered data structures [20].

Finally, we introduce two novel code diversification

techniques to protect against attacks that employ by-

pass trampolines to avoid detection by kGuard. A tram-

poline is essentially an indirect branch instruction con-

tained within the kernel. If an attacker manages to ob-

tain the address of such an instruction and can also con-

trol its operand, he can use it to bypass our checks. Our

techniques randomize the locations of the CFA-indirect

branch pairs, both during compilation and at runtime,

significantly reducing the attackers’ chances of guessing

their location. The main contributions of this paper can

be summarized in the following:

• We present the design and implementation of

kGuard, a compiler plugin that protects the kernel

from ret2usr attacks by injecting fine-grained in-

line guards during compilation. Our approach does

not require modifications to the kernel or additional

software, such as a VMM. It is also architecture in-

1http://en.wikipedia.org/wiki/

Turtles_all_the_way_down

dependent by design, allowing us to compile OSs

for different target architectures and requires little

modifications for supporting new OSs.

• We introduce two code diversification techniques

to randomize the location of indirect branches, and

their associated checks, for thwarting elaborate ex-

ploits that employ bypass trampolines.

• We implement kGuard as a GCC extension, which

is freely available. Its maintenance cost is low

and can successfully compile functional x86/x86-

64 Linux and FreeBSD kernels. More importantly,

it can be easily combined with other compiler-based

protection mechanisms and tools.

• We assess the effectiveness of kGuard using real

privilege escalation attacks against 32- and 64-bit

Linux kernels. In all cases, kGuard was able to suc-

cessfully detect and prevent the respective exploit.

• We evaluate the performance of kGuard using a set

of macro- and micro-benchmarks. Our technique

incurs minimal runtime overhead on both x86 and

x86-64 architectures. Particularly, we show negligi-

ble impact on real-life applications, and an average

overhead of 11.4% on system call and I/O latency

on x86 Linux, and 10.3% on x86-64. The space

overhead of kGuard due to the instrumentation is

between 3.5% – 5.6%, while build time increases

by 0.05% to 0.3%.

kGuard is to some extent related to previous research

on control-flow integrity (CFI) [2]. Similar to CFI,

we rely on inline checks injected before every unsafe

control-flow transfer. Nevertheless, CFI depends on a

precomputed control-flow graph for determining the per-

missible targets of every indirect branch, and uses binary

rewriting to inject labels and checks in binaries.

CFI is not effective against ret2usr attacks. Its in-

tegrity is only guaranteed if the attacker cannot overwrite

the code of the protected binary or execute data. Dur-

ing a ret2usr attack, the adversary completely controls

user space memory, both in terms of contents and rights,

and hence, can subvert CFI by prepending his shellcode

with the respective label. Additionally, CFI induces con-

siderable performance overhead, thereby making it diffi-

cult to adopt. Ongoing work tries to overcome the lim-

itations of the technique [72]. kGuard can be viewed

as a lightweight variant of CFI and Program Shepherd-

ing [43] that is more suitable and efficient in protecting

kernel code from ret2usr threats.

The rest of this paper is organized as follows. In Sec-

tion 2, we look at how ret2usr attacks work and why

the current protection schemes are insufficient. Section 3

presents kGuard. We discuss the implementation of the

http://en.wikipedia.org/wiki/Turtles_all_the_way_down
http://en.wikipedia.org/wiki/Turtles_all_the_way_down


kGuard GCC plugin in Section 4, and evaluate its effec-

tiveness and performance in Section 5. Section 6 dis-

cusses possible extensions. Related work is in Section 7

and conclusions in Section 8.

2 Overview of ret2usr Attacks

2.1 Why Do They Work?

Commodity OSs offer process isolation through private,

hardware-enforced virtual address spaces. However, as

they strive to squeeze more performance out of the hard-

ware, they adopt a “shared” process/kernel model for

minimizing the overhead of operations that cross protec-

tion domains, like system calls. Specifically, Unix-like

OSs divide virtual memory into user and kernel space.

The former hosts user processes, while the latter holds

the kernel, device drivers, and kernel extensions (inter-

ested readers are referred to Figure 5, in the appendix,

for more information regarding the virtual memory lay-

out of kernel and user space in Linux).

In most CPU architectures, the segregation of the two

spaces is assisted and enforced by two hardware features.

The first is known as protection rings or CPU modes,

and the second is the memory management unit (MMU).

The x86/x86-64 CPU architecture supports four protec-

tion rings, with the kernel running in the most privileged

one (ring 0) and user applications in the least privileged

(ring 3).2 Similarly, the PowerPC platform supports two

CPU modes, SPARC and MIPS three, and ARM seven.

All these architectures also feature a MMU, which im-

plements virtual memory and ensures that memory as-

signed to a ring is not accessible by less privileged ones.

Since code running in user space cannot di-

rectly access or jump into the kernel, specific hard-

ware facilities (i.e., interrupts) or special instructions

(e.g., SYS{ENTER,CALL} and SYS{EXIT,RET} in

x86/x86-64) are provided for crossing the user/kernel

boundary. Nevertheless, while executing kernel code,

complete and unrestricted access to all memory and sys-

tem objects is available. For example, when servicing a

system call for a process, the kernel has to directly access

user memory for storing the results of the call. Hence,

when kernel code is abused, it can jump into user space

and execute arbitrary code with kernel privileges. Note

that although some OSs have completely separated ker-

nel and user spaces, such as the 32-bit XNU and Linux

running on UltraSPARC, most popular platforms use a

shared layout. In fact, on MIPS the shared address space

is mandated by the hardware.

2Some x86/x86-64 CPUs have more than four rings. Hardware-

assisted virtualization is colloquially known as ring -1, while System

Management Mode (SMM) is supposedly at ring -2.

As a consequence, software bugs that are only a source

of instability in user space, like NULL pointer derefer-

ences, can have more dire effects when located in the

kernel. Spengler [64] demonstrated such an attack by

exploiting a NULL pointer dereference bug, triggered by

the invocation a system call with specially crafted param-

eters. Earlier, it was generally thought that such flaws

could only be used to perform denial-of-service (DoS)

attacks [29], but Spengler’s exploit showed that mapping

code segments with different privileges inside the same

scope can be exploited to execute arbitrary user code

with kernel privileges. Note that SELinux [47], the hard-

ened version of the Linux kernel, is also vulnerable to

this attack.

2.2 How Do They Work?

ret2usr attacks are manifested by overwriting kernel-

level control data (e.g., return addresses, jump tables,

function pointers) with user space addresses. In early

versions of such exploits, this was accomplished by in-

voking a system call with carefully crafted arguments to

nullify a function pointer. When the null function pointer

is eventually dereferenced, control is transferred to ad-

dress zero that resides in user space. Commonly, that ad-

dress is not used by processes and is unmapped.3 How-

ever, if the attacker has local access to the system, he

can build a program with arbitrary data or code mapped

at address zero (or any other address in his program for

that matter). Notice that since the attacker controls the

program, its memory pages can be mapped both writable

and executable (i.e., W∧X anti-measures do not apply).

736 s ock = f i l e −> p r i v a t e _ d a t a ;

737 f l a g s = ! ( f i l e −> f _ f l a g s & O_NONBLOCK) ? \

738 0 : MSG_DONTWAIT;

739 i f ( more )

740 f l a g s | = MSG_MORE;

741 / ∗ [ ! ] NULL p o i n t e r d e r e f e r e n c e ( s endpage ) [ ! ] ∗ /

742 re turn sock−>ops−>s endpage ( sock , page , o f f s e t ,

743 s i z e , f l a g s ) ;

Snippet 1: NULL function pointer in Linux (net/socket.c)

Snippet 1 presents a straightforward NULL function

pointer vulnerability [17] that affected all Linux kernel

versions released between May 2001 and August 2009

(2.4.4/2.6.0 – 2.4.37/2.6.30.4). In this exploit, if the

sendfile system call is invoked with a socket descrip-

tor belonging to a vulnerable protocol family, the value

of the sendpage pointer in line 742 is set to NULL.

This results in an indirect function call to address zero,

which can be exploited by attackers to execute arbitrary

code with kernel privileges. A more detailed analysis of

this attack is presented in Appendix A.

3In Linux accessing an unmapped page, when running in kernel

mode, results into a kernel oops and subsequently causes the OS to kill

the offending process. Other OSs fail-stop with a kernel panic.



1333 / ∗ [ ! ] NULL p o i n t e r d e r e f e r e n c e ( ops ) [ ! ] ∗ /

1334 i b u f −>ops−>g e t ( i p i p e , i b u f ) ;

1335 obuf = opipe −>b u f s + nbuf ;

1336 ∗obuf = ∗ i b u f ;

Snippet 2: NULL data pointer in Linux (fs/splice.c)

Snippet 2 shows the Linux kernel bug exploited by

Spengler [64], which is more elaborate. The ops field

in line 1334, which is a data pointer of type struct

pipe_buf_operations, becomes NULL after the

invocation of the tee system call. Upon dereferencing

ops, the effective address of a function is read via get,

which is mapped to the seventh double word (assuming

an x86 32-bit architecture) after the address pointed by

ops (i.e., due to the definition of the structure). Hence,

the kernel reads the branch target from 0x0000001C,

which is controlled by the user. This enables an attacker

to redirect the kernel to an arbitrary address.

NULL pointer dereferences are not the only attack

vector for ret2usr exploits. Attackers can partially cor-

rupt, or completely overwrite with user space addresses,

kernel-level control data, after exploiting memory safety

bugs. Examples of common targets include, return ad-

dresses, global dispatch tables, and function pointers

stored in kernel stack and heap. In addition, other vulner-

abilities allow attackers to corrupt arbitrary kernel mem-

ory, and consequently any function or data pointer, due

to the improper sanitization of user arguments [22, 23].

Use-after-free vulnerabilities due to race conditions in

FreeBSD 6.x/7.x and Linux kernels before 2.6.32-rc6

have also been used for the same purpose [19,20]. These

flaws are more complex and require multiple simulta-

neous kernel entrances to trigger the bug. Once they

succeed, the attacker can corrupt a pointer to a critical

kernel data structure that grants him complete control

over its contents by mapping a tampered data structure at

user space memory. If the structure contains a function

pointer, the attacker can achieve user code execution.

The end effect of all these attacks is that the ker-

nel is hijacked and control is redirected to user space

code. Throughout the rest of this paper, we will refer

to this type of exploitation as return-to-user (ret2usr),

since it resembles the older return-to-libc [27] technique

that redirected control to existing code in the C library.

Interestingly, ret2usr attacks are yet another incarna-

tion of the confused deputy problem [39], where a user

“cheats” the kernel (deputy) to misuse its authority and

execute arbitrary, non-kernel code with elevated privi-

leges. Finally, while most of the attacks discussed here

target Linux, similar flaws have been reported against

FreeBSD, OpenBSD, and Windows [19, 26, 59–61].

2.3 Limitations of Current Defenses

Restricting mmap The mitigation strategy adopted by

most Linux and BSD systems is to restrict the ability to

map the first pages of the address space to users with

administrative privileges only. In Linux and FreeBSD,

this is achieved by modifying the mmap system call to

apply the respective restrictions, as well as preventing

binaries from requesting page zero mappings. OpenBSD

completely removed the ability to map page zero, while

NetBSD has not adopted any protective measures yet.

Unfortunately, this approach has several limitations.

First and foremost, it does not solve the actual problem,

which is the weak separation of spaces. Disallowing ac-

cess to lower logical addresses is merely a protection

scheme against exploits that rely on NULL pointer bugs.

If an attacker bypasses the restriction imposed by mmap,

he can still orchestrate a ret2usr attack. Second, it does

not protect against exploits where control is redirected to

memory pages above the forbidden mmap region (e.g.,

by nullifying one or two bytes of a pointer, or overwrit-

ing a branch target with an arbitrary value). Third, it

breaks compatibility with applications that rely on hav-

ing access to low logical addresses, such as QEMU [5],

Wine [70], and DOSEMU [28]. Similar problems have

been reported for the FreeBSD distribution [35].

In fact, shortly after these protection mechanisms were

set in place, many techniques were developed for circum-

venting them. The first technique for bypassing mmap

restrictions used the brk system call for changing the

location of the program break (marked as brk offset

in Figure 5), which indicates where the heap segment

starts. By setting the break to a low logical address, it

was possible to dynamically allocate memory chunks in-

side page zero. Another technique used the mmap sys-

tem call to map pages starting from an address above the

forbidden region and extend the allocated region down-

wards, by supplying the MAP_GROWSDOWN parameter to

the call. A more elaborate mechanism utilized the differ-

ent execution domains supported by Linux, which can be

set with the personality system call, for executing

binaries compiled for different OSs. Specifically, an at-

tacker could set the personality of a binary to SRV4, thus

mapping page zero, since SRV4 utilizes the lower pages

of the address space [66]. Finally, the combination of

a NULL pointer with an integer overflow has also been

demonstrated, enabling attackers to completely bypass

the memory mapping restrictions [20, 21]. Despite the

fact that all the previous techniques were fixed shortly

after they were discovered, it is possible that other ap-

proaches can (and probably will be) developed by persis-

tent attackers, since the root cause of this new manifes-

tation of control hijacking attacks is the weak separation

of spaces.



Hardening with PaX UDEREF [53] and

KERNEXEC are two patches included in PaX [52]

for hardening the Linux kernel. In particular, they

provide protection against dereferencing, or branching

to, user space memory. In x86, PaX relies on memory

segmentation. It maps kernel space into an expand-down

segment that returns a memory fault whenever privileged

code tries to dereference pointers to other segments.4

In x86-64, where segmentation is not available, PaX

resorts in temporarily remapping user space memory

into a different area, using non-executable rights, when

execution enters the kernel, and restoring it when it exits.

PaX has limitations. First, it requires kernel patching

and is platform and architecture specific (i.e., x86/x86-64

Linux only). On the other hand, ret2usr attacks not only

have been demonstrated on many architectures, such as

ARM [30], DEC Alpha [31], and PowerPC [25], but also

on different OSs, like the BSDs [19, 26, 59, 61]. Sec-

ond, as we experimentally confirmed, PaX incurs non-

negligible performance overhead (see Section 5). In x86,

it achieves strong isolation using the segmentation unit,

but the kernel still needs to interact with user-level pro-

cesses. Hence, PaX modifies the stub that executes dur-

ing kernel entry for setting the respective segments, and

also patches code that copies data to/from user space, so

as to temporarily flatten the privileged segment for the

duration of the copy. Evidently, this approach increases

system call latency. In x86-64, remapping user space re-

quires page table manipulation, which results in a TLB

flush and exacerbates the problem [41].

3 Protection with kGuard

3.1 Overview

We propose a defensive mechanism that builds upon

inline monitoring and code diversification. kGuard is

a cross-platform compiler plugin that enforces address

space segregation, without relying on special hardware

features [37, 53] or custom hypervisors [56, 62]. It pro-

tects the kernel from ret2usr attacks with low-overhead,

by augmenting exploitable control transfers with dy-

namic control-flow assertions (CFAs) that, at runtime,

prevent the unconstrained transition of privileged execu-

tion paths to user space. The injected CFAs perform a

small runtime check before indirect branches to verify

that the target address is always in kernel space. If the

assertion is true, execution continues normally, while if

it fails because of a violation, execution is transferred to

a handler that was inserted during compilation. The de-

fault handler appends a warning message to the kernel

log and halts the system. We choose to coerce assertion

4In x86, UDEREF restricts only the SS, DS, and ES segments. CS

is taken care by the accompanying KERNEXEC patch.

failures into a kernel fail-stop to prevent unsafe condi-

tions, such as leaving the OS into an inconsistent state

(e.g., by aborting an in-flight kernel thread that might

hold locks or other resources). In Section 6, we discuss

how we can implement custom handlers for facilitating

forensic analysis, error virtualization [63], selective con-

finement, and protection against persistent attacks.

After compiling a kernel with kGuard, its execution is

limited to the privileged address space segment (e.g., ad-

dresses higher than 0xC0000000 in x86 Linux and BSD).

kGuard does not rely on any mapping restriction, so the

previously restricted addresses can be dispensed to the

process, lifting the compatibility issues with various ap-

plications [5,28,35,70]. Furthermore, the checks cannot

be bypassed using mmap hacks, like the ones described

in the previous section, nor can they be circumvented by

elaborate exploits that manage to jump to user space by

avoiding the forbidden low memory addresses. More im-

portantly, the kernel can still read and write user memory,

so its functionality remains unaffected.

3.2 Threat Model

In this work, we ascertain that an adversary is able to

completely overwrite, partially corrupt (e.g., zero out

only certain bytes), or nullify control data that are stored

inside the address space of the kernel. Notice that over-

writing certain data with arbitrary values, differs signif-

icantly from overwriting arbitrary kernel memory with

arbitrary values. kGuard does not deal with such an ad-

versary. In addition, we assume that the attacker can tam-

per with whole data structures (e.g., by mangling data

pointers), which in turn may contain control data.

Our technique is straightforward and guarantees that

kernel/user space boundary violations are prevented.

However, it is not a panacea that protects the kernel

from all types control-flow hijacking attacks. For in-

stance, kGuard does not address direct code-injection

inside kernel space, nor it thwarts code-reuse attacks

that utilize return-oriented/jump-oriented programming

(ROP/JOP) [7, 40]. Nevertheless, note the following.

First and foremost, our approach is orthogonal to many

solutions that do protect against such threats [4, 14, 42,

45, 53, 62]. For instance, canaries injected by the com-

piler [34] can be used against ret2usr attacks performed

via kernel stack-smashing. Second, the unique nature of

address space sharing casts many protection schemes, for

the aforementioned problems, ineffective. As an exam-

ple, consider again the case of ROP/JOP in the kernel

setting. No matter what anti-ROP techniques have been

utilized [45, 51], the attacker can still execute arbitrary

code, as long as there is no strict process/kernel separa-

tion, by mapping his code to user space and transferring

control to it (after hijacking a privileged execution path).



Finally, in order to protect kGuard from being sub-

verted, we utilize a lightweight diversification technique

for the kernel’s text, which can also mitigate kernel-level

attacks that use code “gadgets” in a ROP/JOP fashion

(see Section 3.5). Overall, the aim of kGuard is not to

provide strict control-flow integrity for the kernel, but

rather to render a realistic threat ineffective.

3.3 Preventing ret2usr Attacks with CFAs

In the remainder of this section, we discuss the funda-

mental aspects of kGuard using examples based on x86-

based Linux systems. However, kGuard is by no means

restricted to 32-bit systems and Linux. It can be used

to compile any kernel that suffers from ret2usr attacks

for both 32- and 64-bit CPUs. kGuard “guards” indirect

control transfers from exploitation. In the x86 instruc-

tion set architecture (ISA), such control transfers are per-

formed using the call and jmp instructions with a reg-

ister or memory operand, and the ret instruction, which

takes an implicit memory operand from the stack (i.e.,

the saved return address). kGuard injects CFAs in both

cases to check that the branch target, specified by the re-

spective operand, is inside kernel space.

81 fb 00 00 00 c0 ; cmp $0xc0000000 ,%ebx
73 05 ; j a e c a l l _ l b l
bb 00 00 00 00 ; mov $0xc05a f8 f1 ,%ebx
f f d3 ; c a l l _ l b l : c a l l ∗%ebx

Snippet 3: CFAR guard applied on an indirect call in x86

Linux (drivers/cpufreq/cpufreq.c)

r e g i s t e r vo id ∗ t a r g e t _ a d d r e s s ;
. . .
i f ( t a r g e t _ a d d r e s s < 0 xC0000000 )

t a r g e t _ a d d r e s s = &< v i o l a t i o n h a n d l e r > ;
c a l l ∗ t a r g e t _ a d d r e s s ;

Snippet 4: CFAR guard in C-like code (x86)

We use two different CFA guards, namely CFAR and

CFAM, depending on whether the control transfer that

we want to confine uses a register or memory operand.

Snippet 3 shows an example of a CFAR guard. The code

is from the show() routine of the cpufreq driver.

kGuard instruments the indirect call (call *%ebx)

with 3 additional instructions. First, the cmp instruction

compares the ebx register with the lower kernel address

0xC0000000.5 If the assertion is true, the control transfer

is authorized by jumping to the call instruction. Oth-

erwise, the mov instruction loads the address of the vi-

olation handler (0xc05af8f1; panic()) into the branch

register and proceeds to execute call, which will result

into invoking the violation handler. In C-like code, this is

equivalent to injecting the statements shown in Snippet 4.

5The same is true for x86 FreeBSD/NetBSD, whereas for x86-64

the check should be with address 0xFFFFFFFF80000000. OpenBSD

maps the kernel to the upper 512MB of the virtual address space, and

hence, its base address in x86 CPUs is 0xD0000000.

57 ; push %e d i
8d 7b 50 ; l e a 0 x50(%ebx ) ,% e d i
81 f f 00 00 00 c0 ; cmp $0xc0000000 ,% e d i
73 06 ; j a e kmem_lbl
5 f ; pop %e d i
e8 43 d6 2d b8 ; c a l l 0 x c 0 5 a f 8 f 1
5 f ; kmem_lbl : pop %e d i
81 7b 50 00 00 00 c0 ; cmpl $0xc0000000 , 0 x50(%ebx )
73 05 ; j a e c a l l _ l b l
c7 43 50 f1 f8 5 a c0 ; movl $0xc05a f8 f1 , 0 x50(%ebx )
f f 53 50 ; c a l l _ l b l : c a l l ∗0x50(%ebx )

Snippet 5: CFAM guard applied on an indirect call in x86

Linux (net/socket.c)

r e g i s t e r vo id ∗ t a r g e t _ a d d r e s s _ p t r ;
. . .
t a r g e t _ a d d r e s s _ p t r = &t a r g e t _ a d d r ;
i f ( t a r g e t _ a d d r e s s _ p t r < 0xC0000000 )

c a l l < v i o l a t i o n h a n d l e r > ;
i f ( t a r g e t _ a d d r e s s < 0 xC0000000 )

t a r g e t _ a d d r e s s = &< v i o l a t i o n h a n d l e r > ;
c a l l ∗ t a r g e t _ a d d r e s s ;

Snippet 6: CFAM guard in C-like code (x86)

Similarly, CFAM guards confine indirect branches

that use memory operands. Snippet 5 illustrates

how kGuard instruments the faulty control transfer of

sock_sendpage() (the original code is shown in

Snippet 1). The indirect call (call 0x50(%ebx);

Figure 5) is prepended by a sequence of 10 instructions

that perform two distinct assertions. CFAM not only

asserts that the branch target is within the kernel ad-

dress space, but also ensures that the memory address

where the branch target is loaded from is also in ker-

nel space. The latter is necessary for protecting against

cases where the attacker has managed to hijack a data

pointer to a structure that contains function pointers (see

Snippet 2 in Section 2.2). Snippet 6 illustrates how this

can be represented in C-like code. In order to perform

this dual check, we first need to spill one of the reg-

isters in use, unless the basic block where the CFA is

injected has spare registers, so that we can use it as a

temporary variable (i.e., edi in our example). The ad-

dress of the memory location that stores the branch target

(ebx + 0x50 = 0xfa7c8538; Figure 5), is dynamically

resolved via an arithmetic expression entailing registers

and constant offsets. We load its effective address into

edi (lea 0x50(%ebx),%edi), and proceed to ver-

ify that it points in kernel space. If a violation is detected,

the spilled register is restored and control is transferred

to the runtime violation handler (call 0xc05af8f1).

Otherwise, we proceed with restoring the spilled register

and confine the branch target similarly to the CFAR case.

81 7b 50 00 00 00 c0 ; cmpl $0xc0000000 , 0 x50(%ebx )
73 05 ; j a e c a l l _ l b l
c7 43 50 f1 f8 5 a c0 ; movl $0xc05a f8 f1 , 0 x50(%ebx
f f 53 50 ; c a l l _ l b l : c a l l ∗0x50(%ebx )

Snippet 7: Optimized CFAM guard



3.4 Optimizations

In certain cases, we can statically determine that the ad-

dress of the memory location that holds the branch target

is always mapped in kernel space. Examples include a

branch operand read from the stack (assuming that the

attacker has not seized control of the stack pointer), or

taken from a global data structure mapped at a fixed ad-

dress inside the data segment of the kernel. In this case,

the first assertion of a CFAM guard will always be true,

since the memory operand points within kernel space.

We optimize such scenarios by removing the redundant

assertion, effectively reducing the size of the inline guard

to 3 instructions. For instance, Snippet 7 depicts how we

can optimize the code shown in Snippet 5, assuming that

ebx is loaded with the address of a global symbol from

kernel’s data segment. ret instructions are always con-

fined using the optimized CFAM variant.

3.5 Mechanism Protection

CFAR and CFAM guards, as presented thus far, provide

reliable protection against ret2usr attacks, only if the at-

tacker exploits a vulnerability that allows him to par-

tially control a computed branch target. Currently, all

the well known and published ret2usr exploits, which we

analyzed in Section 2 and further discuss in Section 5.1,

fall in this category. However, vulnerabilities where the

attacker can overwrite kernel memory with arbitrary val-

ues also exist [22]. When such flaws are present, exploits

could attempt to bypass kGuard. This section discusses

how we protect against such attacks.

3.5.1 Bypass Trampolines

To subvert kGuard, an attacker has to be able to deter-

mine the address of a (indirect) control transfer instruc-

tion inside the text segment of the kernel. Moreover,

he should also be able to reliably control the value of

its operand (i.e., its branch target). We shall refer to

that branch as a bypass trampoline. Note that in ISAs

with overlapping variable-length instructions, it is possi-

ble to find an embedded opcode sequence that translates

directly to a control branch in user space [40]. By over-

writing the value of a protected branch target with the

address of a bypass trampoline, the attacker can success-

fully execute a jump to user space. The first CFA corre-

sponding to the initially exploited branch will succeed,

since the address of the trampoline remains inside the

privileged memory segment, while the second CFA that

guards the bypass trampoline is completely bypassed by

jumping directly to the branch instruction.

Similarly, jumping in the middle of an instruction that

contains an indirect branch within, could also be used to

subvert kGuard. At this point, we would like to stress that

if an attacker is armed with a powerful exploit for a vul-

nerability that allows him to overwrite arbitrary kernel

memory with arbitrary values, he can easily elevate his

privileges by overwriting the credentials associated with

a process under his control. In other words, the attacker

can achieve his goal without violating the control-flow

by jumping into user-level shellcode.

3.5.2 Code Diversification Against Bypasses

kGuard implements two diversification techniques that

aid in thwarting attacks exploiting bypass trampolines.

Code inflation This technique reshapes the kernel’s

text area. We begin with randomizing the starting ad-

dress of the text segment. This is achieved by insert-

ing a random NOP sled at its beginning, which effec-

tively shifts all executable instructions by an arbitrary

offset. Next, we continue by inserting NOP sleds of ran-

dom length at the beginning of each CFA. The end result

is that the location of every indirect control transfer in-

struction is randomized, making it harder for an attacker

to guess the exact address of a confined branch to use as

a bypass trampoline. The effects of the sleds are cumu-

lative because each one pushes all instructions and NOP

sleds following, further to higher memory addresses. The

size of the initial sled is chosen by kGuard based on the

target architecture. For example, in Linux and BSD the

kernel space is at least 1GB. Hence, we can achieve more

than 20 bits of entropy (i.e., the NOP sled can be ≥ 1MB)

without notably consuming address space.

The per-CFA NOP sled is randomly selected from a

user-configured range. By specifying the range, users

can trade higher overhead (both in terms of space and

speed), for a smaller probability that an attacker can re-

liably obtain the address of a bypass trampoline. An im-

portant assumption of the aforementioned technique is

the secrecy of the kernel’s text and symbols. If the at-

tacker has access to the binary image of the confined ker-

nel or is armed with a kernel-level memory leak [32], the

probability of successfully guessing the address of a by-

pass trampoline increases. We posit that assigning safe

file permissions to the kernel’s text, modules, and debug-

ging symbols is not a limiting factor.6 In fact, this is

considered standard practice in OS hardening, and is au-

tomatically enabled in PaX and similar patches, as well

as the latest Ubuntu Linux releases. Also note that the

kernel should harden access to the system message ring

buffer (dmesg), in order to prevent the leakage of kernel

addresses.7

6This can be trivially achieved by changing the permissions in the

file system to disallow reads, from non-administrative users, in /boot

and /lib/modules in Linux/FreeBSD, /bsd in OpenBSD, etc.
7In Linux, this can be done by asserting the kptr_restrict [24]

sysctl option that hides exposed kernel pointers in /proc interfaces.
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Figure 1: CFA motion synopsis. kGuard relocates each in-

line guard and protected branch, within a certain window, by

routinely rewriting the text segment of the kernel.

CFA motion The basic idea behind this technique is

the “continuous” relocation of the protected branches

and injected guards, by rewriting the text segment of the

kernel. Figure 1 illustrates the concept. During com-

pilation, kGuard emits information regarding each in-

jected CFA, which can be used later for relocating the

respective code snippets. Specifically, kGuard logs the

exact location of the CFA inside kernel’s text, the type

and size of the guard, the length of the prepended NOP

sled, as well as the size of the protected branch. Armed

with that information, we can then migrate every CFA

and indirect branch instruction separately, by moving it

inside the following window: sizeof(nop_sled)

+ sizeof(cfa) + sizeof(branch). Currently,

we only support CFA motion during kernel bootstrap. In

Linux, this is performed after the boot loader (e.g., LILO,

GNU GRUB) extracts the kernel image and right before

jumping to the setup() routine [8]. In BSDs, we per-

form the relocation after the boot program has executed

and right before transferring control to the machine-

dependent initialization routines (i.e., mi_startup()

in FreeBSD and main() in {Net, Open}BSD) [49]. Fi-

nally, note that CFA motion can also be performed at

runtime, on a live system, by trading runtime overhead

for safety. In Section 6, we discuss how we can expand

our current implementation, with moderate engineering

effort, to support real-time CFA migration.

To further protect against evasion, kGuard can be

combined with other techniques that secure kernel code

against code-injection [46] and code-reuse attacks [45,

51]. That said, mind that ret2usr violations are detected

at runtime, and hence one false guess is enough for iden-

tifying the attacker and restricting his capabilities (e.g.,

by revoking his access to prevent brute-force attacks). In

Section 6, we further discuss how kGuard can deal with

persistent threats.
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Figure 2: Architectural overview of GCC. The compilation

process involves 3 distinct translators (frond-end, middle-end,

back-end), and more than 250 optimization passes. kGuard is

implemented as a back-end optimization pass.

4 Implementation

We implemented kGuard as a set of modifications to the

pipeline of a C compiler. Specifically, we instrument the

intermediate language (IL) used during the translation

process, in order to perform the CFA-based confinement

discussed in Section 3. Our implementation consists of

a plugin for the GNU Compiler Collection (GCC) that

contains the “de-facto” C compiler for building Linux

and BSD kernels. Note that although other compilers,

such as Clang and PCC, are capable of building much

of Linux/FreeBSD and NetBSD/OpenBSD respectively,

they are not officially supported by the corresponding de-

velopment groups, due to the excessive use of the GNU

C dialect in the kernel.

Starting with v4.5.1, GCC has been re-designed for

facilitating better isolation between its components, and

allowing the use of plugins for dynamically adding fea-

tures to the translators without modifying them. Fig-

ure 2 illustrates the internal architecture of GCC. The

compilation pipeline is comprised by 3 distinct com-

ponents, namely the front-end, middle-end, and back-

end, which transform the input into various ILs (i.e.,

GENERIC, GIMPLE, and RTL). The kGuard plugin

consists of ∼1000 lines of code in C and builds into a

position-independent (PIC) dynamic shared object that

is loaded by GCC. Upon loading kGuard, the plugin

manager of GCC invokes plugin_init() (i.e., the

initialization callback assumed to be exported by ev-

ery plugin), which parses the plugin arguments (if any)

and registers pass_branchprot as a new “optimiza-

tion” pass.8 Specifically, we chain our instrumentation

callback, namely branchprot_instrument(), af-

ter the vartrack RTL optimization pass, by call-

ing GCC’s register_callback() function and re-

questing to hook with the pass manager (see Figure 2).

8Currently, kGuard accepts 3 parameters: stub, nop, and log.

stub provides the runtime violation handler, nop stores the maximum

size of the random NOP sled inserted before each CFA, and log is used

to define an instrumentation logfile for CFA motion.



The reasons for choosing to implement the instrumen-

tation logic at the RTL level, and not as annotations to

the GENERIC or GIMPLE IL, are mainly the following.

First, by applying our assertions after most of the impor-

tant optimizations have been performed, which may re-

sult into moving or transforming instructions, we guaran-

tee that we instrument only relevant code. For instance,

we do not inject CFAs for dead code or control trans-

fers that, due to optimization transformations like inline

expansion, do not need to be confined. Second, we se-

cure implicit control transfers that are exposed later in

the translation (e.g., after the High-GIMPLE IL has been

“lowered”). Third, we tightly couple the CFAs with the

corresponding unsafe control transfers. This way, we

protect the guards from being removed or shifted from

the respective points of check, due to subsequent opti-

mization passes (e.g., code motion). For more informa-

tion regarding the internals of RTL instrumentation, in-

terested readers are referred to Appendix B.

5 Evaluation

In this section, we present the results from the evaluation

of kGuard both in terms of performance and effective-

ness. Our testbed consisted of a single host, equipped

with two 2.66GHz quad-core Intel Xeon X5500 CPUs

and 24GB of RAM, running Debian Linux v6 (“squeeze”

with kernel v2.6.32). Note that while conducting our

performance measurements, the host was idle with no

other user processes running apart from the evaluation

suite. Moreover, the results presented here are mean val-

ues, calculated after running 10 iterations of each experi-

ment; the error bars correspond to 95% confidence inter-

vals. kGuard and the corresponding Linux kernels were

compiled with GCC v4.5.1, and unless otherwise noted,

we used Debian’s default configuration that results into a

complete build of the kernel, including all modules and

device drivers. Finally, we configured kGuard to use a

random NOP sled of 20 instructions on average. Mind

you that we also measured the effect of various NOP sled

sizes, which was insignificant for the range 0 – 20.

5.1 Preventing Real Attacks

The main goal of the effectiveness evaluation is to ap-

ply kGuard on commodity OSs, and determine whether

it can detect and prevent real-life ret2usr attacks. Table 1

summarizes our test suite, which consisted of a collec-

tion of 8 exploits that cover a broad spectrum of different

flaws, including direct NULL pointer dereferences, con-

trol hijacking via tampered data structures (data pointer

corruption), function and data pointer overwrite, arbi-

trary kernel-memory nullification, and ret2usr via kernel

stack-smashing.

x86 kernel x86-64 kernel

call jmp ret call jmp ret

CFAM 20767 1803 — 17740 1732 —

CFAMopt 2253 12 113053 1789 0 105895

CFAR 6325 0 — 8780 0 —

Total 29345 1815 113053 28309 1732 105895

Table 2: Number of indirect branches instrumented by

kGuard in the vanilla Linux kernel v2.6.32.39.

We instrumented 10 different vanilla Linux kernels,

ranging from v2.6.18 up to v2.6.34, both in x86 and x86-

64 architectures. Additionally, in this experiment, we

used a home-grown violation handler for demonstrating

the customization features of kGuard. Upon the detec-

tion of a ret2usr attack, the handler takes a snapshot of

the memory that contains the user-provided code for an-

alyzing the behavior of the offending process. Such a

feature could be useful in a honeypot setup for perform-

ing malware analysis and studying new ret2usr exploita-

tion vectors. All kernels were compiled with and with-

out kGuard, and tested against the respective set of ex-

ploits. In every case, we were able to successfully detect

and prevent the corresponding exploitation attempt. Also

note that the tested exploits circumvented the page map-

ping restrictions of Linux, by using one or more of the

techniques discussed in Section 2.3.

5.2 Translation Overhead

We first quantify the additional time needed to inspect the

RTL IL and emit the CFAs (see Section 4). Specifically,

we measured the total build time with Unix’s time util-

ity, when compiling the v2.6.32.39 Linux kernel natively

and with kGuard. On average, we observed a 0.3% in-

crease on total build time on the x86 architecture, and

0.05% on the x86-64. Moreover, the size of the ker-

nel image/modules was increased by 3.5%/0.43% on the

x86, and 5.6%/0.56% on the x86-64.

In Table 2, we show the number of exploitable

branches instrumented by kGuard, categorized by ar-

chitecture, and confinement and instruction type. As

expected, ret instructions dominate the computed

branches. Note that both in x86 and x86-64 scenar-

ios, we were able to optimize approximately 10% of

the total indirect calls via memory locations, using the

optimization scheme presented in Section 3.4. Over-

all, the drivers/ subsystem was the one with the

most instrumentations, followed by fs/, net/, and

kernel/. Additionally, a significant amount of instru-

mented branches was due to architecture-dependent code

(arch/) and “inlined” C functions (include/).



Vulnerability Description Impact
Exploit

x86 x86-64

CVE-2009-1897 NULL function pointer dereference in drivers/net/tun.c due to compiler optimization 2.6.30–2.6.30.1
√

—

CVE-2009-2692 NULL function pointer dereference in net/socket.c due to improper initialization 2.6.0–2.6.30.4
√ √

CVE-2009-2908 NULL data pointer dereference in fs/ecryptfs/inode.c due to a negative reference
counter (function pointer affected via tampered data flow)

2.6.31
√ √

CVE-2009-3547 data pointer corruption in fs/pipe.c due to a use-after-free bug (function pointer under
user control via tampered data structure)

≤ 2.6.32-rc6
√ √

CVE-2010-2959 function pointer overwrite via integer overflow in net/can/bcm.c 2.6.{27.x, 32.x, 35.x}
√

—

CVE-2010-4258 function pointer overwrite via arbitrary kernel memory nullification in kernel/exit.c ≤ 2.6.36.2
√ √

EDB-15916 NULL function pointer overwrite via a signedness error in Phonet protocol (function
pointer affected via tampered data structure)

2.6.34
√ √

CVE-2009-3234 ret2usr via kernel stack buffer overflow in kernel/perf_counter.c (return address is
overwritten with user space memory)

2.6.31-rc1
√ √

√
: detected and prevented successfully —: exploit unavailable

Table 1: Effectiveness evaluation suite. We instrumented 10 x86/x86-64 vanilla Linux kernels, ranging from v2.6.18 to v2.6.34,

for assessing kGuard. We successfully detected and prevented all the listed exploits.

5.3 Performance Overhead

The injected CFAs also introduce runtime latency. We

evaluated kGuard to quantify this overhead and estab-

lish a set of performance bounds for different types of

system services. Moreover, we used the overhead im-

posed by PaX (i.e., UDEREF [53] and KERNEXEC) as

a reference. Mind you that on x86, PaX offers protection

against ret2usr attacks by utilizing the segmentation unit

for isolating the kernel from user space. In x86-64 CPUs,

where segmentation is not supported by the hardware, it

temporarily remaps user space into a different location

with non-execute permissions.

Macro benchmarks We begin with the evaluation of

kGuard using a set of real-life applications that repre-

sent different workloads. In particular, we used a kernel

build and two popular server applications. The Apache

web server, which performs mainly I/O, and the MySQL

RDBMS that is both I/O driven and CPU intensive. We

run all the respective tests over a vanilla Linux kernel

v2.6.32.39, the same kernel patched with PaX, and in-

strumented with kGuard.

First, we measured the time taken to build a vanilla

Linux kernel (v2.6.32.39), using the Unix time utility.

On the x86, the PaX-protected kernel incurs a 1.26%

run-time overhead, while on the x86-64 the overhead is

2.89%. In contrast, kGuard ranges between 0.93% on

x86-64, and 1.03% on x86. Next, we evaluated MySQL

v5.1.49 using its own benchmark suite (sql-bench).

The suite consists of four different tests, which assess

the completion time of various DB operations, like table

creation and modification, data selection and insertion,

and so forth. On average, kGuard’s slowdown ranges

from 0.85% (x86-64) to 0.93% (x86), while PaX lies

between 1.16% (x86) and 2.67% (x86-64). Finally, we

measured Apache’s performance using its own utility ab

and static HTML files of different size. We used Apache

v2.2.16 and configured it to pre-fork all the worker pro-

cesses (pre-forking is a standard multiprocessing mod-

ule), in order to avoid high fluctuations in performance,

due to Apache spawning extra processes for handling the

incoming requests at the beginning of our experiments.

We chose files with sizes of 1KB, 10KB, 100KB, and

1MB, and measured the average throughput in requests

per second (req/sec). All other options were left to their

default setting. The kernel patched with PaX incurs an

average slowdown that ranges between 0.01% and 0.09%

on the x86, and 0.01% and 1.07% on x86-64. In antithe-

sis, kGuard’s slowdown lies between 0.001% and 0.01%.

Overall, our results indicate that in both x86 and x86-64

Linux the impact of kGuard in real-life applications is

negligible (≤1%).

Micro benchmarks Since the injected CFAs are dis-

tributed throughout many kernel subsystems, such as the

essential net/ and fs/, we used the LMbench [50] mi-

crobenchmark suite to measure the impact of kGuard

on the performance of core kernel system calls and

facilities. We focus on both latency and bandwidth.

For the first, we measured the latency of entering the

OS, by investigating the null system call (syscall)

and the most frequently used I/O-related calls: read,

write, fstat, select, open/close. Addition-

ally, we measured the time needed to install a signal

with sigaction, inter-process communication (IPC)

latency with socket and pipe, and process creation

latency with fork+{exit, execve, /bin/sh}.

Figure 3 summarizes the latency overhead of kGuard

in contrast to the vanilla Linux kernel and a kernel with

the PaX patch applied and enabled. Note that the time

is measured in microseconds (µsec). kGuard ranges

from 2.7% to 23.5% in x86 (average 11.4%), and 2.9%

to 19.1% in x86-64 (average 10.3%). In contrast, the

PaX-protected kernel exhibits a latency ranging between

5.6% and 257% (average 84.5%) on the x86, whereas on

x86-64, the latency overhead ranges between 19% and

531% (average 172.2%). Additionally, kGuard’s over-

head for process creation (in both architectures) lies be-

tween 7.1% and 9.7%, whereas PaX ranges from 8.1%

to 56.3%.
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Figure 3: Latency overhead incurred by kGuard and PaX on essential system calls (x86/x86-64 Linux).
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Figure 4: IPC bandwidth achieved by kGuard and PaX, using

TCP (PF_INET), Unix sockets (PF_UNIX), and pipes.

As far as bandwidth is concerned, we measured the

degradation imposed by kGuard and PaX in the maxi-

mum achieved bandwidth of popular IPC facilities, such

as sockets and pipes. Figure 4 shows our results (band-

width is measured in MB/s). kGuard’s slowdown ranges

between 3.2% – 10% on x86 (average 6%), and 5.25%

– 9.27% on x86-64 (average 6.6%). PaX’s overhead

lies between 19.9% – 58.8% on x86 (average 37%),

and 21.7% – 78% on x86-64 (average 42.8%). Overall,

kGuard exhibits lower overhead on x86-64, due to the

fewer CFAM guards (see Table 2). Recall that CFAR con-

finement can be performed with just 3 additional instruc-

tions, and hence incurs less run-time overhead, whereas

CFAM might need up to 10 (e.g., when we cannot opti-

mize). However, the same is not true for PaX, since the

lack of segmentation in x86-64 results in higher perfor-

mance penalty.

6 Discussion and Future Work

Custom violation handlers kGuard’s default violation

handler appends a message in system log and halts the

OS. We coerce assertion violations into a kernel fail-stop

to prevent brute-force attempts and to avoid leaving the

OS in inconsistent states (e.g., by aborting an in-flight

kernel thread that holds a lock). However, kGuard can be

configured to use a custom handler. Upon enabling this

option, our instrumentation becomes slightly different.

Instead of overwriting offending branch targets with the

address of our handler, we push the value of the branch

target into the stack and invoke the handler directly. In

the case of a CFAR guard this means that the mov in-

struction (see Snippet 3) will be replaced with a push

and call. CFAM guards are modified accordingly.

This instrumentation increases slightly the size of our

inline guards, but does not incur additional overhead,

since the extra instructions are on the error path. Ad-

ditionally, the custom violation handler has access to the

location where the violation occurred, by reading the re-

turn address of the callee (pushed into the stack from

call), as well as to the offending branch target (passed

as argument to the handler). Using that information,

one can implement adaptive defense mechanisms, in-

cluding selective confinement (e.g., deal with VMware’s

I/O backdoor that needs to “violate” protection domains),

error virtualization [63], as well as forensic analysis (e.g.,

dump the shellcode). The latter can be useful in honeypot

setups for studying new ret2usr exploitation vectors.

Persistent threats By building upon the previous fea-

ture, we implemented a handler that actively responds to

persistent threats (i.e., users that repeatedly try to per-

form a ret2usr attack). Once invoked, due to a violation,

it performs the following. First, it checks the execution

context of the kernel to identify if it runs inside a user-



level process or an interrupt handler. If the violation oc-

curred while executing an interrupt service routine, or

the current execution path is holding a lock9, then we

fail-stop the kernel. Else, if the kernel is preemptible, we

terminate all processes with the same uid of the offend-

ing process and prevent the user from logging in. Other

possible approaches include inserting an exponentially

increased delay for user logins (i.e., make the bruteforce

attack slow and impractical), activate CFA motion, etc.

Future considerations Currently, we investigate how

to apply the CFA motion technique (see Section 3.5),

while a kernel is running and the OS is live. Our early

Linux prototype utilizes a dedicated kernel thread, which

upon a certain condition, freezes the kernel and per-

forms rewriting. Thus far, we achieve CFA relocation

in a coarse-grained manner, by exploiting the suspend

subsystem of the Linux kernel. Specifically, we bring

the system to pre-suspend state for preventing any ker-

nel code from being invoked during the relocation (note

that the BSD OSs have similar facilities). Possible events

to initiate live CFA motion are the number of executed

system calls or interrupts (i.e., diversify the kernel ev-

ery n invocation events), CFA violations, or in the case

of smartphone devices, dock station attach and charging.

However, our end goal is to perform CFA motion in a

more fine-grained, non-interruptible and efficient man-

ner, without “locking” the whole OS.

7 Related Work

kGuard is inspired by the numerous compiler-based tech-

niques that explicitly or implicitly constrain control flow

and impose a specific execution policy. StackGuard [14]

and ProPolice [34] are GCC patches that extend the be-

havior of the translator for inserting a canary word prior

to the saved return address on the stack. The canary is

checked again before a function return is performed, and

execution is halted if it has been overwritten (e.g., due to

a stack-smashing attack). Stack Shield [1] is a similar ex-

tension that saves the return address, upon function entry,

into a write-protected memory area that is not affected by

buffer overflows and restores it before returning.

Generally, these approaches have limitations [9, 69].

However, they significantly mitigate real-life exploits by

assuring that functions will always return to caller sites,

incur low performance overhead, and do not require any

change to the runtime environment or platform of the

protected applications. For these reasons, they have been

adopted by mainstream compilers, such as GCC, and en-

abled by default in many BSD and Linux distributions.

9In Linux, we can check if the kernel is holding locks by

looking at the preempt_count variable in the current process’s

thread_info structure [48].

kGuard operates analogously, by hooking to the compi-

lation process and dynamically instrumenting code with

inline guards. However, note that we leverage the plugin

API of GCC, and do not require patching the compiler

itself, thus aiding the adoption of kGuard considerably.

More importantly, since stack protection is now enabled

by default, kGuard can be configured to offload the bur-

den of dealing with the integrity of return control data

to GCC. If random XOR canaries [14] are utilized, then

any attempt to tamper with saved return addresses on the

stack, for redirecting the privileged control flow to user

space, will be detected and prevented. Hence, the protec-

tion of kernel-level ret instructions with CFAs can be

turned off. Note that during our preliminary evaluation

we also measured such a scenario. The average overhead

of kGuard, with no ret protection, on system call and

I/O latency was 6.5% on x86 and 5.4% on x86-64, while

its impact on real-life applications was ≤ 0.5%. This

“offloading” cannot be performed in the case of simple

random canaries or terminator canaries. Nevertheless, it

demonstrates that our approach is indeed orthogonal to

complementary mitigation schemes, and operates nicely

with confinement checks injected during compile time.

PointGuard [13] is another GCC extension that works

by encrypting all pointers while they reside in mem-

ory and decrypting them before they are loaded into a

CPU register. PointGuard could provide some protection

against ret2usr attacks, especially if a function pointer is

read directly from user-controlled memory [20]. How-

ever, it cannot deal with cases where an attacker can nul-

lify kernel-level function pointers by exploiting a race

condition [19] or supplying carefully crafted arguments

to buggy system calls [23]. In such scenarios, the re-

spective memory addresses are altered by legitimate code

(i.e., kernel execution paths), and not directly by the at-

tacker. kGuard provides solid protection against ret2usr

attacks by policing every computed control transfer for

kernel/user space boundary violations.

Other compiler-based approaches include DFI [11]

that enforces data flow integrity based on a statically cal-

culated reaching definition analysis. However, the main

focus of DFI, and similar techniques [3, 12, 33], is the

enforcement of spatial safety for mitigating bounds vio-

lations and preventing bounds-related vulnerabilities.

Control-Flow Integrity (CFI) [2], Program Shepherd-

ing [43], and Strata [57], employ binary rewriting and

dynamic binary instrumentation (DBI) for retrofitting se-

curity enforcement capabilities into unmodified binaries.

The major issue with such approaches has been mainly

the large performance overhead they incur, as well as

the reliance on interpretation engines, which complicates

their adoption. Program Shepherding exhibits ∼100%

overhead on SPEC benchmarks, while CFI has an aver-

age overhead of 15%, and a maximum of 45%, on the



same test suite. CFI-based techniques rewrite programs

so that every branch target is given a label, and each indi-

rect branch instruction is prepended with a check, which

ensures that the target’s label is in accordance with a pre-

computed control-flow graph (CFG). Unfortunately, CFI

is not effective against ret2usr attacks. The integrity of

the CFI mechanism is guaranteed as long as the attacker

cannot overwrite the code of the protected binary, or ex-

ecute user-provided data. However, during a ret2usr at-

tack, the attacker completely controls user space mem-

ory, both in terms of contents and rights. Therefore, CFI

can be subverted by prepending user-provided shellcode

with the respective label.

As an example, consider again Snippet 1 and assume

that the attacker has managed to overwrite the func-

tion pointer sendpage with an address pointing in user

space. CFI will prepend the instruction that invokes

sendpage with an inline check that fetches a label

ID (placed right before the first instruction in functions

that sendpage can point to), and compares it with the

allowed label IDs. If the two labels match, the con-

trol transfer will be authorized. Unluckily, since the at-

tacker controls the contents and rights of the memory

that sendpage is now pointing, he can easily prepend

his code with the label ID that will authorize the control

transfer. Furthermore, Petroni and Hicks [55] noted that

computing in advance a precise CFG for a modern kernel

is a nontrivial task, due to the rich control structure and

the several levels of interrupt handling and concurrency.

CFI-based proposals can be combined with kGuard to

overcome the individual limitations of each technique.

kGuard can guarantee that privileged execution will al-

ways be confined in kernel space, thus leaving no other

options to attackers than targeting kernel-level control

flow violations, which can be solidly protected by CFI.

Garfinkel and Rosenblum proposed Livewire [36],

which was the first system that used a virtual machine

monitor (VMM) for implementing invariant-based ker-

nel protection. Similarly, Grizzard uses a VMM for mon-

itoring kernel execution and validating control flow [38].

For LMBench, he reports an average of 30% overhead,

and a maximum of 74%, on top of VMM’s performance

penalty. SecVisor [62] is a tiny hypervisor that ensures

the integrity of commodity OS kernels. It relies on phys-

ical memory virtualization for protecting against code

injection attacks and kernel rootkits, by allowing only

approved code to execute in kernel mode and ensuring

that such code cannot be modified. However, it requires

modern CPUs that support virtualization in hardware,

as well as kernel patching to add the respective hyper-

calls that authorize module loading. Along the same

lines, NICKLE [56] offers similar guarantees, without

requiring any OS modification, by relying on an inno-

vative memory shadowing scheme and real-time kernel

code authentication via VMM introspection. Petroni and

Hicks proposed state-based CFI (SBCFI) [55], which re-

ports violations of the kernel’s control flow due to the

presence of rootkits. Similarly, Lares [54] and Hook-

Safe [68] protect kernel hooks (including function point-

ers) from being manipulated by kernel malware. The fo-

cus of those techniques, however, has been kernel attes-

tation and kernel code integrity [10], which is different

from the control-flow integrity of kernel code. On the

other hand, kGuard focuses on solving a different prob-

lem: privilege escalation via hijacked kernel-level exe-

cution paths. Although VMMs provide stronger security

guarantees than kGuard, and SecVisor and NICKLE can

prevent ret2usr attacks by refusing execution from user

space while running in kernel mode, they incur larger

performance penalties and require running the whole OS

over custom hypervisors and specialized hardware. It is

also worth noting that SecVisor and NICKLE cannot pro-

tect against execution hijacking via tampered data struc-

tures containing control data [18,20]. kGuard offers solid

protection against that type of ret2usr due to the way it

handles control data stored in memory.

Supervisor Mode Execution Prevention (SMEP) [37]

is an upcoming Intel CPU feature, which prevents code

executing in kernel mode from branching to code located

in pages without the supervisor bit set in their page table

entry. Although it allows for a confinement mechanism

similar to PaX with zero performance penalty, it is plat-

form specific (i.e., x86, x86-64), requires kernel patch-

ing, and does not protect legacy systems.

8 Conclusions

We presented kGuard, a lightweight compiler-based

mechanism that protects the kernel from ret2usr attacks.

Unlike previous work, kGuard is fast, flexible, and of-

fers cross-platform support. It works by injecting fine-

grained inline guards during the translation phase that

are resistant to bypass, and it does not require any mod-

ification to the kernel or additional software such as a

VMM. kGuard can safeguard 32- or 64-bit OSs that map

a mixture of code segments with different privileges in-

side the same scope and are susceptible to ret2usr attacks.

We believe that kGuard strikes a balance between safety

and functionality, and provides comprehensive protec-

tion from ret2usr attacks, as demonstrated by our exten-

sive evaluation with real exploits against Linux.

Availability

The prototype implementation of kGuard is freely avail-

able at: http://www.cs.columbia.edu/~vpk/

research/kguard/

http://www.cs.columbia.edu/~vpk/research/kguard/
http://www.cs.columbia.edu/~vpk/research/kguard/
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A Step-by-step Analysis of the sendpage

ret2usr Exploit

Figure 5 illustrates the steps taken by a malicious process

to exploit the vulnerability shown in Snippet 1 (in x86).

It starts by invoking the sendfile system call with the

offending arguments (i.e., a datagram socket of a vulner-

able protocol family, such as PF_IPX). The correspond-

ing libc wrapper (0xb7f50d20) traps to the OS via the

sysenter instruction (0xb7fe2419) and the generated

software interrupt leads to executing the system call han-

dler of Linux (sysenter_do_call()). The handler

dynamically resolves the address of sys_sendfile

(0xc01d0ccf) using the array sys_call_table,

which includes the kernel-level address of every sup-

ported system call indexed by system call number

(0xc01039db).10 Privileged execution then continues

until the offending sock_sendpage() routine is in-

voked. Due to the arguments passed in sendfile, the

value of the sendpage pointer (0xfa7c8538) is NULL

and results in an indirect function call to address zero.

This transfers control to the attacker, who can execute

arbitrary code with kernel privileges.

B GCC RTL Instrumentation Internals

branchprot_instrument(), our instrumentation

callback, is invoked by GCC’s pass manager for every

translation unit after all the RTL optimizations have been

applied, and exactly before target code is emitted. At that

point, the corresponding translation unit is maintained

as graph of basic blocks (BBs) that contain chained se-

quences of RTL instructions, also known as rtx expres-

sions (i.e., LISP-like assembler code for an abstract ma-

chine with infinite registers). GCC maintains a specific

graph-based data structure (call-graph) that holds

information for every internal/external call site. How-

ever, indirect control transfers are not represented in it

10The address 0xc03fd3a8 corresponds to the kernel-level memory

address of sys_call_table.
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} stack offset

} mmap offset
stack break

} brk offset

0x08048000
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0xb7d7d62c:

0x08049d1d:

(0xb7f50d20)

0xc032fda5:

0xc01039db:

(0xfa7c8538)

[data + bss segment]

call 0xb7d7d62c

call *0xc03fd3a8(,%eax,4)

call *0x50(%ebx)

0x00000000

6

jmp *0x10(%ebx)

sysenter0xb7fe2419:

1

[vmalloc area]

[sendfile@libc]

[sendfile@plt]

[user heap]

[user text]

[user stack]

SHELLCODE

(0xc01d0ccf)

[kernel text]

0xC0000000

Figure 5: Control transfers that occur during the exploitation

of a ret2usr attack. The sendfile system call, on x86 Linux,

causes a function pointer in kernel to become NULL, illegally

transferring control to user space code.

and are assumed to be control-flow neutral. For that rea-

son we perform the following. We begin by iterating

over all the BBs and rtx expressions of the respective

translation unit, selecting only the computed calls and

jumps. This includes rtx objects of type CALL_INSN

or JUMP_INSN that branch via a register or memory

location. Note that ret instructions are also encoded

as rtx objects of type JUMP_INSN. Next, we modify

the rtx expression stream for inserting the CFAR and

CFAM guards. The CFAR guards are inserted by split-

ting the original BB into 3 new ones. The first hosts

all the rtx expressions before {CALL, JUMP}_INSN,

along with the random NOP sled and two more rtx ex-

pressions that match the compare (cmp) and jump (jae)

instructions shown in Snippet 3. The second BB contains

the code for loading the address of the violation handler

into the branch register (i.e., mov in x86), while the last

BB contains the actual branch expression along with the

remaining rtx expressions of the original BB. Note that

the process also involves altering the control-flow graph,

by chaining the new BBs accordingly and inserting the

proper branch labels to ensure that the injected code re-

mains inlined. CFAM instrumentation is performed in a

similar fashion.

http://www.winehq.org
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