
 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

1

Shadow Honeypots

Kostas G. Anagnostakis,1 Stelios Sidiroglou,2 Periklis Akritidis,1,3 Michalis Polychronakis,4
Angelos D. Keromytis,4 Evangelos P. Markatos5

1 Niometrics R&D, Singapore

 kostas@niometrics.com
2 Computer Science and Artificial Intelligence Laboratory, MIT, USA

 stelios@csail.mit.edu
3 University of Cambridge, UK

 pa280@cl.cam.ac.uk
4 Department of Computer Science, Columbia University, USA

{mikepo, angelos}@cs.columbia.edu
5 Institute of Computer Science, Foundation for Research & Technology – Hellas, Greece

markatos@ics.forth.gr

Abstract: We present Shadow Honeypots, a novel hybrid
architecture that combines the best features of honeypots and
anomaly detection. At a high level, we use a variety of anomaly
detectors to monitor all traffic to a protected network or service.
Traffic that is considered anomalous is processed by a “shadow
honeypot” to determine the accuracy of the anomaly prediction.
The shadow is an instance of the protected software that shares
all internal state with a regular (“production”) instance of the
application, and is instrumented to detect potential attacks.
Attacks against the shadow are caught, and any incurred state
changes are discarded. Legitimate traffic that was misclassified
will be validated by the shadow and will be handled correctly by
the system transparently to the end user. The outcome of
processing a request by the shadow is used to filter future attack
instances and could be used to update the anomaly detector. Our
architecture allows system designers to fine-tune systems for
performance, since false positives will be filtered by the shadow.
We demonstrate the feasibility of our approach in a proof-of-
concept implementation of the Shadow Honeypot architecture
for the Apache web server and the Mozilla Firefox browser. We
show that despite a considerable overhead in the
instrumentation of the shadow honeypot (up to 20% for
Apache), the overall impact on the system is diminished by the
ability to minimize the rate of false-positives.

Keywords: honeypots, anomaly detection

1. Introduction
Due to the increasing level of malicious activity seen on
today’s Internet, organizations are beginning to deploy
mechanisms for detecting and responding to new attacks or
suspicious activity, called Intrusion Prevention Systems
(IPS). Since current IPSes use rule-based intrusion detection
systems (IDS) such as Snort [1] to detect attacks, they are
limited to protecting, for the most part, against already
known attacks. As a result, new detection mechanisms are
being developed for use in more powerful reactive-defense
systems. The two primary such mechanisms are honeypots
[2], [3], [4], [5], [6], [7] and anomaly detection systems
(ADS) [8], [9], [10], [11], [12], [13]. In contrast with IDSes,
honeypots and ADSes offer the possibility of detecting (and
thus responding to) previously unknown attacks, also
referred to as zero-day attacks.

Honeypots and anomaly detection systems offer different
tradeoffs between accuracy and scope of attacks that can be

detected, as shown in Figure 1. Honeypots can be heavily
instrumented to accurately detect attacks, but depend on an
attacker attempting to exploit a vulnerability against them.
This makes them good for detecting scanning worms [14],
[15], [3], but ineffective against manual directed attacks or
topological and hit-list worms [16], [17]. Furthermore,
honeypots can typically only be used for server-type
applications. Anomaly detection systems can theoretically
detect both types of attacks, but are usually much less
accurate. Most such systems offer a tradeoff between false
positive (FP) and false negative (FN) rates. For example, it
is often possible to tune the system to detect more potential
attacks, at an increased risk of misclassifying legitimate
traffic (low FN, high FP); alternatively, it is possible to
make an anomaly detection system more insensitive to
attacks, at the risk of missing some real attacks (high FN,
low FP). Because an ADS-based IPS can adversely affect
legitimate traffic (e.g., drop a legitimate request), system
designers often tune the system for low false positive rates,
potentially misclassifying attacks as legitimate traffic.

We propose a novel hybrid approach that combines the
best features of honeypots and anomaly detection, named
Shadow Honeypots. At a high level, we use a variety of
anomaly detectors to monitor all traffic to a protected
network. Traffic that is considered anomalous is processed
by a shadow honeypot. The shadow version is an instance of
the protected application (e.g., a web server or client) that
shares all internal state with a “normal” instance of the
application, but is instrumented to detect potential attacks.
Attacks against the shadow honeypot are caught and any
incurred state changes are discarded. Legitimate traffic that
was misclassified by the anomaly detector will be validated
by the shadow honeypot and will be transparently handled
correctly by the system (i.e., an HTTP request that was
mistakenly flagged as suspicious will be served correctly).
Our approach offers several advantages over stand-alone
ADSes or honeypots:

• First, it allows system designers to tune the anomaly

detection system for low false negative rates, minimizing
the risk of misclassifying a real attack as legitimate
traffic, since any false positives will be weeded out by the

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

2

shadow honeypot.
• Second, and in contrast to typical honeypots, our

approach can defend against attacks that are tailored
against a specific site with a particular internal state.
Honeypots may be blind to such attacks, since they are
not typically mirror images of the protected application.

• Third, shadow honeypots can also be instantiated in a
form that is particularly well-suited for protecting
against client-side attacks, such as those directed against
web browsers and P2P file-sharing clients.

• Finally, our system architecture facilitates easy
integration of additional detection mechanisms.

Figure 1. A simple classification of honeypots and anomaly
detection systems, based on attack detection accuracy and
scope of detected attacks. Targeted attacks may use lists of
known (potentially) vulnerable servers, while scan-based
attacks will target any system that is believed to run a
vulnerable service. AD systems can detect both types of
attacks, but with lower accuracy than a specially
instrumented system (honeypot). However, honeypots are
blind to targeted attacks, and may not see a scanning attack
until after it has succeeded against the real server.

We apply the concept of shadow honeypots to a proof-of-

concept implementation tailored against memory violation
attacks. Specifically, we developed a tool that allows for
automatic transformation of existing code into its “shadow
version.” The resulting code allows for traffic handling to
happen through the regular or shadow version of the
application, contingent on input derived from an array of
anomaly detection sensors. When an attack is detected by
the shadow version of the code, state changes effected by the
malicious request are rolled back. Legitimate traffic handled
by the shadow is processed successfully, albeit at higher
latency. Note that the shadow may be an entirely separate
process, possibly running on a different machine (loose
coupling), or it may be a different thread running in the
same address space (tight coupling). These two approaches
reflect different tradeoffs in state-sharing overhead, ease of
deployment, and transparency to the user.

In addition to the server-side scenario, we also investigate
a client-targeting attack-detection scenario, unique to
shadow honeypots, where we apply the detection heuristics
to content retrieved by protected clients and feed any

positives to shadow honeypots for further analysis. Unlike
traditional honeypots, which are idle whilst waiting for
active attackers to probe them, this scenario enables the
detection of passive attacks, where the attacker lures a
victim user to download malicious data. We use the recent
libpng vulnerability of Mozilla [18] (which is similar to
the buffer overflow vulnerability in the Internet Explorer’s
JPEG-handling logic) to demonstrate the ability of our
system to protect client-side applications.

Our shadow honeypot prototype consists of several
components. At the front-end of our system, we use a high-
performance intrusion-prevention system based on the Intel
IXP network processor and a set of modified Snort sensors
running on normal PCs. The network processor is used as a
smart load-balancer, distributing the workload to the
sensors. The sensors are responsible for testing the traffic
against a variety of anomaly detection heuristics, and
coordinating with the IXP to tag traffic that needs to be
inspected by shadow honeypots. This design leads to the
scalability needed in high-end environments such as web
server farms, as only a fraction of the servers need to incur
the penalty of providing shadow honeypot functionality.

In our implementation, we have used a variety of anomaly
detection techniques, including Abstract Payload Execution
(APE) [10], the Earlybird algorithm [19], and network-level
emulation [13]. The feasibility of our approach is
demonstrated by examining both false-positive and true
attack scenarios. We show that our system has the capacity
to process all false positives generated by APE and
EarlyBird and successfully detect attacks. Furthermore, it
enhances the robustness of network-level emulation against
advanced evasion attacks. We also show that when the
anomaly detection techniques are tuned to increase detection
accuracy, the resulting additional false positives are still
within the processing budget of our system. More
specifically, our benchmarks show that although
instrumentation is expensive (20-50% overhead), the
shadow version of the Apache Web server can process
around 1300 requests per second, while the shadow version
of the Mozilla Firefox client can process between 1 and 4
requests per second. At the same time, the front-end and
anomaly detection algorithms can process a fully-loaded
Gbit/s link, producing 0:3 to 0:5 false positives per minute
when tuned for high sensitivity, which is well within the
processing budget of our shadow honeypot implementation.

The remainder of this paper is organized as follows.
Section 2 discusses the shadow honeypot architecture in
greater detail. We describe our implementation in Section 3,
and our experimental and performance results in Section 4.
Some of the limitations of our approach are briefly discussed
in Section 5. We give an overview of related work in Section
6, and conclude the paper with a summary of our work and
plans for future work in Section 7.

2. Architecture
The Shadow Honeypot architecture is a systems approach to
handling network-based attacks, combining filtering,

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

3

anomaly detection systems, and honeypots in a way that
exploits the best features of these mechanisms, while
shielding their limitations. We focus on transactional
applications, i.e., those that handle a series of discrete
requests. Our architecture is not limited to server
applications, but can be used for clientside applications such
as web browsers and P2P clients. As shown in Figure 2, the
architecture is composed of three main components: a
filtering engine, an array of anomaly detection

Figure 2. Shadow Honeypot architecture.

sensors, and the shadow honeypot, which validates the
predictions of the anomaly detectors. The processing logic of
the system is shown in Figure 3.

The filtering component blocks known attacks. Such
filtering is done based either on payload content [20], [21]
or on the source of the attack, if it can be identified with
reasonable confidence (e.g., confirmed traffic bi-
directionality). Effectively, the filtering component short-
circuits the detection heuristics or shadow testing results by
immediately dropping specific types of requests before any
further processing is done.

Traffic passing the first stage is processed by one or more
anomaly detectors. There are several types of anomaly
detectors that may be used in our system, including payload
analysis [9], [19], [22], [10], [13] and network behavior
[23], [24]. Although we do not impose any particular
requirements on the AD component of our system, it is
preferable to tune such detectors towards high sensitivity (at
the cost of increased false positives). The anomaly detectors,
in turn, signal to the protected application whether a request
is potentially dangerous.

Depending on this prediction by the anomaly detectors,
the system invokes either the regular instance of the
application or its shadow. The shadow is an instrumented
instance of the application that can detect specific types of
failures and rollback any state changes to a known (or
presumed) good state, e.g., before the malicious request was
processed. Because the shadow is (or should be) invoked
relatively infrequently, we can employ computationally

expensive instrumentation to detect attacks. The shadow and
the regular application fully share state to avoid attacks that
exploit differences between the two; we assume that an
attacker can only interact with the application through the
filtering and AD stages, i.e., there are no side-channels. The
level of instrumentation used in the shadow depends on the
amount of latency we are willing to impose on suspicious
traffic (whether truly malicious or misclassified legitimate
traffic). In our implementation, described in Section 3, we
focus on memory-violation attacks, but any attack that can
be determined algorithmically can be

Figure 3. System workflow.

detected and recovered from, at the cost of increased
complexity and potentially higher latency.

If the shadow detects an actual attack, we notify the
filtering component to block further attacks. If no attack is
detected, we update the prediction models used by the
anomaly detectors. Thus, our system could in fact self-train
and fine-tune itself using verifiably bad traffic and known
mis-predictions, but this aspect of the approach is outside
the scope of this paper.

As we mentioned above, shadow honeypots can be
integrated with servers as well as clients. In this paper, we
consider tight coupling with both server and client
applications, where the shadow resides in the same address
space as the protected application.

• Tightly coupled with server. This is the most practical

scenario, in which we protect a server by diverting
suspicious requests to its shadow. The application and
the honeypot are tightly coupled, mirroring functionality
and state. We have implemented this configuration with
the Apache web server, described in Section 3.

• Tightly coupled with client. Unlike traditional
honeypots, which remain idle while waiting for active
attacks, this scenario targets passive attacks, where the

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

4

attacker lures a victim user to download data containing
an attack, as with the recent buffer overflow vulnerability
in Internet Explorer’s JPEG handling [25]. In this
scenario, the context of an attack is an important
consideration in replaying the attack in the shadow. It
may range from data contained in a single packet to an
entire flow, or even set of flows. Alternatively, it may be
defined at the application layer. For our testing scenario
using HTTP, the request/response pair is a convenient
context.

Tight coupling assumes that the application can be

modified. The advantage of this configuration is that attacks
that exploit differences in the state of the shadow vs. the
application itself become impossible. However, it is also
possible to deploy shadow honeypots in a loosely coupled
configuration, where the shadow resides on a different
system and does not share state with the protected
application. The advantage of this configuration is that
management of the shadows can be “outsourced” to a third
entity.

Note that the filtering and anomaly detection components
can also be tightly coupled with the protected application, or
may be centralized at a natural aggregation point in the
network topology (e.g., at the firewall).

Finally, it is worth considering how our system would
behave against different types of attacks. For most attacks
we have seen thus far, once the AD component has
identified an anomaly and the shadow has validated it, the
filtering component will block all future instances of it from
getting to the application. However, we cannot depend on
the filtering component to prevent polymorphic or
metamorphic [26] attacks. For low-volume events, the cost
of invoking the shadow for each attack may be acceptable.
For high-volume events, such as a Slammer-like outbreak,
the system will detect a large number of correct AD
predictions (verified by the shadow) in a short period of
time; should a configurable threshold be exceeded, the
system can enable filtering at the second stage, based on the
unverified verdict of the anomaly detectors. Although this
will cause some legitimate requests to be dropped, this could
be acceptable for the duration of the incident. Once the
number of (perceived) attacks seen by the ADS drop beyond
a threshold, the system can revert to normal operation.

3. Implementation

3.1 Filtering and Anomaly Detection
During the composition of our system, we were faced with
numerous design issues with respect to performance and
extensibility. When considering the deployment of the
shadow honeypot architecture in a high-performance
environment, such as a Web server farm, where speeds of at
least 1 Gbit/s are common and we cannot afford to
misclassify traffic, the choice for off-the-shelf components
becomes very limited. To the best of our knowledge, current
solutions, both standalone PCs and network-processor-based
network intrusion detection systems (NIDSes), are well

under the 1 Gbit/s mark [27], [28].
Faced with these limitations, we considered a distributed

design, similar in principle to [29], [30]: we use a network
processor (NP) as a scalable, custom load balancer, and
implement all detection heuristics on an array of (modified)
Snort sensors running on standard PCs that are connected to
the network processor board. We chose not to implement
any of the detection heuristics on the NP for two reasons.
First, currently available NPs are designed primarily for
simple forwarding and lack the processing capacity required
for speeds in excess of 1 Gbit/s. Second, they remain harder
to program and debug than standard general purpose
processors. For our implementation, we used the IXP1200
network processor. A high-level view of our implementation
is shown in Figure 4.

Figure 4. High-level diagram of prototype shadow

honeypot implementation.

A primary function of the anomaly detection sensor is the

ability to divert potentially malicious requests to the shadow
honeypot. For web servers in particular, a reasonable
definition of the attack context is the HTTP request. For this
purpose, the sensor must construct a request, run the
detection heuristics, and forward the request depending on
the outcome. This processing must be performed at the
HTTP level thus an HTTP proxy-like function is needed. We
implemented the anomaly detection sensors for the tightly-
coupled shadow server case by augmenting an HTTP proxy
with ability to apply the APE detection heuristic on
incoming requests and route them according to its outcome.

For the shadow client scenario, we use an alternative
solution based on passive monitoring. Employing the proxy
approach in this situation would be prohibitively expensive,
in terms of latency, since we only require detection
capabilities. For this scenario, we reconstruct the TCP
streams of HTTP connections and decode the HTTP protocol
to extract suspicious objects.

As part of our proof-of-concept implementation we have
used three anomaly detection heuristics: payload sifting,
abstract payload execution, and network-level emulation.
Payload sifting as developed in [19] derives fingerprints of
rapidly spreading worms by identifying popular substrings
in network traffic. It is a prime example of an anomaly

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

5

detection based system that is able to detect novel attacks at
the expense of false positives. However, if used in isolation
(e.g., outside our shadow honeypot environment) by the time
it has reliably detected a worm epidemic, it is very likely
that many systems would have already been compromised.
This may reduce its usage potential in the tightly-coupled
server protection scenario without external help.
Nevertheless, if fingerprints generated by a distributed
payload sifting system are disseminated to interested parties
that run shadow honeypots locally, matching traffic against
such fingerprints can be of use as a detection heuristic in the
shadow honeypot system. Of further interest is the ability to
use this technique in the loosely-coupled shadow server
scenario, although we do not further consider this scenario
here.

The second heuristic we have implemented is buffer
overflow detection via abstract payload execution (APE), as
proposed in [10]. The heuristic detects buffer overflow
attacks by searching for sufficiently long sequences of valid
instructions in network traffic. Long sequences of valid
instructions can appear in non-malicious data, and this is
where the shadow honeypot fits in. Such detection
mechanisms are particularly attractive because they are
applied to individual attacks and will trigger detection upon
encountering the first instance of an attack, unlike many
anomaly detection mechanisms that must witness multiple
attacks before flagging them as anomalous.

Finally, as discussed in Section 3.3, the third heuristic we
use is network-level emulation [13], [31], a detection
method that scans network traffic streams for the presence
of previously unknown polymorphic shellcode. The
approach is based on the execution of all potential malicious
instruction sequences found in the inspected traffic on a
NIDS-embedded CPU emulator. Based on a behavioral
heuristic, the detection algorithm can discriminate between
the execution of benign and malicious code.

3.2 Shadow Honeypot Creation
The creation of a shadow honeypot is based on a code-
transformation tool that takes as input the original
application source code and “weaves” into it the shadow
honeypot code. In this paper, we focus on memory-violation
errors and show source-code transformations that detect
buffer overflows, although other types of failures can be
caught (e.g., input that causes illegal memory dereferences)
with the appropriate instrumentation, but at the cost of
higher complexity and larger performance bottleneck. For
the code transformations we use TXL [32], a hybrid
functional and rule-based language which is well-suited for
performing source-to-source transformation and for rapidly
prototyping new languages and language processors. The
grammar responsible for parsing the source input is
specified in a notation similar to Extended Backus-Naur
(BNF). In our prototype, called DYBOC, we use TXL for C-
to-C transformations with the GCC C front-end.

Figure 5. Example of pmalloc()-based memory

allocation: the trailer and edge regions (above and below the
write-protected pages) indicate “waste” memory. This is
needed to ensure that mprotect() is applied on complete
memory pages.

Figure 6. Transforming a function to its shadow-

supporting version. The shadow_enable() macro
simply checks the status of a shared-memory variable
(controlled by the anomaly detection system) on whether the
shadow honeypot should be executing instead of the regular
code.

The instrumentation itself is conceptually

straightforward: we move all static buffers to the heap by
dynamically allocating the buffer upon entering the function
in which it was previously declared; we de-allocate these
buffers upon exiting the function, whether implicitly (by
reaching the end of the function body) or explicitly (through

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

6

a return statement). We take care to properly handle the
sizeof construct, a fairly straightforward task with TXL.
Pointer aliasing is not a problem, since we instrument the
allocated memory regions; any illegal accesses to these will
be caught.

For memory allocation, we use our own version of
malloc(), called pmalloc(), that allocates two
additional zero-filled, write-protected pages that bracket the
requested buffer, as shown in Figure 5. The guard pages are
mmap()’ed from /dev/zero as read-only. As mmap()
operates at memory page granularity, every memory request
is rounded up to the nearest page. The pointer that is
returned by pmalloc() can be adjusted to immediately
catch any buffer overflow or underflow depending on where
attention is focused. This functionality is similar to that
offered by the ElectricFence memory-debugging library, the
difference being that pmalloc() catches both buffer
overflow and underflow attacks. Because we mmap() pages
from /dev/zero, we do not waste physical memory for
the guards (just page-table entries). Memory is wasted,
however, for each allocated buffer, since we allocate to the
next closest page. While this can lead to considerable
memory waste, we note that this is only incurred when
executing in shadow mode, and in practice has proven easily
manageable.

Figure 6 shows an example of such a translation. Buffers
that are already allocated via malloc() are simply
switched to pmalloc(). This is achieved by examining
declarations in the source and transforming them to pointers
where the size is allocated with a malloc() function call.
Furthermore, we adjust the C grammar to free the variables
before the function returns. After making changes to the
standard ANSI C grammar that allow entries such as
malloc() to be inserted between declarations and
statements, the transformation step is trivial. For single-
threaded, non-reentrant code, it is possible to only use
pmalloc() once for each previously-static buffer.
Generally, however, this allocation needs to be done each
time the function is invoked.

Any overflow (or underflow) on a buffer allocated via
pmalloc() will cause the process to receive a
Segmentation Violation (SEGV) signal, which is caught by
a signal handler we have added to the source code in
main(). The signal handler simply notifies the operating
system to abort all state changes made by the process while
processing this request. To do this, we added a new system
call to the operating system, transaction(). This is
conditionally (as directed by the shadow enable() macro)
invoked at three locations in the code:

• Inside the main processing loop, prior to the beginning

of handling of a new request, to indicate to the operating
system that a new transaction has begun. The operating
system makes a backup of all memory page permissions,
and marks all heap memory pages as read-only. As the
process executes and modifies these pages, the operating
system maintains a copy of the original page and

allocates a new page (which is given the permissions the
original page had from the backup) for the process to
use, in exactly the same way copy-on-write works in
modern operating system. Both copies of the page are
maintained until transaction() is called again, as
we describe below. This call to transaction() must
be placed manually by the programmer or system
designer.

• Inside the main processing loop, immediately after the
end of handling a request, to indicate to the operating
system that a transaction has successfully completed. The
operating system then discards all original copies of
memory pages that have been modified during
processing this request. This call to transaction()
must also be placed manually.

• Inside the signal handler that is installed automatically
by our tool, to indicate to the operating system that an
exception (attack) has been detected. The operating
system then discards all modified memory pages by
restoring the original pages.

Although we have not implemented this, a similar

mechanism can be built around the filesystem by using a
private copy of the buffer cache for the process executing in
shadow mode. The only difficulty arises when the process
must itself communicate with another process while
servicing a request; unless the second process is also
included in the transaction definition (which may be
impossible, if it is a remote process on another system),
overall system state may change without the ability to roll it
back. For example, this may happen when a web server
communicates with a remote back-end database. Our system
does not currently address this, i.e., we assume that any such
state changes are benign or irrelevant (e.g., a DNS query).
Specifically for the case of a back-end database, these
inherently support the concept of a transaction rollback, so it
is possible to undo any changes.

The signal handler may also notify external logic to
indicate that an attack associated with a particular input
from a specific source has been detected. The external logic
may then instantiate a filter, either based on the network
source of the request or the contents of the payload [20].

3.3 Using Feedback to Improve Network-level
Detection

A significant benefit stemming from the combination of
network-level anomaly detection techniques with host-level
attack prevention mechanisms is that it allows for increasing
the detection accuracy of current network-level detectors.
This improvement may go beyond simply increasing the
sensitivity of the detector and then mitigating the extra false
positives through the shadow honeypot. In certain cases, it is
also possible to enhance the robustness of the anomaly
detection algorithm itself against evasion attacks. In this
section, we describe how shadow honeypots enhance the
detection ability of network-level emulation, one of the
detection techniques that we have used in our
implementation.

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

7

Network-level emulation [13], [31] is a passive network
monitoring approach for the detection of previously
unknown polymorphic shellcode. The approach relies on a
NIDSembedded CPU emulator that executes every potential
instruction sequence in the inspected traffic, aiming to
identify the execution behavior of polymorphic shellcode.
The principle behind network-level emulation is that the
machine code interpretation of arbitrary data results to
random code, which, when it is attempted to run on an
actual CPU, usually crashes soon, e.g., due to the execution
of an illegal instruction. In contrast, if some network request
actually contains a polymorphic shellcode, then the
shellcode runs normally, exhibiting a certain detectable
behavior.

Network-level emulation does not rely on any exploit or
vulnerability specific signatures, which allows the detection
of previously unknown attacks. Instead, it uses a generic
heuristic that matches the runtime behavior of polymorphic
shellcode. At the same time, the actual execution of the
attack code on a CPU emulator makes the detector robust to
evasion techniques such as highly obfuscated or self-
modifying code. Furthermore, each input is inspected
autonomously, which makes the approach effective against
targeted attacks, while from our experience so far with real-
world deployments, it has not produced any false positives.

The detector inspects either or both directions of each
network flow, which may contain malicious requests
towards vulnerable services, or malicious content served by
some compromised server towards a vulnerable client. Each
input is mapped to a random memory location in the virtual
address space of the emulator, as shown in Figure 7. Since
the exact position of the shellcode within the input stream is
not known in advance, the emulator repeats the execution
multiple times, starting from each and every position of the
stream. Before the beginning of a new execution, the state of
the CPU is randomized, while any accidental memory
modifications in the addresses where the attack vector has
been mapped to are rolled back after the end of each
execution. The execution of polymorphic shellcode is
identified by two key behavioral characteristics: the
execution of some form of GetPC code, and the occurrence
of several read operations from the memory addresses of the
input stream itself, as illustrated in Figure 7. The GetPC
code is used for finding the absolute address of the injected
code, which is mandatory for subsequently decrypting the
encrypted payload, and involves the execution of some
instruction from the call or fstenv instruction groups.

Figure 7. A typical execution of a polymorphic shellcode

using network-level emulation.

There exist situations in which the execution of benign

inputs, which are interpreted by the emulator as random
code, might not stop soon, or even not at all, due to the
accidental formation of loop structures that may execute for
a very large number of iterations. To avoid extensive
performance degradation due to stalling on such seemingly
“endless” loops, if the number of executed instructions for a
given input reaches a certain execution threshold, then the
execution is terminated.

This unavoidable precaution introduces an opportunity for
evasion attacks against the detection algorithm through the
placement of a seemingly endless loop before the decryptor
code. An attacker could construct a decryptor that spends
millions of instructions just for reaching the execution
threshold before revealing any signs of polymorphic
behavior. We cannot simply skip the execution of such
loops, since the loop body may perform a crucial
computation for the subsequent correct execution of the
decoder, e.g., computing the decryption key.

Such “endless” loops are a well-known problem in the
area of dynamic code analysis [33], and we are not aware of
any effective solution so far. However, employing network-
level emulation as a first-stage detector for shadow
honeypots mitigates this problem. Without shadow honeypot
support, the network-level detector does not alert on inputs
that reach the execution threshold without exhibiting signs
of malicious behavior, which can potentially result to false
negatives. In contrast, when coupling network-level
emulation with shadow honeypots, such undecidable inputs
can be treated more conservatively by considering them as
potentially dangerous, and redirecting them to the shadow
version of the protected service. If an undecidable input
indeed corresponds to a code injection attack, then it will be
detected by the shadow honeypot. In Section 4.3 we show,
through analysis of real network traffic, that the number of
such streams that are undecidable in reasonable time (and
thus have to be forwarded to the shadow) is a small,
manageable fraction of the overall traffic.

4. Experimental Evaluation
We have tested our shadow honeypot implementation
against a number of exploits, including a recent Mozilla
PNG bug and several Apache-specific exploits. In this
section, we report on performance benchmarks that illustrate
the efficacy of our implementation.

First, we measure the cost of instantiating and operating
shadow instances of specific services using the Apache web
server and the Mozilla Firefox web browser. Second, we
evaluate the filtering and anomaly detection components,
and determine the throughput of the IXP1200-based load
balancer as well as the cost of running the detection
heuristics. Third, we look at the false positive rates and the
trade-offs associated with detection performance. Based on
these results, we determine how to tune the anomaly
detection heuristics in order to increase detection
performance while not exceeding the budget allotted by the
shadow services.

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

8

Figure 8. Apache benchmark results.

4.1 Performance of Shadow Services
Apache: In this experiment, we determine the workload
capacity of the shadow honeypot environment, using
DYBOC on the Apache web server, version 2.0.49. We
chose Apache due to its popularity and source code
availability. Basic Apache functionality was tested, omitting
additional modules. The tests were conducted on a PC with
a 2GHz Intel P4 processor and 1GB of RAM, running
Debian Linux (2.6.5- 1 kernel).

We used ApacheBench [34], a complete benchmarking
and regression testing suite. Examination of application
response is preferable to explicit measurements in the case
of complex systems, as we seek to understand the effect on
overall system performance.

Figure 8 illustrates the requests per second that Apache
can handle. There is a 20.1% overhead for the patched
version of Apache over the original, which is expected since
the majority of the patched buffers belong to utility functions
that are not heavily used. This result is an indication of the
worst-case analysis, since all the protection flags were
enabled; although the performance penalty is high, it is not
outright prohibitive for some applications. For the
instrumentation of a single buffer and a vulnerable function
that is invoked once per HTTP transaction, the overhead is
1.18%.

Of further interest is the increase in memory requirements
for the patched version. A naive implementation of
pmalloc() would require two additional memory pages
for each transformed buffer. Full transformation of Apache
translates into 297 buffers that are allocated with
pmalloc(), adding an overhead of 2.3MB if all of these
buffers are invoked simultaneously during program
execution. When protecting malloc()’ed buffers, the
amount of required memory can skyrocket.

To avoid this overhead, we use an mmap() based
allocator. The two guard pages are mmap()’ed write-
protected from /dev/zero, without requiring additional
physical memory to be allocated. Instead, the overhead of
our mechanism is 2 page-table entries (PTEs) per allocated
buffer, plus one file descriptor (for /dev/zero) per

program. As most modern processors use an MMU cache
for frequently used PTEs, and since the guard pages are only
accessed when a fault occurs, we expect their impact on
performance to be small.

Mozilla Firefox: For the evaluation of the client case, we
used the Mozilla Firefox browser. For the initial validation
tests, we back-ported the recently reported libpng
vulnerability [18] that enables arbitrary code execution if
Firefox (or any application using libpng) attempts to
display a specially crafted PNG image. Interestingly, this
example mirrors a recent vulnerability of Internet Explorer,
and JPEG image handling [35], which again enabled
arbitrary code execution when displaying specially crafted
images.

In the tightly-coupled scenario, the protected version of
the application shares the address space with the unmodified
version. This is achieved by transforming the original source
code with our DYBOC tool. Suspicious requests are tagged
by the ADS so that they are processed by the protected
version of the code as discussed in Section 3.2.

For the loosely-coupled case, when the AD component
marks a request for processing on the shadow honeypot, we
launch the instrumented version of Firefox to replay the
request. The browser is configured to use a null X server as
provided by Xvfb. All requests are handled by a transparent
proxy that redirects these requests to an internal Web server.
The Web server then responds with the objects served by the
original server, as captured in the original session. The
workload that the shadow honeypot can process in the case
of Firefox is determined by how many responses per second
a browser can process and how many different browser
versions can be checked.

Our measurements show that a single instance of Firefox
can handle about one request per second with restarting
after processing each response. Doing this only after
detecting a successful attack improves the result to about
four requests per second. By restarting, we avoid the
accumulation of various pop-ups and other side-effects.
Unlike the server scenario, instrumenting the browser does
not seem to have any significant impact on performance. If
that was the case, we could have used the rollback
mechanism discussed previously to reduce the cost of
launching new instances of the browser.

We further evaluate the performance implications of fully
instrumenting a web browser. These observations apply to
both loosely-coupled and tightly-coupled shadow honeypots.
Web browsing performance was measured using a Mozilla
Firefox 1.0 browser to run a benchmark based on the i-
Bench benchmark suite [36]. i-Bench is a comprehensive,
cross-platform benchmark that tests the performance and
capability of Web clients. Specifically, we use a variant of
the benchmark that allows for scrolling of a web page and
uses cookies to store the load times for each page. Scrolling
is performed in order to render the whole page, providing a
pessimistic emulation of a typical attack. The benchmark
consists of a sequence of 10 web pages containing a mix of
text and graphics; the benchmark was ran using both the
scrolling option and the standard page load mechanisms.

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

9

For the standard page load configuration, the performance
degradation for instrumentation was 35%. For the scrolling
configuration, where in addition to the page load time, the
time taken to scroll through the page is recorded, the
overhead was 50%.

Figure 9. Normalized Mozilla Firefox benchmark results

using a modified version of i-Bench.

Figure 10. Popularity of different Mozilla versions, as

measured in the logs of the CIS Department Web server at
the University of Pennsylvania.

The results follow our intuition as more calls to

malloc() are required to fully render the page. Figure 9
illustrates the normalized performance results. It should be
noted that depending on the browser implementation
(whether the entire page is rendered on page load)
mechanisms such at the automatic scrolling need to be
implemented in order to protect against targeted attacks.
Attackers may hide malicious code in unrendered parts of a
page or in javascript code activated by user-guided pointer
movement.

How many different browser versions would have to be
checked by the system? Figure 10 presents some statistics
concerning different versions of Mozilla. The statistics were
collected over a five-week period from the CIS Department
web server at the University of Pennsylvania. As evidenced
by the figure, one can expect to check up to six versions of a
particular client. We expect that this distribution will be
more stabilized around final release versions and expect to

minimize the number of different versions that need to be
checked based on their popularity.

4.2 Filtering and Anomaly Detection
IXP1200-based firewall/load-balancer: We first determine
the performance of the IXP1200-based firewall/load
balancer. The IXP1200 evaluation board we use has two
Gigabit Ethernet interfaces and eight Fast Ethernet
interfaces. The Gigabit Ethernet interfaces are used to
connect to the internal and external network and the Fast
Ethernet interfaces to communicate with the sensors. A set
of client workstations is used to generate traffic through the
firewall. The firewall forwards traffic to the sensors for
processing and the sensors determine if the traffic should be
dropped, redirected to the shadow honeypot, or forwarded to
the internal network.

Previous studies [37] have reported forwarding rates of at
least 1600 Mbit/s for the IXP1200, when used as a simple
forwarder/router, which is sufficient to saturate a Gigabit
Ethernet interface. Our measurements show that despite the
added cost of load balancing, filtering, and coordinating
with the sensors, the firewall can still handle the Gigabit
interface at line rate.

Figure 11. Utilization(%) of the IXP1200 Microengines,

for forwarding-only (FWD), load-balancing-only (LB), both
(LB+FWD), and full implementation (FULL), in stress-tests
with 800 Mbit/s worst-case 64-byte-packet traffic.

To gain insight into the actual overhead of our

implementation, we carry out a second experiment using
Intel’s cycle-accurate IXP1200 simulator. We assume a
clock frequency of 232 MHz for the IXP1200, and an IX bus
configured to be 64- bit wide with a clock frequency of 104
MHz. In the simulated environment, we obtain detailed
utilization measurements for the microengines of the
IXP1200. The results are shown in Figure 11. The results
show that even at line rate with worst-case traffic, the
implementation is quite efficient as the microengines
operate at 50.9%-71.5% of their processing capacity.

PC-based sensor performance: In this experiment, we
measure the throughput of the PC-based sensors that
cooperate with the IXP1200 for analyzing traffic and
performing anomaly detection. We use a 2.66 GHz Pentium
IV Xeon processor with hyper-threading disabled. The PC
has 512 Mbytes of DDR DRAM at 266 MHz. The PCI bus is

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

10

64- bit wide clocked at 66 MHz. The host operating system
is Linux (kernel version 2.4.22, Red-Hat 9.0).

We use LAN traces to stress-test a single sensor running a
modified version of Snort that, in addition to basic signature
matching, provides the hooks needed to coordinate with the
IXP1200 as well as the APE and payload sifting heuristics.
We replay the traces from a remote system through the
IXP1200 at different rates to determine the maximum loss-
free rate (MLFR) of the sensor. For the purpose of this
experiment, we connected a sensor to the second Gigabit
Ethernet interface of the IXP1200 board.

Table 1: Sensor throughput for different detection
mechanisms.

Detection Method Throughput/Sensor

Content Matching 225 Mbit/s
APE 190 Mbit/s

Payload Sifting 268 Mbit/s

The measured throughput of the sensor for signature
matching using APE and Earlybird is shown in Table 1. The
throughput per sensor ranges between 190 Mbit/s (APE) and
268 Mbit/s (payload sifting), while standard signature
matching can be performed at 225 Mbit/s. This means that
we need at least 4-5 sensors behind the IXP1200 for each of
these mechanisms. Note, however, that these results are
rather conservative and based on unoptimized code, and
thus only serve the purpose of providing a ballpark figure on
the cost of anomaly detection.

False positive vs. detection rate trade-offs: We determine
the workload that is generated by the AD heuristics, by
measuring the false positive rate. We also consider the
trade-off between false positives and detection rate, to
demonstrate how the AD heuristics could be tuned to
increase detection rate in our shadow honeypot
environment. We use the payload sifting implementation
from [38], and the APE algorithm from [10]. The APE
experiment corresponds to a scenario with a tightly-coupled
shadow server, while the payload sifting experiment
examines a loosely-coupled shadow honeypot scenario that
can be used for worm detection.

We run the modified Snort sensor implementing APE and
payload sifting on packet-level traces captured on an
enterprise LAN with roughly 150 hosts. Furthermore, the
traces contain several instances of the Welchia worm. APE
was applied on the URIs contained in roughly one-billion
HTTP requests gathered by monitoring the same LAN.

Figure 12 demonstrates the effects of varying the distinct
destinations threshold of the content sifting AD on the false
positives (measured in requests to the shadow services per
minute) and the (Welchia worm) detection delay (measured
in ratio of hosts in the monitored LAN infected by the time
of the detection).

Figure 12. False positives for payload sifting.

Increasing the threshold means more attack instances are

required for triggering detection, and therefore increases the
detection delay and reduces the false positives. It is evident
that to achieve a zero false positives rate without shadow
honeypots we must operate the system with parameters that
yield a suboptimal detection delay. The detection rate for
APE is the minimum sled length that it can detect and
depends on the sampling factor and the MEL parameter (the
number of valid instructions that trigger detection). A high
MEL value means less false positives due to random valid
sequences but also makes the heuristic blind to sleds of
smaller lengths.

Figure 13. False positives for APE.

Figure 13 shows the effects of MEL threshold on the false

positives. APE can be used in a tightly coupled scenario,
where the suspect requests are redirected to the
instrumented server instances. The false positives (measured
in requests to the shadow services per minute by each of the
normal services under maximum load) can be handled easily
by a shadow honeypot. APE alone has false positives for the
entire range of acceptable operational parameters; it is the
combination with shadow honeypots that removes the
problem.

4.3 Fine-tuning Network-level Emulation
In this scheme, the redirection criterion is whether a

given input reaches the CPU execution threshold of the
network-level detector. Since most of the time the system
will not be under attack, and thus the inspected inputs will
be benign, an issue that we should take into account is how

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

11

often a benign inspected input may look “suspicious” and
causes a redirection to the shadow honeypot. If the fraction
of such undecidable inputs is large, then the shadow server
may be overloaded with a higher request rate than it can
normally handle. To evaluate this effect, we used full
payload traces of real network traffic captured at ICS-
FORTH and the University of Crete. The set of traces
contains more than 2.5 million user requests to ports 80,
445, and 139, which are related to the most exploited
vulnerabilities.

Figure 14. Percentage of benign network streams

reaching the execution threshold of the network-level
detector.

Figure 14 shows the percentage of streams with at least

one instruction sequence that, when executed on the CPU
emulator of network-level detector, reached the given
execution threshold. As the execution threshold increases,
the number of streams that reach it decreases. This effect
occurs only for low threshold values, due to large code
blocks with no branch instructions that are executed
linearly. For example, the execution of linear code blocks
with more than 256 but less than 512 valid instructions is
terminated before reaching the end when using a threshold
of 256 instructions, but completes correctly with a threshold
of 512 instructions. However, the occurrence probability of
such blocks is reversely proportional to their length, due to
the illegal or privileged instructions that accidentally occur
in random code. Thus, the percentage of streams that reach
the execution threshold stabilizes beyond the value of 2048.
After this value, the execution threshold is reached solely
due to instruction sequences with “endless” loops, which
usually require a prohibitive number of instructions for the
slow CPU emulator in order to complete.

Fortunately, for an execution threshold above 2048
instructions, which allows for accurate polymorphic
shellcode detection with a decent operational throughput
[13], the fraction of streams that reach the execution
threshold is only around 4% for port 445, 2.6% for port 139,
and 0.1% for port 80. Binary traffic (ports 445 and 139) is
clearly more likely to result to an instruction sequence that
reaches the execution threshold in contrast to the mostly
ASCII traffic of port 80. In any case, even in the worst case
of binary-only traffic, the percentage of benign streams that
reach the execution threshold is very small, so the extra

overhead incurred to the shadow server is modest.

5. Limitations
There are two limitations of the shadow honeypot design
presented in this paper that we are aware of. The
effectiveness of the rollback mechanism depends on the
proper placement of calls to transaction() for
committing state changes, and the latency of the detector.
The detector used in this paper can instantly detect attempts
to overwrite a buffer, and therefore the system cannot be
corrupted. Other detectors, however, may have higher
latency, and the placement of commit calls is critical to
recovering from the attack. Depending on the detector
latency and how it relates to the cost of implementing
rollback, one may have to consider different approaches.
The trade-offs involved in designing such mechanisms are
thoroughly examined in the fault-tolerance literature (c.f.
[39]).

Furthermore, the loosely coupled client shadow honeypot
is limited to protecting against relatively static attacks. The
honeypot cannot effectively emulate user behavior that may
be involved in triggering the attack, for example, through
DHTML or Javascript. The loosely coupled version is also
weak against attacks that depend on local system state on
the user’s host that is difficult to replicate. This is not a
problem with tightly coupled shadows, because we
accurately mirror the state of the real system. In some cases,
it may be possible to mirror state on loosely coupled
shadows as well, but we have not considered this case in the
experiments presented in this paper.

6. Related Work
Much of the work in automated attack reaction has focused
on the problem of network worms, which has taken truly
epidemic dimensions (pun intended). For example, the
system described in [24] detects worms by monitoring
probes to unassigned IP addresses (“dark space”) or inactive
ports and computing statistics on scan traffic, such as the
number of source/destination addresses and the volume of
the captured traffic. By measuring the increase on the
number of source addresses seen in a unit of time, it is
possible to infer the existence of a new worm when as little
as 4% of the vulnerable machines have been infected. A
similar approach for isolating infected nodes inside an
enterprise network [40] is taken in [23], where it was shown
that as little as four probes may be sufficient in detecting a
new port-scanning worm.

Smirnov and Chiueh [41] describe an approximating
algorithm for quickly detecting scanning activity that can be
efficiently implemented in hardware. Newsome et al. [42]
describe a combination of reverse sequential hypothesis
testing and credit-based connection throttling to quickly
detect and quarantine local infected hosts. These systems are
effective only against scanning worms (not topological, or
“hit-list” worms), and rely on the assumption that most
scans will result in non-connections. As such, they are
susceptible to false positives, either accidentally (e.g., when

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

12

a host is joining a peer-to-peer network such as Gnutella, or
during a temporary network outage) or on purpose (e.g., a
malicious web page with many links to images in
random/notused IP addresses). Furthermore, it may be
possible for several instances of a worm to collaborate in
providing the illusion of several successful connections, or
to use a list of known repliers to blind the anomaly detector.
Another algorithm for finding fast-spreading worms using
2-level filtering based on sampling from the set of distinct
source-destination pairs is described in [43].

Wu et al. [22] describe an algorithm for correlating
packet payloads from different traffic flows, towards
deriving a worm signature that can then be filtered [44].
The technique is promising, although further improvements
are required to allow it to operate in real time. Earlybird
[19] presents a more practical algorithm for doing payload
sifting, and correlates these with a range of unique sources
generating infections and destinations being targeted.
However, polymorphic and metamorphic worms [26] remain
a challenge; Spinelis [45] shows that it is an NP-hard
problem. Vigna et al. [46] discuss a method for testing
detection signatures against mutations of known
vulnerabilities to determine the quality of the detection
model and mechanism. Polygraph [47] attempts to detect
polymorphic exploits by identifying common invariants
among the various attack instances, such as return
addresses, protocol framing and poor obfuscation.

Toth and Kruegel [10] propose to detect buffer overflow
payloads (including previously unseen ones) by treating
inputs received over the network as code fragments. They
use restricted symbolic execution to show that legitimate
requests will appear to contain relatively short sequences of
valid x86 instruction opcodes, compared to attacks that will
contain long sequences. They integrate this mechanism into
the Apache web server, resulting in a small performance
degradation. STRIDE [48] is a similar system that seeks to
detect polymorphic NOP-sleds in buffer overflow exploits.
[49] describes a hybrid polymorphic-code detection engine
that combines several heuristics, including NOP-sled
detector and abstract payload execution.

HoneyStat [3] runs sacrificial services inside a virtual
machine, and monitors memory, disk, and network events to
detect abnormal behavior. For some classes of attacks (e.g.,
buffer overflows), this can produce highly accurate alerts
with relatively few false positives, and can detect zero-day
worms. Although the system only protects against scanning
worms, “active honeypot” techniques [4] may be used to
make it more difficult for an automated attacker to
differentiate between HoneyStats and real servers. FLIPS
(Feedback Learning IPS) [50] is a similar hybrid approach
that incorporates a supervision framework in the presence of
suspicious traffic. Instruction-set randomization is used to
isolate attack vectors, which are used to train the anomaly
detector. The authors of [51] propose to enhance NIDS
alerts using host-based IDS information. Nemean [52] is an
architecture for generating semantics-aware signatures,
which are signatures aware of protocol semantics (as
opposed to general byte strings). Shield [20] is a mechanism

for pushing to workstations vulnerability-specific,
application-aware filters expressed as programs in a simple
language.

The Internet Motion Sensor [7] is a distributed blackhole
monitoring system aimed at measuring, characterizing, and
tracking Internet-based threats, including worms. [53]
explores the various options in locating honeypots and
correlating their findings, and their impact on the speed and
accuracy in detecting worms and other attacks. [54] shows
that a distributed worm monitor can detect non-uniform
scanning worms two to four times as fast as a centralized
telescope [55], and that knowledge of the vulnerability
density of the population can further improve detection time.
However, other recent work has shown that it is relatively
straightforward for attackers to detect the placement of
certain types of sensors [56], [57]. Shadow Honeypots [58]
are one approach to avoiding such mapping by pushing
honeypot-like functionality at the end hosts.

The HACQIT architecture [59], [60], [61], [62] uses
various sensors to detect new types of attacks against secure
servers, access to which is limited to small numbers of users
at a time. Any deviation from expected or known behavior
results in the possibly subverted server to be taken off-line.
A sandboxed instance of the server is used to conduct “clean
room” analysis, comparing the outputs from two different
implementations of the service (in their prototype, the
Microsoft IIS and Apache web servers were used to provide
application diversity). Machine-learning techniques are used
to generalize attack features from observed instances of the
attack. Content-based filtering is then used, either at the
firewall or the end host, to block inputs that may have
resulted in attacks, and the infected servers are restarted.
Due to the feature-generalization approach, trivial variants
of the attack will also be caught by the filter. [8] takes a
roughly similar approach, although filtering is done based
on port numbers, which can affect service availability.
Cisco’s Network-Based Application Recognition (NBAR)
[21] allows routers to block TCP sessions based on the
presence of specific strings in the TCP stream. This feature
was used to block CodeRed probes, without affecting regular
web-server access. Porras et al. [63] argue that hybrid
defenses using complementary techniques (in their case,
connection throttling at the domain gateway and a peer-
based coordination mechanism), can be much more effective
against a wide variety of worms.

DOMINO [64] is an overlay system for cooperative
intrusion detection. The system is organized in two layers,
with a small core of trusted nodes and a larger collection of
nodes connected to the core. The experimental analysis
demonstrates that a coordinated approach has the potential
of providing early warning for large-scale attacks while
reducing potential false alarms. A similar approach using a
DHT-based overlay network to automatically correlate all
relevant information is described in [65]. Malkhi and Reiter
[66] describe an architecture for an early warning system
where the participating nodes/routers propagate alarm
reports towards a centralized site for analysis. The question
of how to respond to alerts is not addressed, and, similar to

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

13

DOMINO, the use of a centralized collection and analysis
facility is weak against worms attacking the early warning
infrastructure.

Suh et al. [67], propose a hardware-based solution that
can be used to thwart control-transfer attacks and restrict
executable instructions by monitoring “tainted” input data.
In order to identify “tainted” data, they rely on the operating
system. If the processor detects the use of this tainted data as
a jump address or an executed instruction, it raises an
exception that can be handled by the operating system. The
authors do not address the issue of recovering program
execution and suggest the immediate termination of the
offending process. DIRA [68] is a technique for automatic
detection, identification and repair of control-hijaking
attacks. This solution is implemented as a GCC compiler
extension that transforms a program’s source code adding
heavy instrumentation so that the resulting program can
perform these tasks. Unfortunately, the performance
implications of the system make it unusable as a front line
defense mechanism. Song and Newsome [69] propose
dynamic taint analysis for automatic detection of overwrite
attacks. Tainted data is monitored throughout the program
execution and modified buffers with tainted information will
result in protection faults. Once an attack has been
identified, signatures are generated using automatic
semantic analysis. The technique is implemented as an
extension to Valgrind and does not require any
modifications to the program’s source code but suffers from
severe performance degradation. One way of minimizing
this penalty is to make the CPU aware of memory tainting
[70]. Crandall et al. report on using a taint-based system for
capturing live attacks in [71].

The Safe Execution Environment (SEE) [72] allows users
to deploy and test untrusted software without fear of
damaging their system. This is done by creating a virtual
environment where the software has read access to the real
data; all writes are local to this virtual environment. The
user can inspect these changes and decide whether to
commit them or not. We envision use of this technique for
unrolling the effects of filesystem changes in our system, as
part of our future work plans. A similar proposal is
presented in [73] for executing untrusted Java applets in a
safe “playground” that is isolated from the user’s
environment.

7. Conclusion
We have described a novel approach to dealing with zeroday
attacks by combining features found today in honeypots and
anomaly detection systems. The main advantage of this
architecture is providing system designers the ability to fine
tune systems with impunity, since any false positives
(legitimate traffic) will be filtered by the underlying
components. We have implemented this approach in an
architecture called Shadow Honeypots. In this approach, we
employ an array of anomaly detectors to monitor and
classify all traffic to a protected network; traffic deemed
anomalous is processed by a shadow honeypot, a protected

instrumented instance of the application we are trying to
protect. Attacks against the shadow honeypot are detected
and caught before they infect the state of the protected
application. This enables the system to implement policies
that trade off between performance and risk, retaining the
capability to re-evaluate this trade-off effortlessly.

Our experience so far indicates that despite the
considerable cost of processing suspicious traffic on our
Shadow Honeypots and overhead imposed by
instrumentation, such systems are capable of sustaining the
overall workload of protecting services such as a Web server
farm, as well as vulnerable Web browsers. We have also
demonstrated how the impact on performance can be
minimized by reducing the rate of false positives and tuning
the AD heuristics using a feedback loop with the shadow
honeypot. We believe that shadow honeypots can form the
foundation of a type of application community.

Acknowledgments
This material is based on research sponsored by the Air
Force Research Laboratory under agreement number
FA8750-06-2-0221, and by the National Science Foundation
under NSF Grant CNS-09-14845. Evangelos Markatos is
also with the University of Crete.

References
[1] M. Roesch. Snort: Lightweight intrusion detection for

networks. In Proceedings of USENIX LISA, November
1999. (software available from http://www.snort.org/).

[2] N. Provos. A Virtual Honeypot Framework. In
Proceedings of the 13th USENIX Security Symposium,
pages 1–14, August 2004.

[3] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J.
Levine, and H. Owen. HoneyStat: Local Worm
Detection Using Honepots. In Proceedings of the 7th
International Symposium on Recent Advances in
Intrusion Detection (RAID), pages 39–58, October
2004.

[4] V. Yegneswaran, P. Barford, and D. Plonka. On the
Design and Use of Internet Sinks for Network Abuse
Monitoring. In Proceedings of the 7th International
Symposium on Recent Advances in Intrusion Detection
(RAID), pages 146–165, October 2004.

[5] L. Spitzner. Honeypots: Tracking Hackers. Addison-
Wesley, 2003.

[6] J. G. Levine, J. B. Grizzard, and H. L. Owen. Using
Honeynets to Protect Large Enterprise Networks. IEEE
Security & Privacy, 2(6):73– 75, Nov./Dec. 2004.

[7] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D.
Watson. The Internet Motion Sensor: A Distributed
Blackhole Monitoring System. In Proceedings of the
12th ISOC Symposium on Network and Distributed
Systems Security (SNDSS), pages 167–179, February
2005.

[8] T. Toth and C. Kruegel. Connection-history Based
Anomaly Detection. In Proceedings of the IEEE
Workshop on Information Assurance and Security,
June 2002.

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

14

[9] K. Wang and S. J. Stolfo. Anomalous Payload-based
Network Intrusion Detection. In Proceedings of the 7th
International Symposium on Recent Advanced in
Intrusion Detection (RAID), pages 201–222,
September 2004.

[10] T. Toth and C. Kruegel. Accurate Buffer Overflow
Detection via Abstract Payload Execution. In
Proceedings of the 5th Symposium on Recent
Advances in Intrusion Detection (RAID), October
2002.

[11] M. Bhattacharyya, M. G. Schultz, E. Eskin, S.
Hershkop, and S. J. Stolfo. MET: An Experimental
System for Malicious Email Tracking. In Proceedings
of the New Security Paradigms Workshop (NSPW),
pages 1–12, September 2002.

[12] C. Kruegel and G. Vigna. Anomaly Detection of Web-
based Attacks. In Proceedings of the 10th ACM
Conference on Computer and Communications
Security (CCS), pages 251–261, October 2003.

[13] M. Polychronakis, E. P. Markatos, and K. G.
Anagnostakis. Network-level polymorphic shellcode
detection using emulation. In Proceedings of the Third
Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), pages 54–73, July
2006.

[14] CERT Advisory CA-2001-19: ‘Code Red’ Worm
Exploiting Buffer Overflow in IIS Indexing Service
DLL. http://www.cert.org/advisories/CA-2001-
19.html, July 2001.

[15] Cert Advisory CA-2003-04: MS-SQL Server Worm.
http://www.cert.org/advisories/CA-2003-04.html,
January 2003.

[16] S. Staniford, V. Paxson, and N. Weaver. How to Own
the Internet in Your Spare Time. In Proceedings of the
11th USENIX Security Symposium, pages 149–167,
August 2002.

[17] S. Staniford, D. Moore, V. Paxson, and N. Weaver.
The Top Speed of Flash Worms. In Proceedings of the
ACM Workshop on Rapid Malcode (WORM), pages
33–42, October 2004.

[18] US-CERT Technical Cyber Security Alert TA04-217A:
Multiple Vulnerabilities in libpng. http://www.us-
cert.gov/cas/techalerts/TA04-217A.html, August 2004.

[19] S. Singh, C. Estan, G. Varghese, and S. Savage.
Automated worm fingerprinting. In Proceedings of the
6th Symposium on Operating Systems Design &
Implementation (OSDI), December 2004.

[20] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: Vulnerability-Driven Network Filters for
Preventing Known Vulnerability Exploits. In
Proceedings of the ACM SIGCOMM Conference,
pages 193–204, August 2004.

[21] Using Network-Based Application Recognition and
Access Control Lists for Blocking the “Code Red”
Worm at Network Ingress Points. Technical report,
Cisco Systems, Inc.

[22] H. Kim and Brad Karp. Autograph: Toward
Automated, Distributed Worm Signature Detection. In
Proceedings of the 13th USENIX Security Symposium,
pages 271–286, August 2004.

[23] J. Jung, V. Paxson, A. W. Berger, and H.
Balakrishnan. Fast Portscan Detection Using
Sequential Hypothesis Testing. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2004.

[24] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective
Architecture and Algorithm for Detecting Worms with
Various Scan Techniques. In Proceedings of the ISOC
Symposium on Network and Distributed System
Security (SNDSS), pages 143–156, February 2004.

[25] Microsoft Security Bulletin MS04-028, September
2004.
http://www.microsoft.com/technet/security/Bulletin/M
S04-028.mspx.

[26] P. Ször and P. Ferrie. Hunting for Metamorphic.
Technical report, Symantec Corporation, June 2003.

[27] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kone,
and A. Thomas. A Hardware Platform for Network
Intrusion Detection and Prevention. In Proceedings of
the 3rd Workshop on Network Processors and
Applications (NP3), February 2004.

[28] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland.
Characterizing the Performance of Network Intrusion
Detection Sensors. In Proceedings of Recent Advances
in Intrusion Detection (RAID), September 2003.

[29] Top Layer Networks. http://www.toplayer.com.
[30] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer.

Stateful Intrusion Detection for High-Speed Networks.
In Proceedings of the IEEE Symposium on Security
and Privacy, pages 285–294, May 2002.

[31] M. Polychronakis, E. P. Markatos, and K. G.
Anagnostakis. Emulation-based detection of non-self-
contained polymorphic shellcode. In Proceedings of the
10th International Symposium on Recent Advances in
Intrusion Detection (RAID), September 2007.

[32] A. J. Malton. The Denotational Semantics of a
Functional Tree-Manipulation Language. Computer
Languages, 19(3):157–168, 1993.

[33] P. Ször. The Art of Computer Virus Research and
Defense. Addison- Wesley Professional, February
2005.

[34] ApacheBench: A complete benchmarking and
regression testing suite.
http://freshmeat.net/projects/apachebench/, July 2003.

[35] Microsoft Security Bulletin MS04-028: Buffer Overrun
in JPEG Processing Could Allow Code Execution.
http://www.microsoft.com/technet/security/bulletin/MS
04-028.mspx, September 2004.

[36] i-Bench. http://http://www.veritest.com/benchmarks/i-
bench/default.asp.

[37] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb.
Building a Robust Software-Based Router Using
Network Processors. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP),
pages 216–229, Chateau Lake Louise, Banff, Alberta,
Canada, October 2001.

[38] P. Akritidis, K. Anagnostakis, and E. P. Markatos.
Efficient contentbased fingerprinting of zero-day
worms. In Proceedings of the IEEE International
Conference on Communications (ICC), May 2005.

[39] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and
David B. Johnson. A survey of rollback-recovery

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

15

protocols in message-passing systems. ACM Comput.
Surv., 34(3):375–408, 2002.

[40] S. Staniford. Containment of Scanning Worms in
Enterprise Networks. Journal of Computer Security,
2005. (to appear).

[41] N. Weaver, S. Staniford, and V. Paxson. Very Fast
Containment of Scanning Worms. In Proceedings of
the 13th USENIX Security Symposium, pages 29–44,
August 2004.

[42] S. E. Schechter, J. Jung, and A. W. Berger. Fast
Detection of Scanning Worm Infections. In
Proceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection (RAID),
October 2004.

[43] S. Venkataraman, D. Song, P. B. Gibbons, and A.
Blum. New Streaming Algorithms for Fast Detection
of Superspreaders. In Proceedings of the 12th ISOC
Symposium on Network and Distributed Systems
Security (SNDSS), pages 149–166, February 2005.

[44] D. Moore, C. Shannon, G. Voelker, and S. Savage.
Internet Quarantine: Requirements for Containing
Self-Propagating Code. In Proceedings of the IEEE
Infocom Conference, April 2003.

[45] D. Spinellis. Reliable identification of bounded-length
viruses is NP-complete. IEEE Transactions on
Information Theory, 49(1):280– 284, January 2003.

[46] G. Vigna, W. Robertson, and D. Balzarotti. Testing
Network-based Intrusion Detection Signatures Using
Mutant Exploits. In Proceedings of the 11th ACM
Conference on Computer and Communications
Security (CCS), pages 21–30, October 2004.

[47] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically Generating Signatures for Polymorphic
Worms. In Proceedings of the IEEE Security & Privacy
Symposium, pages 226–241, May 2005.

[48] P. Akritidis, E. P. Markatos, M. Polychronakis, and K.
Anagnostakis. STRIDE: Polymorphic Sled Detection
through Instruction Sequence Analysis. In Proceedings
of the 20th IFIP International Information Security
Conference (IFIP/SEC), June 2005.

[49] U. Payer, P. Teufl, and M. Lamberger. Hybrid Engine
for Polymorphic Shellcode Detection. In Proceedings
of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), July
2005.

[50] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo.
FLIPS: Hybrid Adaptive Intrusion Prevention. In
Proceedings of the 8th Symposium on Recent
Advances in Intrusion Detection (RAID), September
2005.

[51] H. Dreger, C. Kreibich, V. Paxson, and R. Sommer.
Enhancing the Accuracy of Network-based Intrusion
Detection with Host-based Context. In Proceedings of
the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), July
2005.

[52] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha.
An Architecture for Generating Semantics-Aware
Signatures. In Proceedings of the 14th USENIX
Security Symposium, pages 97–112, August 2005.

[53] E. Cook, M. Bailey, Z. M. Mao, and D. McPherson.
Toward Understanding Distributed Blackhole
Placement. In Proceedings of the ACM Workshop on
Rapid Malcode (WORM), pages 54–64, October 2004.

[54] M. A. Rajab, F. Monrose, and A. Terzis. On the
Effectiveness of Distributed Worm Monitoring. In
Proceedings of the 14th USENIX Security Symposium,
pages 225–237, August 2005.

[55] D. Moore, G. Voelker, and S. Savage. Inferring
Internet Denialof- Service Activity. In Proceedings of
the 10th USENIX Security Symposium, pages 9–22,
August 2001.

[56] J. Bethencourt, J. Franklin, and M. Vernon. Mapping
Internet Sensors With Probe Response Attacks. In
Proceedings of the 14th USENIX Security Symposium,
pages 193–208, August 2005.

[57] Y. Shinoda, K. Ikai, and M. Itoh. Vulnerabilities of
Passive Internet Threat Monitors. In Proceedings of the
14th USENIX Security Symposium, pages 209–224,
August 2005.

[58] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K.
Xinidis, E. P. Markatos, and A. D. Keromytis.
Detecting Targetted Attacks Using Shadow Honeypots.
In Proceedings of the 14th USENIX Security
Symposium, pages 129–144, August 2005.

[59] J. E. Just, L. A. Clough, M. Danforth, K. N. Levitt, R.
Maglich, J. C. Reynolds, and J. Rowe. Learning
Unknown Attacks – A Start. In Proceedings of the 5th
International Symposium on Recent Advances in
Intrusion Detection (RAID), October 2002.

[60] J. C. Reynolds, J. Just, E. Lawson, L. Clough, and R.
Maglich. The Design and Implementation of an
Intrusion Tolerant System. In Proceedings of the
International Conference on Dependable Systems and
Networks (DSN), June 2002.

[61] J.C. Reynolds, J. Just, E. Lawson, L. Clough, and R.
Maglich. Online Intrusion Protection by Detecting
Attacks with Diversity. In Proceedings of the 16th
Annual IFIP 11.3 Working Conference on Data and
Application Security Conference, April 2002.

[62] J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-
Line Intrusion Detection and Attack Prevention Using
Diversity, Generate-and- Test, and Generalization. In
Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS), January
2003.

[63] P. Porras, L. Briesemeister, K. Levitt, J. Rowe, and Y.-
C. A. Ting. A Hybrid Quarantine Defense. In
Proceedings of the ACM Workshop on Rapid Malcode
(WORM), pages 73–82, October 2004.

[64] V. Yegneswaran, P. Barford, and S. Jha. Global
Intrusion Detection in the DOMINO Overlay System.
In Proceedings of the ISOC Symposium on Network
and Distributed System Security (SNDSS), February
2004.

[65] M. Cai, K. Hwang, Y-K. Kwok, S. Song, and Y. Chen.
Collaborative Internet Worm Containment. IEEE
Security & Privacy Magazine, 3(3):25–33, May/June
2005.

[66] C. C. Zou, L. Gao, W. Gong, and D. Towsley.
Monitoring and Early Warning for Internet Worms. In

 (IJCNS) International Journal of Computer and Network Security,
Vol. 2, No. 9, September 2010

16

Proceedings of the 10th ACM International Conference
on Computer and Communications Security (CCS),
pages 190–199, October 2003.

[67] G. Edward Suh, Jae W. Lee, David Zhang, and
Srinivas Devadas. Secure program execution via
dynamic information flow tracking. SIGOPS Operating
Systems Review, 38(5):85–96, 2004.

[68] A. Smirnov and T. Chiueh. DIRA: Automatic
Detection, Identification, and Repair of Control-
Hijacking Attacks. In Proceedings of the 12th ISOC
Symposium on Network and Distributed System
Security (SNDSS), February 2005.

[69] J. Newsome and D. Dong. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software. In
Proceedings of the 12th ISOC Symposium on Network
and Distributed System Security (SNDSS), February
2005.

[70] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and C.
Verbowski. Defeating Memory Corruption Attacks via
Pointer Taintedness Detection. In Proceedings of the
International Conference on Dependable Systems and
Networks (DSN), pages 378–387, June 2005.

[71] J. R. Crandall, S. F. Wu, and F. T. Chong. Experiences
Using Minos as a Tool for Capturing and Analyzing
Novel Worms for Unknown Vulnerabilities. In
Proceedings of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment
(DIMVA), July 2005.

[72] W. Sun, Z. Liang, R. Sekar, and V. N.
Venkatakrishnan. One-way Isolation: An Effective
Approach for Realizing Safe Execution Environments.
In Proceedings of the 12th ISOC Symposium on
Network and Distributed Systems Security (SNDSS),
February 2005.

[73] D. Malkhi and M. K. Reiter. Secure Execution of Java
Applets Using a Remote Playground. IEEE Trans.
Softw. Eng., 26(12):1197– 1209, 2000.

