
Fast and Practical Instruction-Set Randomization
for Commodity Systems

Georgios Portokalidis and Angelos D. Keromytis
Network Security Lab

Department of Computer Science
Columbia University, New York, NY, USA
{porto, angelos}@cs.columbia.edu

ABSTRACT
Instruction-set randomization (ISR) is a technique based on
randomizing the “language” understood by a system to pro-
tect it from code-injection attacks. Such attacks were used
by many computer worms in the past, but still pose a threat
as it was confirmed by the recent Conficker worm outbreak,
and the latest exploits targeting some of Adobe’s most popu-
lar products. This paper presents a fast and practical imple-
mentation of ISR that can be applied on currently deployed
software. Our solution builds on a binary instrumentation
tool to provide an ISR-enabled execution environment en-
tirely in software. Applications are randomized using a sim-
ple XOR function and a 16-bit key that is randomly gener-
ated every time an application is launched. Shared libraries
can be also randomized using separate keys, and their ran-
domized versions can be used by all applications running
under ISR. Moreover, we introduce a key management sys-
tem to keep track of the keys used in the system. To the
best of our knowledge we are the first to apply ISR on truly
shared libraries.

Finally, we evaluate our implementation using real ap-
plications including the Apache web server, and the MySQL
database server. For the first, we show that our implementa-
tion has negligible overhead (less than 1%) for static HTML
loads, while the overhead when running MySQL can be as
low as 75%. We see that our system can be used with lit-
tle cost with I/O intensive network applications, while it
can also be a good candidate for deployment with CPU in-
tensive applications, in scenarios where security outweighs
performance.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

General Terms
Security, Reliability, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Keywords
Code-injection, randomization, security, performance

1. INTRODUCTION
Instruction-set randomization [25, 4] is a technique based

on randomizing a system’s language (i.e., its instruction set)
to prevent code-injection attacks. Such attacks occur when
the attacker is able to execute arbitrary code remotely, or
locally but as a different user (e.g., a user with elevated
privileges like the administrator). They usually follow the
exploitation of buffer overflows [35, 3, 27] and other memory
corruption vulnerabilities, like dangling pointers [20, 34] and
format string attacks [39], that allow attackers to redirect
execution to the injected code.

In the past, code-injection attacks (CI) accounted for al-
most half of the advisories released by CERT [43], and were
used by many computer worms to infect new hosts [41, 11,
12, 29, 44]. More recently, they have been overshadowed
by cross-site scripting and SQL-injection attacks, but the
recent Conficker worm outbreak [36], and the multiple vul-
nerabilities discovered in Adobe’s popular software [1, 42]
came as a reminder that CI attacks still pose a significant
threat to a large number of systems.

ISR is a general approach that defeats all types of remote
code-injection regardless of the way it was injected into a
process. It operates by randomizing the instructions that
the underlying system “understands”, so that “foreign” code
such as the code injected during an attack will fail to ex-
ecute. It was initially proposed as a modification to the
processor to ensure low performance overheads, but unfor-
tunately this proposal has had little allure with hardware
vendors. Instead, software implementations of ISR on x86
emulators have been created, mainly to demonstrate the ef-
fectiveness of the approach, as they incur large runtime over-
heads [25, 4]. Software only implementations of ISR using
dynamic binary translation have been also proposed [24],
but have seen little use in practice as they cannot be di-
rectly applied to commodity systems. For instance, they do
not support shared libraries or dynamically loaded libraries
(i.e., they require that the application is statically linked),
and increase the code size of encoded applications.

This paper describes a fast and practical software imple-
mentation of ISR for commodity systems. Our implementa-
tion is based on Intel’s dynamic instrumentation tool called
PIN [26], which provides the runtime environment. Appli-
cation code is randomized using the XOR function and a
16-bit key, which is randomly generated every time the ap-

plication is launched to make it resistant against key guess-
ing attacks [40].

Multiple keys can be used to randomize different parts of
the application. For instance, every shared library used by
the system can be randomized using a different key, creat-
ing a randomized copy of each library. While additional disk
space will be required to store the randomized versions, dur-
ing runtime all binaries running under ISR will be using the
same randomized copy. Also, original (native) code can be
combined with randomized code. The keys used to encode
the various libraries are managed using SQLite [32], a self-
contained and serverless database engine. Libraries can be
randomized once and reused by multiple applications, while
frequently re-randomizing them also protects them against
key guessing attempts. Finally, we assume (as does past
work) that the attacker does not have access to the random-
ized code (i.e., it is a remote attacker), so a known ciphertext
attack against the key is not possible.

The main contributions of this paper can be summarized
in the following:

• We implemented instruction-set randomization for com-
modity systems using Intel’s PIN framework (our im-
plementation of ISR is freely available from https:

//sourceforge.net/projects/isrupin/)

• Our implementation operates on currently deployed bi-
naries, as it does not require recompilation, or changes
to the underlying system (i.e., the operating system
and hardware)

• Our system supports dynamically linked executables,
as well as dynamically loaded libraries. We also intro-
duce a key management scheme for storing and keep-
ing track of the keys used to randomize shared libraries
and applications. To the best of our knowledge we are
the first to apply ISR on shared libraries

• Executables are re-randomized every time they are
launched, and shared libraries are re-randomized at
custom intervals to protect the key from guessing at-
tacks such as [40]

The overhead of our implementation can be as low as 10%
compared with native execution. We are able to run popu-
lar servers such as the Apache web server, and the MySQL
database server, and show that running Apache using ISR
has negligible effect on throughput for static HTML loads,
while the overhead for running MySQL is 75%. We also
evaluate the cost of completely isolating the framework’s
data from the application. This memory protection (MP)
requires more invasive instrumentation of the target appli-
cation, and it has not been investigated by previous work on
software-based ISR, since it incurs significant overhead. We
show that adding MP over ISR does not reduce Apache’s
throughput, while it imposes an extra 57% overhead when
running MySQL.

The rest of this paper is organized as follows: Section 2
offers a brief description of ISR. Our implementation is dis-
cussed in Section 3. We evaluate the performance of our
framework in Section 4. Related work is examined in Sec-
tion 5. Finally, conclusions are in Section 6.

2. INSTRUCTION-SET RANDOMIZATION
Instruction-set randomization as a mean to thwart code-

injection attacks has been presented in detail in previous
work [25, 4]. In this section we will only briefly describe the
technique, mainly focusing on its application on binaries.

ISR is based on the observation that code-injection at-
tacks need to position executable code within the address
space of the exploited application and then redirect con-
trol to it. The injected code needs to be compatible with
the execution environment for these attacks to succeed. In
other words, the attacker needs to be able to “talk” to the
target system in its own “language”. For binary programs,
this means that the code needs to be compatible with the
processor and software running at the target. For instance,
injecting x86 code into a process running on an ARM sys-
tem will most probably cause it to crash, either because of
an illegal instruction being executed, or due to an illegal
memory access. We should note that in this example it is
possible to compose (somewhat limited) machine code able
to run without errors on both ARM and x86.

ISR builds on this observation to block attackers from ex-
ecuting code injected in vulnerable processes. An execution
environment employing a randomly generated instruction
set is used to run processes, causing injected code to fail.
While exploitation attempts will still cause a DoS by crash-
ing the targeted application, attackers are not able to per-
form any useful action such as installing malware or rootkits.
The strength of the technique lies in the difficulty of guess-
ing the instruction set used by a process. Of course, if an
attacker has access to the randomized binary, he can launch
an attack against the applied transformation to attempt to
learn the new instruction set, something that requires local
access to the target host. This work (and ISR in general)
is primarily focused on protecting against remote attacks
on network services (e.g., http, dns, ssh, etc.), where the
attacker does not have access to the target system or the
randomized binaries. Consequently, attackers cannot launch
attacks against the key that require access to the ciphertext.

However, remote attackers can still attempt to guess the
key used to randomize the instruction set [40]. Such guess-
ing attacks will cause the application to crash and restart
for each failed attempt to correctly guess the key. We can
mitigate such attacks by either using a more complicated
encoding algorithm (e.g., bit transposition, AES, etc.) and
a larger key to increase the complexity of the attack, or
by frequently re-encoding the binary using a new key every
time it is executed as we discuss below. The reader can refer
to our earlier work on ISR [25] for additional discussion on
randomization using larger keys.

2.1 ISR Operation
CPU instructions for common architectures, like x86 and

ARM, consist of two parts: the opcode and operands. The
opcode defines the action to be performed, while the oper-
ands are the arguments. For example, in the the x86 archi-
tecture a software interrupt instruction (INT) comprises of
the opcode 0xCD, followed by a one-byte operand that spec-
ifies the type of interrupt. We can create new instruction
sets by randomly creating new mappings between opcodes
and actions. We can further randomize the instruction set
by also including the operands in the transformation.

For ISR to be effective and efficient, the number of possible
instruction sets must be large, and the mapping between the

https://sourceforge.net/projects/isrupin/
https://sourceforge.net/projects/isrupin/

new opcodes and instructions should be efficient (i.e., not
completely arbitrary). We can achieve both these proper-
ties by employing cryptographic algorithms and a randomly
generated secret key. As an example, consider a generic
RISC processor with fixed-length 32-bit instructions. We
can effectively generate random instruction sets by encod-
ing instructions with XOR and a secret 32-bit key. In this
example, an attacker would have to try 232 combinations in
the worst case to guess the key. Architectures with larger in-
structions (i.e., 64 bits) can use longer keys to be even more
resistant to brute-force attacks. On the other hand, simply
increasing the length of the key used with XOR will not im-
prove security, since the key can be attacked in a piece-meal
fashion (i.e., by guessing the first 32 bits of the key that cor-
respond to a single instruction). The situation is even more
complicated on architectures with variable sized instructions
like the x86. Many instructions in the x86 architecture are
1 or 2 bytes long. This effectively splits the key in four or
two sub-keys of 8 and 16 bits respectively. Thus, it is possi-
ble that an attacker attempts to guess each of the sub-keys
independently, as shown by Sovarel et al. [40].

The deficiencies of XOR randomization on architectures
like the x86 can be overcome by using other ciphers for
randomizing instructions. For instance, bit transposition
of larger blocks (e.g., 160 bits) would greatly increase the
work factor for an attacker, and cannot be attacked in a
piece-meal fashion. Hu et al [24] propose the use of AES
encryption on blocks of 128 bits to ensure that an attacker
cannot break the randomization. In both cases larger blocks
of data need to be accessible at runtime, and more process-
ing is required to decode the instructions. We have taken
a different approach to protect the keys. First, we employ
multiple keys for the encoding of an application (i.e., a dif-
ferent key for each shared library). Second, we randomize
an application every time it is launched with a new random
key, and third we frequently re-randomize shared libraries.

Finally, we note that the security of the approach depends
on the fact that injected code will raise an exception (e.g., by
accessing an illegal address or using an invalid opcode), af-
ter it has been de-randomized by the execution environment.
While this will generally be true, there are a few permuta-
tions of injected code that will result in working code that
performs the attacker’s task. This number is statistically
insignificant [5].

2.2 ISR Runtime
A randomized process requires the appropriate execution

environment to de-randomize its instructions before they are
executed. Previous work on ISR has demonstrated that it is
possible to implement such an environment both in hardware
and software. In both cases, the environment needs access
to the key used during the randomization. The key can be
stored within the executable, or in a database. Storing it
within the application is compact and removes the need for
external storage (i.e., a DB), but could expose the key if the
application leaks information.

Additionally, programs frequently make use of libraries,
which may or may not be randomized. ISR needs to be able
to detect when execution switches from a randomized piece
of code to a plain one, and vice-versa. Detecting such con-
text switches can be complex (specially in hardware), and
in fact previous work has only handled statically linked exe-
cutables. We will show in Section 3 that our implementation

is able to handle dynamically linked applications by support-
ing multiple instruction sets per process (i.e., instructions
randomized with different keys).

3. IMPLEMENTATION
We implemented ISR in software on 32-bit Linux for dy-

namically and statically linked ELF executables and libraries.
This section describes the components of our implementa-
tion. It should be noted that while the current implementa-
tion works on Linux, it can be easily ported to other plat-
forms also supported by the runtime.

3.1 Randomization of Binaries
ELF (the executable and linking format) is a very common

and standard file format used for executables and shared li-
braries in many Unix type systems like Linux, BSD, Solaris,
etc. Despite the fact that it is most commonly found on
Unix systems, it is very flexible and it is not bound to any
particular architecture or OS. Also, the ELF format com-
pletely separates code and data, including control data such
as the procedure linkage table (PLT), making it an ideal
format for applying binary randomization.

We modified the objcopy utility, which is part of the GNU
binutils package to add support for randomizing ELF exe-
cutables and libraries. objcopy can be used to perform cer-
tain transformations (e.g., strip debugging symbols) on an
object file, or simply copy it to another. Thus, it is able
to parse the ELF headers of an executable or library and
access its code. We modified objcopy to randomize a file’s
code using XOR and a 16-bit key. We also extended objcopy

to randomize shared libraries in ELF format. Randomizing
using XOR does not require that the target binary is aligned,
so it does not increase its size or modify its layout.

While our current implementation is currently able to ran-
domize only ELF binaries, support for other binaries can be
easily added. For instance, we plan to extend objcopy to
also randomize Portable Executable (PE) binaries for Win-
dows operating systems [28].

3.2 Shared Libraries
Most executables in modern OSs are dynamically linked

to one or more shared libraries. Shared libraries are pre-
ferred because they accommodate code reuse and minimize
memory consumption, as their code can be concurrently
mapped and used by multiple applications. As a result, mix-
ing shared libraries with ISR has proven to be problematic
in past work. Our implementation of ISR supports multi-
ple instruction sets (i.e., multiple randomization keys) for
the same process, enabling us to use plain shared libraries
with a randomized executable. Furthermore, it enables us
to randomize each library with its own key, and share it
amongst all processes running under ISR like an ordinary
shared library.

We create a randomized copy of all libraries that are needed,
and store them in a shadow folder (e.g., “/usr/rand lib”).
For stronger security, each library is encoded using a dif-
ferent key, while we can also periodically re-randomize all
the libraries using new keys. When an application is loaded
in the runtime environment, we modify its environment so
it first looks for shared libraries in a shadow folder. If a
randomized version of a library is not found, it proceeds to
look for a plain version in the usual system locations (e.g.,
“/usr/lib” and “/lib” on Linux, and “c:\windows\system32”

for Windows). Of course, a process can be forced to only
use randomized code if that is required. Moreover, multiple
shadow folders can be used concurrently. For instance, if a
process crashes (e.g., a crash could be triggered by a failed
exploitation attempt), we may re-encode all shared libraries
to thwart key guessing attacks.

3.3 Key Management
Supporting multiple instruction sets for every process no-

tably increases the number of keys that are active in the
system at any given time. Thus, key management becomes
an important aspect of the system, and specially because
shared libraries can be randomized with their own key, and
multiple versions of the libraries may co-exist in the system.
Previous work proposed to store keys within the ELF files,
which removes the need for separate storage for the keys.
While this approach is robust, it leaves keys vulnerable to
exposure if an application leaks data because of a bug or an
error. In the past information leakage has been exploited
to bypass address space layout randomization (ASLR) [19].
Additionally, storing the key within the executable might
not be feasible when using binary formats other than ELF.

Instead, we store the keys for executables and libraries
in a database, using the sqlite database system. Sqlite is a
software library that implements a self-contained, serverless
SQL database engine. The entire database is stored in a
single file, and it is accessed directly by our tool (using the
sqlite library) without the need to run additional processes.
The keys are indexed using the library’s full path, and the
operation of retrieving a key from the DB is fast. As it is
an operation that it is only performed when an application
is launched or a dynamic library is loaded, its performance
is not critical for the system.

3.4 PIN Execution Environment
We implemented the de-randomizing execution environ-

ment using Intel’s dynamic binary instrumentation tool PIN.
PIN [26] is an extremely versatile tool that operates entirely
in user-space, and supports multiple architectures (x86, 64-
bit x86, ARM) and operating systems (Linux, Windows,
MacOS). It operates by just-in-time (JIT) compiling the tar-
get’s instructions combined with any instrumentation into
new code, which is placed into a code cache, and executed
from there. It also offers a rich API to inspect and modify
an application’s original instructions.

We make use of the supplied API to implement our ISR
runtime framework. First, we install a callback that inter-
cepts the loading of all file images. This provides us with
the names of all the shared libraries being used, as well as
the memory ranges where they have been loaded in the ad-
dress space. We use the path and name of the library to
lookup its key in the database and load it. We save the li-
brary’s key and memory address range in a hash table-like
data structure that allows us to quickly lookup a key using
a memory address. The existence of a key in the database
also indicates that the library is encoded, so no special han-
dling is required to load system libraries (i.e., not encoded
libraries).

The actual de-randomization is performed by installing
a callback that replaces PIN’s default function for fetching
code from the target process. This second callback reads
instructions from memory, and uses the memory address
to lookup the key to use for decoding. If the instruction

fetched is within the memory range of a shared library we
use its key for decoding, or assume no decoding is necessary
if no key is present. All instructions not associated with
a library are considered to be part of the executable and
are decoded using its key. To avoid performing a lookup for
every instruction fetched, we cache the last used key. During
our evaluation this simple single entry cache achieved high
hit ratios, so we did not explore other caching mechanisms.

3.5 Memory Protection (MP)
When executing an application within PIN, they both op-

erate on the same address space. This means that in theory
an application can access and modify the data used by PIN
and consequently ISR. Such illegal accesses may occur due
to a program error, and could potentially be exploited by an
attacker. For instance, an attacker could attempt to over-
write a function pointer or return address in PIN, so that
control is diverted directly into the attacker’s code in the
application. Such a control transfer would circumvent ISR
enabling the attacker to successfully execute his code. To
defend against such attacks we need to protect PIN’s mem-
ory from being written by the application.

When PIN loads and before the target application and its
libraries gets loaded, we scan the address space to identify all
memory pages used by PIN. We mark these memory pages
by asserting a flag in an array (page-map), which holds one
byte for every addressable page. For instance, in a 32-bit
Linux system, processes can typically access 3 out of the 4
GBytes that are directly addressable. For a page size of 4
KBytes, this corresponds to 786432 pages, so we allocate 768
KBytes to store the flags for the entire address space. At
runtime, when additional memory is used by PIN, we update
the flags for the newly used pages in the page-map. Memory
protection is actually enforced by instrumenting all memory
write operations performed by the application, and checking
that the page being accessed is valid according to the page-
map. If the application attempts to write to a page “owned”
by PIN, the instrumentation causes a page-fault that will
terminate it.

Introducing memory protection further hardens the system
against code-injection attacks, but incurs a substantial over-
head. However, forcing an attacker to exploit a vulnerability
in this fashion is already hardening the system considerably,
as he would have to somehow discover one of the few mem-
ory locations which can be used to divert PIN’s control flow.
Alternatively, we can use address space layout randomiza-
tion to decrease the probability of an attacker successfully
guessing the location of PIN’s control data.

3.6 ISR Exceptions
While all instructions in the application are encoded, there

are cases where certain external and unencoded instructions
need to be executed in the context of the process. For in-
stance, some systems inject code within the stack of a pro-
cess when a signal is delivered. These signal trampolines are
used to set up and clean up the context of a signal handler.
The instructions are a type of legitimate code-injection per-
formed by the system, and need special handling or their
execution will lead to a crash. Fortunately, signal trampo-
lines are very small (approximately 5-7 instructions long),
and the instructions used are fixed on every system (i.e.,
the same instructions are used for all signals in the system).
When a signal is delivered to a process, we scan the code

being executed to identify trampolines, and execute them
without applying the decoding function.

Moreover, modern Linux systems frequently include a read-
only virtual shared object (VDSO) in every running process.
This object is used to export certain kernel functions to user
space. For instance, it is used to perform system calls, re-
placing the older software interrupt mechanism (INT 0x80).
This object needs to be treated in the same manner as plain
shared libraries, allowing the execution of non-randomized
code. Since this is a read-only object, we can safely do so.

3.7 Startup Procedure
When a dynamically linked application is executed, the

loader looks for shared libraries in certain predefined lo-
cations (e.g., “/usr/lib”, “/lib”, etc.), as well as locations
specified in the environment (i.e., the environment variable
LD_LIBRARY_PATH). To enable the loading of the randomized
versions of shared libraries, we need to add the shadow folder
in the search path. We cannot do so by adding the folder in
the system’s library search path, as that would cause these
libraries to be used instead of the originals for all running
applications. Instead, we use LD_LIBRARY_PATH. Unfortu-
nately, as PIN itself is dynamically linked we cannot set the
variable directly. We employ a wrapper program that we
launch using PIN. The wrapper adds the shadow folder in
the library search path, and launches the target application,
which then looks for libraries in the shadow folder first.

4. PERFORMANCE
Dynamic instrumentation tools usually incur significant

slowdowns on target applications. While this is also true
for PIN, we show that the overhead is not prohibitive. We
conducted the measurements presented in this section on a
DELL Precision T5500 workstation with a dual 4-core Xeon
CPU and 24GB of RAM running Linux.

Figure 1 shows the mean execution time and standard
deviation when running several commonly used Linux util-
ities. We draw the execution time for running ls on a di-
rectory with approximately 3400 files, and running cp, cat,
and bunzip2 with a 64MB file. We tested four execution sce-
narios: native execution, execution with PIN and no instru-
mentation (PIN’s minimal overhead), our implementation of
ISR without memory protection (MP), and lastly with MP
enabled (ISR-MP). The figure shows that short-lived tasks
suffer more, because the time needed to encode the binary
and initialize PIN is relatively large when compared with the
task’s lifetime. In opposition, when executing a longer-lived
task, such as bunzip2, execution under ISR only takes about
10% more time to complete.

For all four utilities, when employing memory protection
to protect PIN’s memory from interference, execution takes
significantly longer, with bunzip2 being the worst case re-
quiring almost 4 times more time to complete. That is be-
cause memory protection introduces additional instructions
at runtime to check the validity of all memory write op-
erations. Another interesting observation is that running
bunzip2 under ISR is slightly faster from just using PIN.
We attribute this to the various optimizations that PIN in-
troduces when actual instrumentation is introduced.

We also evaluate our implementation using two of the
most popular open-source servers: the Apache web server,
and the MySQL database server. For Apache, we measure
the effect that PIN and ISR have on the maximum through-

E
xe

cu
tio

n
T

im
e

(s
ec

)

0

5

10

15

20

ls cp cat bunzip2

65

70

75

Native

PIN

ISR

ISR−MP

Figure 1: Execution time of basic Linux utilities.
The figure draws the mean execution time and stan-
dard deviation when running four commonly used
Linux utilities.

put of a static web page, using Apache’s own benchmarking
tool ab over a dedicated 1 Gb/s network link. To avoid high
fluctuations in performance due to Apache forking extra pro-
cesses to handle the incoming requests in the beginning of
the experiment, we configured it to pre-fork all worker pro-
cesses (pre-forking is a standard multi-processing Apache
module), and left all other options to their default setting.

Figure 2 shows the mean throughput and standard devi-
ation of Apache for the same four scenarios used in our first
experiment. The graph shows that Apache’s throughput
is more limited by available network bandwidth than CPU
power. Running the server over PIN has no effect on the at-
tainable throughput, while applying ISR, even with memory
protection enabled, does not affect server throughput either.

Finally, we benchmarked a MySQL database server using
its own test-insert benchmark, which creates a table, fills
it with data, and selects the data. Figure 3 shows the time
needed to complete this benchmark for the same four scenar-
ios. PIN introduces a 75% overhead compared with native
execution, while our ISR implementation incurs no observ-
able slowdown. Unlike Apache, enabling memory protection
for MySQL is 57.5% slower that just using ISR (175% from
native). As with Apache, the benchmark was run at a re-
mote client over a 1 Gb/s network link to avoid interference
with the server.

5. RELATED WORK
Instruction-set randomization was initially proposed as a

general approach against code-injection attacks by Gaurav
et al. [25]. They propose a low-overhead implementation of
ISR in hardware, and evaluate it using the Bochs x86 emula-
tor. They also demonstrate the applicability of the approach

R
e
q
u
e
s
ts

/s
e
c

5000

5500

6000

Native PIN ISR ISR−MP

Figure 2: Apache web server throughput. The figure
draws the mean reqs/sec and standard deviation as
measured by Apache’s benchmark utility ab.

on interpreted languages such as Perl, and later SQL [9].
Concurrently, Barrantes et al. [4] proposed a similar ran-
domization technique for binaries (RISE), which builds on
the Valgrind x86 emulator. RISE provides limited support
for shared libraries by creating randomized copies of the li-
braries for each process. As such, the libraries are not ac-
tually shared, and consume additional memory each time
they are loaded. Furthermore, Valgrind incurs a minimum
performance overhead of 400% [18], which makes its use im-
practical.

The work closest to ours is by Hu et al. [24]. They also
employ a virtual execution environment based on a dynamic
binary translation framework named STRATA. Their imple-
mentation uses AES encryption with a 128-bit key, which re-
quires that code segments are aligned at 128-bit blocks. Un-
like our implementation, they do not support self-modifying
code, and they produce randomized binaries that are signifi-
cantly larger from the originals (e.g., the randomized version
of Apache was 77% larger than the original). Also, to the
best of our knowledge previous work on ISR does not ad-
dress the implications introduced by signal trampolines and
VDSO, nor does it investigate the costs involved with pro-
tecting the execution environment from the hosted process
(STRATA protects only a part of its data).

Address obfuscation is another approach based on ran-
domizing the execution environment (i.e., the locations of
code and data) to harden software against attacks [7, 33].
It can be performed at runtime by randomizing the layout
of a process (ASLR) including the stack, heap, dynamically
linked libraries, static data, and the process’s base address.
Additionally, it can be performed at compile time to also
randomize the location of program routines and variables.
Shacham et al. [38] show that ASLR may not be very ef-
fective on 32-bit systems, as they do not allow for sufficient
entropy. In contrast, Bhatkar et al. [8] argue that it is pos-
sible to introduce enough entropy for ASLR to be effective.
Meanwhile, attackers have successfully exploited ASLR en-

T
o
ta

l
T

im
e
 (

s
e
c
)

0

500

1000

1500

2000

2500

3000

Native Null ISR ISR−MP

Figure 3: MySQL test-insert benchmark. It measures
table creation, data insertion, and selection. The
figure draws total execution time as reported by the
benchmark utility.

abled systems by predicting process layout, exploiting ap-
plications to expose layout information [19], or using tech-
niques like heap spraying [16].

Hardware extensions such as the NoExecute (NX) bit in
modern processors [22, 33] can stop code-injection attacks
all together without impacting performance. This is accom-
plished by disallowing the execution of code from memory
pages that are marked with the NX bit. Unfortunately, its
effectiveness is dependent on its proper use by software. For
instance, many applications like browsers do not set it on all
data segments. This can be due to backward compatibility
constraints (e.g., systems using signal trampolines), or even
just bad developing practice.

PointGuard [14] uses encryption to protect pointers from
buffer overflows. It encrypts pointers in memory, and de-
crypts them only when they are loaded to a register. It is im-
plemented as a compiler extension, so it requires that source
code is available for recompilation. Also, while it is able to
deter buffer overflow attacks, it can be defeated by format
string attacks that frequently employ code-injection later
on. Other solutions implemented as compiler extensions in-
clude Stackguard [15] and ProPolice [21]. They operate by
introducing special secret values in the stack to identify and
prevent stack overflow attacks, but can be subverted [10].
Write integrity testing [2] uses static analysis and “guard”
values between variables to prevent memory corruption er-
rors, but static analysis alone cannot correctly classify all
program writes. CCured [30] is a source code transforma-
tion system that adds type safety to C programs, but it
incurs a significant performance overhead and is unable to
statically handle some datatypes. Generally, solutions that
require recompilation of software are less practical, as source
code or parts of it (e.g., third-party libraries) are not always
available.

Dynamic binary instrumentation is used by many other
solutions to retrofit unmodified binaries with defenses against

remote attacks. For instance, dynamic taint analysis (DTA)
is used by many projects [31, 17, 13, 23], and is a able to de-
tect control hijacking and code-injection attacks, but incurs
large slowdowns (e.g., frequently 20x or more). Due to their
large overhead, dynamic solutions are mostly used for the
analysis of attacks and malware [6], and in honeypots [37].

6. CONCLUSIONS
We described a fast and practical implementation of ISR

based on Intel’s dynamic instrumentation tool PIN. Our im-
plementation works on commodity systems, and does not
require the recompilation or relinking of target applications.
Binaries are randomized at execution time, while shared li-
braries can be encoded beforehand and shared between the
processes executing using ISR. Moreover, we introduce a
simple management scheme to keep track of the random-
ized shared libraries and their associated keys.

Our solution operates with relatively small overhead that
makes it an attractive countermeasure to retrofit security
sensitive applications with. Applying it on the Apache web
server has negligible effect on throughput for static HTML
loads, while MySQL performs approximately 75% slower.
Furthermore, we show that the overhead is largely attributed
to PIN, and can be easily mitigated when applied on long-
running I/O driven applications such as network services.

Acknowledgements
This work was supported by the United States Air Force Re-
search Laboratory (AFRL) through Contract FA8650-10-C-
7024 and by the National Science Foundation (NSF) through
Grant CNS-09-14845. Opinions, findings, conclusions and
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the US
Government, the Air Force, or the NSF.

7. REFERENCES
[1] Adobe. Security advisory for flash player, adobe

reader and acrobat. http://www.adobe.com/support/
security/advisories/apsa10-01.html, June 2010.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and
M. Castro. Preventing memory error exploits with
WIT. In Proceedings of the 2008 IEEE Symposium on
Security and Privacy, pages 263–277, May 2008.

[3] Aleph One. Smashing the stack for fun and profit.
Phrack, 7(49), 1996.

[4] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S.
Palmer, D. Stefanovic, and D. D. Zovi. Randomized
instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the ACM
Conference on Computer and Communications
Security, pages 281–289, October 2003.

[5] E. G. Barrantes, D. H. Ackley, S. Forrest, and
D. Stefanović. Randomized instruction set emulation.
ACM Trans. Inf. Syst. Secur., 8(1):3–40, 2005.

[6] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A
tool for analyzing malware. In Proceedings of the 15th

European Institute for Computer Antivirus Research
(EICAR) Annual Conference, April 2006.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: an efficient approach to combat a broad
range of memory error exploits. In Proceedings of the

12th USENIX Security Symposium, pages 105–120,
August 2003.

[8] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
techniques for comprehensive protection from memory
error exploits. In Proceedings of the 14th USENIX
Security Symposium, pages 255–270, August 2005.

[9] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D.
Keromytis, and V. Prevelakis. On the general
applicability of instruction-set randomization. IEEE
Transactions on Dependable and Secure Computing,
99, 2008.

[10] Bulba and Kil3r. Bypassing StackGuard and
StackShield. Phrack, 5(56), May 2000.

[11] CERT advisory CA-2001-19: “Code Red” worm
exploiting buffer overflow in IIS indexing service DLL.
http://www.cert.org/advisories/CA-2001-19.html,
July 2001.

[12] Cert Advisory CA-2003-04: MS-SQL Server Worm.
http://www.cert.org/advisories/CA-2003-04.html,
January 2003.

[13] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron.
Vigilante: End-to-end containment of internet worms.
In Proceedings of the ACM Symposium on Systems and
Operating Systems Principles (SOSP), October 2005.

[14] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard: Protecting pointers from buffer overflow
vulnerabilities. In Proceedings of the 12th USENIX
Security Symposium, pages 91–104, August 2003.

[15] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Symposium,
January 1998.

[16] DarkReading. Heap spraying: Attackers’ latest
weapon of choice. http://www.darkreading.com/
security/vulnerabilities/showArticle.jhtml?

articleID=221901428, November 2009.

[17] D. E. Denning. A lattice model of secure information
flow. Commun. ACM, 19(5):236–243, 1976.

[18] V. Developers. Valgrind user manual – callgrind.
http://valgrind.org/docs/manual/cl-manual.html.

[19] T. Durden. Bypassing PaX ASLR protection. Phrack,
0x0b(0x3b), July 2002.

[20] C. W. Enumeration. CWE-416: use after free.
http://cwe.mitre.org/data/definitions/416.html,
April 2010.

[21] J. Etoh. GCC extension for protecting applications
from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/,
June 2000.

[22] E. Hardware. CPU-based security: The NX bit.
http://hardware.earthweb.com/chips/article.

php/3358421, May 2004.

[23] A. Ho, M. Fetterman, C. Clark, A. Warfield, and
S. Hand. Practical taint-based protection using
demand emulation. In Proceedings of the 1st ACM
EuroSys Conference, pages 29–41, April 2006.

[24] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W.
Davidson, D. Evans, J. C. Knight, A. Nguyen-Tuong,
and J. Rowanhill. Secure and practical defense against
code-injection attacks using software dynamic

http://www.adobe.com/support/security/advisories/apsa10-01.html
http://www.adobe.com/support/security/advisories/apsa10-01.html
http://www.cert.org/advisories/CA-2001-19.html
http://www.cert.org/advisories/CA-2003-04.html
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428
http://valgrind.org/docs/manual/cl-manual.html
http://cwe.mitre.org/data/definitions/416.html
http://www.trl.ibm.com/projects/security/ssp/
http://hardware.earthweb.com/chips/article.php/3358421
http://hardware.earthweb.com/chips/article.php/3358421

translation. In Proceedings of the 2nd International
Conference on Virtual Execution Environments
(VEE), pages 2–12, June 2006.

[25] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering code-injection attacks with instruction-set
randomization. In Proceedings of the 10th ACM
Conference on Computer and Communications
Security (CCS), October 2003.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In
Proceedings of Programming Language Design and
Implementation (PLDI), pages 190–200, June 2005.

[27] M. Conover and w00w00 Security Team. w00w00 on
heap overflows. http:
//www.w00w00.org/files/articles/heaptut.txt.

[28] Microsoft. Microsoft portable executable and common
object file format specification.
http://www.microsoft.com/whdc/system/platform/

firmware/PECOFF.mspx.

[29] D. Moore, C. Shanning, and K. Claffy. Code-Red: a
case study on the spread and victims of an Internet
worm. In Proceedings of the 2nd Internet Measurement
Workshop (IMW), pages 273–284, November 2002.

[30] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: type-safe retrofitting of legacy
software. ACM Trans. Program. Lang. Syst.,
27(3):477–526, 2005.

[31] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In
Proceedings of the 12th Annual Symposium on
Network and Distributed System Security (NDSS),
February 2005.

[32] M. Owens. Embedding an SQL database with SQLite.
Linux Journal, 2003(110):2, June 2003.

[33] PaX Home Page. http://pax.grsecurity.net/.

[34] PCWorld. Dangling pointers could be dangerous.
http://www.pcworld.com/article/134982/

dangling_pointers_could_be_dangerous.html, July

2007.

[35] J. Pincus and B. Baker. Beyond stack smashing:
Recent advances in exploiting buffer overflows. IEEE
Security & Privacy Magazine, 2(4):20–27,
July/August 2004.

[36] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C
analysis. Technical report, SRI International, 2009.

[37] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks. In
Proceedings of the 1st ACM EuroSys Conference, April
2006.

[38] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM
Conference on Computer and Communications
Security (CCS), pages 298–307, October 2004.

[39] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Detecting format string vulnerabilities with type
qualifiers. In Proceedings of the 10th USENIX Security
Symposium, pages 201–216, August 2001.

[40] A. N. Sovarel, D. Evans, and N. Paul. Where’s the
FEEB? the effectiveness of instruction set
randomization. In Proceedings of the 14th USENIX
Security Symposium, pages 145–160, August 2005.

[41] E. H. Spafford. The Internet worm program: An
analysis. Technical Report CSD-TR-823, Purdue
University, 1988.

[42] Symantec. Analysis of a zero-day exploit for adobe
flash and reader.
http://www.symantec.com/connect/blogs/

analysis-zero-day-exploit-adobe-flash-and-reader,
June 2010.

[43] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Proceedings of the
Symposium on Network and Distributed System
Security (NDSS), pages 3–17, February 2000.

[44] C. C. Zou, W. Gong, and D. Towsley. Code Red worm
propagation modeling and analysis. In Proceedings of
the 9th ACM Conference on Computer and
Communications Security (CCS), pages 138–147,
November 2002.

http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://pax.grsecurity.net/
http://www.pcworld.com/article/134982/dangling_pointers_could_be_dangerous.html
http://www.pcworld.com/article/134982/dangling_pointers_could_be_dangerous.html
http://www.symantec.com/connect/blogs/analysis-zero-day-exploit-adobe-flash-and-reader
http://www.symantec.com/connect/blogs/analysis-zero-day-exploit-adobe-flash-and-reader

	Introduction
	Instruction-Set Randomization
	ISR Operation
	ISR Runtime

	Implementation
	Randomization of Binaries
	Shared Libraries
	Key Management
	PIN Execution Environment
	Memory Protection (MP)
	ISR Exceptions
	Startup Procedure

	Performance
	Related Work
	Conclusions
	References

