
iLeak: A Lightweight System for Detecting Inadvertent Information Leaks

Vasileios P. Kemerlis, Vasilis Pappas, Georgios Portokalidis, and Angelos D. Keromytis

Network Security Lab

Computer Science Department

Columbia University, New York, NY, USA

{vpk, vpappas, porto, angelos}@cs.columbia.edu

Abstract—Data loss incidents, where data of sensitive nature
are exposed to the public, have become too frequent and have
caused damages of millions of dollars to companies and other
organizations. Repeatedly, information leaks occur over the
Internet, and half of the time they are accidental, caused by
user negligence, misconfiguration of software, or inadequate
understanding of an application’s functionality. This paper
presents iLeak, a lightweight, modular system for detecting
inadvertent information leaks. Unlike previous solutions, iLeak
builds on components already present in modern computers.
In particular, we employ system tracing facilities and data
indexing services, and combine them in a novel way to detect
data leaks. Our design consists of three components: uaudits are
responsible for capturing the information that exits the system,
while Inspectors use the indexing service to identify if the
transmitted data belong to files that contain potentially sensitive
information. The Trail Gateway handles the communication and
synchronization of uaudits and Inspectors. We implemented
iLeak on Mac OS X using DTrace and the Spotlight indexing
service. Finally, we show that iLeak is indeed lightweight, since
it only incurs 4% overhead on protected applications.

Keywords-information leaks; system tracing; desktop search;

I. INTRODUCTION

The damages caused to companies and individuals due

to the exposure of sensitive data are estimated to be in

the range of millions of dollars [1]. Generally, data loss is

associated with malicious intent originating from individuals

or organizations that aim to exfiltrate information of some

value (e.g., trade secrets, credit card numbers). However,

in reality, about half of the data breaches reported are

unintentional [2].

In the past, inadvertent information leaks have created

serious commotion in the press, and were the source of

embarrassment for the large companies and government

organizations that suffered them. An employee who in-

stalled file-sharing peer-to-peer (P2P) software on his lap-

top, unknowingly exposed documents containing personal

data belonging to the company’s employees [3]. Another

negligent hospital employee posted sensitive patient data

on the Web [4]. In other cases, users may be unaware

that an otherwise legitimate application is accessing and

transmitting sensitive data. For instance, Facebook may read

a user’s address book to recommend new friends, or to

automatically invite them to join, without the user even being

aware of it [5].

Most research on detecting and preventing information

leaks has focused on applying strict information flow control

(IFC). Sensitive data are labeled and tracked throughout

an application’s execution to detect their illegal propaga-

tion (e.g., their transmission over the network). Approaches

such as Jif [6] and JFlow [7] achieve IFC by introducing

extensions to the Java programming language, while others

enforce it dynamically [8], or propose new operating system

(OS) designs [9]. Fine-grained IFC mechanisms require that

sensitive data are labeled by the user beforehand, but as

the amount of data stored in desktops continuously grows,

locating documents and files containing personal data be-

comes burdensome. Additionally, systems in nowadays are

an amalgamation of different components that interact in

unpredictable ways, and are frequently used in ways that

their designers and developers did not anticipate. As a result

IFC solutions have seen little use in production systems,

and almost none on desktops that are responsible for most

accidental data leaks.

Commercial data loss prevention (DLP) solutions take a

different approach. They monitor network communications

(e.g., email, HTTP, P2P) to identify files or messages that

may contain sensitive data, based on patterns that describe

credit card numbers, financial data, design documents, and

so forth. Commercial DLP solutions are more pragmatic than

strict IFC, but while they often do protect against data loss,

they are costly and have a low benefit-cost ratio for individ-

uals and small businesses. Furthermore, network-based DLP

is not able to operate on encrypted connections, or protect

portable devices such as notebooks when they are connecting

though possibly unsafe networks. To protect against data

loss under these conditions, end-host deployment of DLP is

required, which further increases costs.

On the other hand, modern OSs already provide mecha-

nisms that we could put to use to detect information leaks.

They offer safe and efficient tracing facilities that can be

used for on demand kernel-level debugging, system-wide

performance evaluation, subsystem interaction analysis, and

so on. DTrace [10], SystemTap [11], and LTTng [12] are

indicative examples of such frameworks that are available

on commodity desktop systems. Additionally, most of the

prevailing desktop OSs also support indexing mechanisms

that increase the efficiency of searching user content.

Tools such as Google Desktop [13] and Beagle [14] are

now commonplace on desktops, offering advanced “desktop

search” capabilities using a variety of attributes like file

metadata, semantic information, as well as user preferences.

We present iLeak, a lightweight system for detecting

inadvertent information leaks by combining together dy-

namic tracing and information retrieval (IR) services that

are already available and integrated in commodity OSs. The

key observation behind our work is that such services are

already deployed and widely used in desktop systems (but

for completely different purposes). In brief, iLeak operates

by tracing the inputs to function and system calls that

transmit or encrypt data, and consequently searching for

those inputs in files and locations that contain sensitive data.

By coupling together those two concepts, we demonstrate

that it is possible to offer a lightweight information loss

detection mechanism for desktops as a composable service.

We do not address data loss that occurs due to an

orchestrated attack, or software exploitation by a malicious

entity, even though iLeak could still be useful in certain

cases. Nevertheless, we acknowledge the gravity of such

incidents, like the recent loss of more than 100,000 emails

of high-profile iPad owners [15].

The main contributions of our work are the following:

1) We present iLeak, a lightweight “personal” data loss

detection system that utilizes existing system facilities.

Specifically call tracing and data indexing. To the

extent of our knowledge, we are the first to employ

such mechanisms to detect information leaks.

2) We transparently handle applications that use encryp-

tion (e.g., browsers) and data encoding (e.g., emailers)

through known libraries such as OpenSSL.

3) We propose an extensible, component-based design,

which can be easily implemented on various OS

architectures, and we present our prototype for the

Mac OS X systems.

4) We evaluate iLeak and show that on average it imposes

only 4% overhead to the users.

Note that our approach is orthogonal to security tools

like Cornell’s Spider [16] and SENF from University of

Texas [17], which crawl a collection of files, searching for

data patterns that resemble potentially critical user informa-

tion such as social security numbers (SSNs) and credit card

numbers. We can automatically label the files returned by

such tools as sensitive, and use iLeak to detect potential

information leaks.

The rest of this paper is organized as follows: Section II

presents our approach to detecting information leaks, namely

iLeak. We describe its architecture and components in Sec-

tion III. We discuss the prototype implementation of iLeak

on Mac OS X in Section IV, and evaluate it in Section V.

Related work is covered in Section VI and conclusions along

with future work are in Section VII.

II. DETECTING INFORMATION LEAKS

iLeak establishes a lightweight detection service for ac-

cidental information leaks by composing together facilities

that are already available and integrated in commodity OSs.

In order for iLeak to be practical, we identify the following

important properties that a detection facility should incorpo-

rate: transparency, flexibility, simplicity, and performance.

iLeak offers a composite detection service without demand-

ing from the user to change its working habits, or run

its software in heavyweight hypervisors [18] and restrictive

sandboxes [19]. The whole detection process is performed

in the background and in parallel with the normal system

operation, without interfering with the user’s tasks (e.g., by

pausing execution and requesting for the authorization of

particular actions).

iLeak tries to infer whether outbound data are sensitive

or not by relying upon a set of files that contain critical

user information. The construction of this set, though it is

of great importance for the effectiveness of a data leakage

detection tool, is orthogonal to iLeak and does not affect our

design choices regarding its internal structure and operation.

In this study, we consider that this pool can be populated

as follows. First, every file that belongs into a list of OS-

dependent application data locations (e.g., “HOME/.*“ files

in Linux, the “HOME/Application Data” folder in Windows,

etc), which frequently contain personal information, is au-

tomatically considered as sensitive and included in our set.

Next, the user can also indicate filesystem places that contain

sensitive documents, or critical information in general, just

by “tagging” them using the extended filesystem attributes

that most OSs support. Finally, automated document charac-

terization tools, such as Cornell’s Spider or SENF, can also

be used to automatically populate the pool with the files they

identify as containing critical data.

Armed with a set of tagged sensitive files and locations,

we distribute a set of “sensors” on the system that utilize

dynamic tracing for intercepting outbound data. This way

we are able to efficiently and effectively decide whether the

exfiltrated information belongs to a sensitive data store, or

not, just by making the appropriate queries to the file in-

dexing service of the OS. iLeak demonstrates the feasibility

of our proposition and establishes a standardization API for

gluing together tracing and information retrieval services.

A. Data Loss Scenarios

Here we discuss possible data loss scenarios that iLeak

could protect against.

1) File Sharing: In nowadays, it is common for house-

holds to have more than one computers, and in particular

portable ones, which are usually connected to each other and

to the Internet via a residential wireless network. Consider

now two home users who want to exchange some data such

as pictures, music, and movies. One enables the file sharing

service on his notebook without setting up a password or

carefully reviewing all the files that he is actually sharing.

Since the two users trust each other, and the network is

not open to everyone, the shared data can be considered

safe. When they finish exchanging files, the user forgets to

disable file sharing. The next day he stops by his favorite

coffee shop and reads his emails using the shop’s public

wireless network. Unfortunately, file sharing is still enabled

and everybody on the same network can access his files.

To make things even worse, the folder that he is sharing

also contains some important financial documents. Anyone

“curious” enough can easily obtain the exposed data.

2) P2P Sharing: Using P2P file sharing software can also

lead to accidental information leaks [20]. Consider a user

that installs a P2P file sharing application on his workstation

at work. He does not want to spent to much time setting it

up, so he quickly accepts the default settings and the license

agreement. What he did not notice is that the application’s

default settings expose his entire documents folder to ev-

eryone using the same P2P network, and encryption is also

used by default. The user unknowingly released important

documents to the public and his company’s DLP system

cannot prevent it because of the end-to-end encryption.

III. ARCHITECTURE

From an architectural perspective, the core part of iLeak

consists of three major components: the uaudits, the Trail

Gateway, and the Inspectors. These components define a

communication framework for existing, and future, facilities

that are available in typical OS installations and can be

utilized for identifying possible exfiltrations of sensitive

information. Figure 1 illustrates the general architecture of

iLeak. The rest of this section describes the essential iLeak

components.

A. uaudits (micro-audits)

uaudits are information tracking components that are

distributed around the system and intercept outbound data.

iLeak is micro-audit agnostic, which means that it can

support various facilities for intercepting system execution,

attaching into points of interest, and “tracking” potential data

leaks into the network. The actual technology that is used

in order to intercept exfiltrated information is not tightly

bounded to iLeak. Similar, but not identical, mechanisms

are abstracted under the uaudit concept, which essentially

defines an interface that each specific uaudit incarnation

should adhere to in order to operate with the rest of the

iLeak infrastructure.

uaudits can reside both in user and kernel space, and can

be application specific or system-wide elements. They can be

viewed as “sensors” that tap either the OS kernel, or specific

applications for monitoring them in a lightweight manner

and intercepting outbound data. The benefits of delegating

the tracking functionality to the uaudits are manifold:

• Extensibility: iLeak is not directly coupled with the

underlying mechanism that is used for tapping. Future

mechanisms, or even custom monitoring facilities can

be attached to iLeak just by adhering to our pre-defined

API. Note that we do not require changes to the tracing

mechanisms in order to integrate them in iLeak. uaudits

operate as modules that can be attached to the core

framework on demand, without any internal (i.e., source

code related) knowledge.

• Performance: There is an abundance of system tracing

and monitoring facilities that are available in commod-

ity OSs, such as SystemTap and DTrace. Though many

of them offer the same, or very similar tracing function-

ality, they do so at different performance prices. By

decoupling iLeak from the underlying system-related

mechanism, we allow the experimentation and explo-

ration of novel alternatives in a “plug-and-test” manner.

Moreover, we rely on a set of small, lightweight (micro)

monitors for tracking sensitive information and there-

fore we avoid the burden of cumbersome, heavyweight

approaches that track the flow of every single bit in the

system.

• Flexibility: The concept of micro-auditing gives iLeak

the ability to utilize multiple, and completely different,

monitoring services on demand for tapping only the

necessary information flows and avoiding the burden

of heavyweight flow tracking mechanisms. Recall that

iLeak offers protection against accidental information

leaks and not leaks of malicious intent. Thus, capturing

and tracing legitimate information flows of sensitive

data inside the OS is sufficient for the needs of iLeak

and at the same time allows us to reduce the monitoring

overhead, by strategically installing small tracing pieces

only in places where needed.

B. Trail Gateway

The Trail Gateway is the core part of iLeak that drives

the detection process and orchestrates system monitoring. In

particular, it is responsible for establishing a communication

framework between the uaudits and the Inspectors, by gath-

ering audit trails from the uaudits and forwarding them to

the appropriate Inspectors.

Every uaudit is isolated and confined by the Trail Gateway

according to its needs. For example, a uaudit that taps spe-

cific OS facilities is isolated into a separate process with the

appropriate privileges for doing so. Similarly, a uaudit that

hooks the network I/O operations of a particular application

(or family of applications) is confined into a different process

with the appropriate privilege level for performing the I/O

monitoring on the software that is attached. Communication

between uaudits and the Trail Gateway is performed using

typical Inter-Process Communication (IPC) mechanisms,

such as shared memory, anonymous pipes, message queues,

and so forth.

Indexing Service

uaudit

uaudit

uaudit

uaudit

...

Trail Gateway

Inspector

...
audit trails

audit trails

audit trails

audit trails

in
sp
ec
ti
on
 r
eq

inspection req

Inspector

files

files

keywords

keywords

files

i
n
s
p
e
c
t
i
o
n

r
e
q

keywords

Inspector

Indexing Service

Indexing Service

Figure 1. iLeak Architecture Overview.

After receiving data regarding potential information leaks

from the established IPC channels with the uaudits, the Trail

Gateway forwards the audit trails into the corresponding

Inspector for verifying whether the exfiltrated data were

indeed sensitive or not. Note that the Trail Gateway merely

acts as an operating component and trail dissemination

backbone for the whole detection process, rather than being

a detection module itself. This task is delegated to the

Inspector elements for further facilitating and extending the

modular, flexible, extensible, and portable nature of iLeak.

C. Inspectors

Inspectors are the elements of our architecture that gen-

erate alerts for potential data leaks. They are middleware

components that facilitate the integration of various desktop

search engines into iLeak, by acting as bridges between the

Trail Gateway and the corresponding indexing service.

The Trail Gateway forwards inspection requests to every

Inspector, which are essentially calls for investigating the

normalized audit trails captured by the uaudits. The Inspec-

tor modules formulate a set of appropriate queries for the

indexing service that are associated with, in order to rapidly

locate files that might contain the audit trails in question.

After receiving the result set (i.e., candidate files for alerts),

the Inspector generates an alert for every file that belongs

into the pool of sensitive files. The typical alert contains the

process id and the name of the leaking process, the sensitive

data that have been exposed, as well as the remote network

location that is related to the data loss incident.

IV. IMPLEMENTATION

The Trail Gateway makes up the core part of iLeak and

consists of approximately 1500, POSIX-compliant lines of

code (LOC) in C. As we already discussed in Section III-B,

one of its primary responsibilities is to isolate and confine

each uaudit into a separate process, and install an IPC

mechanism for receiving audit trails. In order to perform

this task, it uses a uaudit descriptor that comes along with

every uaudit.

The uaudit descriptor operates as a “driver” for a particu-

lar uaudit and contains the following information for aiding

the Trail Gateway to perform its task:

• invocation parameters. That is, how to invoke a particu-

lar uaudit and attach it into the system, or inject it into a

specific process (i.e., command line parameters, system

and pre-execution options, environmental variables).

• required privileges. This knowledge is exploited by

the Trail Gateway in order to confine every uaudit in

accordance to the principle of least privilege. Since

iLeak handles a large amount of sensitive information,

special consideration is given to the capabilities of the

tapping facilities to reduce the possibility of abuse.

• IPC details. Information regarding the communication

channel between the Trail Gateway and the uaudit. Such

information can be a single file descriptor when named

or unnamed pipes are used, a shared memory identifier

along with the corresponding synchronization facilities

in the case of shared memory, etc.

• audit trail callback. Typically, every uaudit has a

custom and unmanageable way of reporting collected

information (i.e., audit trails in our case). Therefore,

the uaudit descriptors provide a per-uaudit callback

function that acts as a transformation filter between

the uaudit and the Trail Gateway. Raw data that are

collected from the uaudit are passed to that callback

function in order to be parsed and forwarded to the

core engine of iLeak.

Indexing Service

syscall_write.d

uaudit (DTrace)

uaudit (DTrace)
syscall_send.d

uaudit callback

Trail Gateway

normalized trails

normalized trails

uaudit callback

send* trails (raw)

write* trails (raw)

i
n
s
p
e
c
t
i
o
n

r
e
q

Inspector

keywords

files (tagged)

Figure 2. iLeak Prototype Implementation.

Initially, iLeak processes all the available uaudit descrip-

tors for initializing and attaching the uaudits into the system.

After the setup phase of the appropriate IPC channels, which

in our prototype are implemented using pipes for simplicity,

the Trail Gateway starts receiving audit trails from all the

active uaudits simultaneously using multiplexed I/O. Upon

the reception of new trails from a uaudit, it invokes the

appropriate callback processing function of that uaudit for

normalizing the input. All collected trails are converted into

internal data structures by parsing the output of the uaudit

and by invoking the API of the Trail Gateway. By combining

process isolation and input normalization, we are able to

support new uaudit mechanisms seamlessly and without any

modifications at all. We only need a particular descriptor for

a new uaudit and a callback function.

Figure 2 depicts our implementation prototype. As

we already mentioned, the core part of iLeak is OS-

independent and POSIX-compliant. However, for evaluating

our prototype we have also implemented a set of OS-

specific uaudit back-ends and Inspectors. Our uaudit mod-

ules make use of the DTrace instrumentation framework

(discussed in Section IV-A) and consist of about 3500

LOC in D (i.e., the DTrace-specific language). In partic-

ular, our two D-scripts, namely syscall_write.d and

syscall_send.d monitor various system calls by strate-

gically attaching a small snippet of dynamic analysis code

into the OS kernel. Initially, every socket and accept

system call is recorded and the returned descriptors (of

PF_INET and PF_INET6 protocol family requests) are

added into a set of monitored descriptors1. Every time a

write, writev, send, sendto, sendmsg, sendfile,

etc, system call is invoked with a file descriptor that was

previously inserted into the monitoring set, the contents of

1We also add into this set every duplicate of a monitored descriptor that
is returned from the dup/dup2 system calls. Additionally, in case of a
fork call, the set of monitored descriptors is inherited from the parent
process.

the user-provided buffer(s) are fed into the Trail Gateway.

Note that the output of DTrace is converted into a normalized

form by invoking the appropriate callback functions.

The whole operation of iLeak is event-driven. More

specifically, every time a uaudit captures information of

interest, it forwards them into the Trail Gateway (via their

established IPC channel). After the necessary input nor-

malization, the Trail Gateway invokes the corresponding

Inspector for verifying if a candidate trail is indeed sensitive

information that is leaked into the network or not.

For the Inspector part of our prototype, we utilized Spot-

light [21]. Spotlight is a system-wide desktop search engine

integrated into Mac OS X, which offers a unified and robust

searching service for documents, applications, e-mails, and

so forth. To facilitate that, it stores all the metadata and

content index into a database, which is fully integrated with

the filesystem. This database is populated by a set of file type

specific plug-ins, called importers. Along with the graphi-

cal interface, the Spotlight search service is also available

through the low-level CoreServices framework [22]. The file

abstraction within that framework is the MDItem object

and consists of a number of different attributes, such as the

kMDItemContentType, kMDItemFSCreationDate,

kMDItemKeywords, etc. A Spotlight query is compiled

by a set of search criteria using the MDItem’s attributes.

For example, the following query is for PDF documents that

contain the word “important”, or composed by user “John”:

kMDItemContentType == "com.adobe.pdf" &&

(kMDItemAuthors == "John" ||

kMDItemTextContent == "*important*")

In our case, we are interested into files that contain a set of

keywords (i.e., the normalized audit trails) and also labeled

as “sensitive”. More precisely, whenever the Trail Gateway

forwards data to the Inspector, a query for sensitive files

containing these keywords is executed and the alerts, if any,

are logged.

A. DTrace Background

Tracing is the process of observing the execution of a

program for collecting useful information of diagnostic and

systemic nature. Various techniques have been developed for

supporting this facility throughout the development cycle as

well as after the deployment of a system. Instrumentation

is one such technique that allows someone to augment the

execution of a program with new, user-provided, code that

aids in collecting data for analyzing the behavior of a system.

DTrace is a dynamic instrumentation facility that focuses

on production systems. It allows the instrumentation of both

user-level as well as kernel-level code in a unified and safe

manner, and has absolutely zero performance cost when

disabled. Initially, DTrace was developed for Sun’s Solaris

10 OS [10], but it has been integrated also into Apple’s Mac

OS X/Darwin (since 10.5/9) [23] and FreeBSD (since 7.1)

[24]. Currently, it is already under development on NetBSD

and GNU/Linux [25] (albeit in a more incompatible way).

Since the primary focus of DTrace is production systems,

it was designed around two key properties: (a) zero perfor-

mance cost when disabled and (b) absolute system safety

when enabled. Its dynamic nature allows to be injected

on demand into virtually every place of a running system

without suffering from the performance burden of static “dis-

abled probes”2. User-provided instrumentation code, also

known as analysis code in written in a high-level language,

named D, that is subjected to a set on run-time checks for

guaranteed safety.

D is C-like but it also resembles AWK [26] in terms

of structure. It has support for all ANSI C operators, it

allows access to user- and kernel-level variables, and data

structures. It also offers dynamic user-defined variables,

structs, unions, and associative arrays. The scoping rules of

the language, its intrinsic data types, as well the program

structure are explained in great detail in [27].

The core part of DTrace lies inside the OS kernel and

includes all the necessary facilities for providing an in-

frastructure for dynamic and arbitrary tracing. User-level

processes become DTrace consumers by communicating

with an in-kernel component and enabling instrumentation.

However, the DTrace framework does not perform any

instrumentation of the system. This functionality is provided

by the providers; kernel-level parts, typically loadable mod-

ules, that communicate with the core engine using a well-

defined API. Providers, declare to DTrace the points that it

can potentially instrument, by providing a callback function.

All in all, DTrace provides merely a skeleton for supporting

future instrumentation methodologies. Nonetheless, it comes

with a set of ready-to-use providers that have no observable

overhead when disabled.

2Systems that support static instrumentation typically induce some dis-
abled probes overhead. Dynamic instrumentation allows truly zero cost,
since the probes are dynamically attached and detached on demand, and
hence, they are “absent” when the instrumentation is disabled.

Number of keywords

0 50 100 150 200 250 300

T
im

e
 (

m
s
e
c
)

0

200

400

600

800

1000

Figure 3. Duration of the Spotlight queries as a function of the number
of keywords they contain.

V. PERFORMANCE EVALUATION

One of the main goals during the design and implemen-

tation of iLeak, was to keep the system as lightweight as

possible. In this section we evaluate the performance of

our prototype implementation. Both the DTrace uaudits and

the Spotlight Inspector introduce performance overheads. It

is important to note here that the uaudits instrumentation

overhead can directly affect the user’s experience, as it

operates inline with the system or library calls. On the other

hand, utilizing the Spotlight search service may not have

an evident impact on the whole performance of the system,

especially in multicore environments.

As far as the auditing part is concerned (DTrace), we

measured the overhead of our D-scripts (see Section IV)

when instrumenting I/O related system calls. More precisely,

we performed a number of large file transfers from the moni-

tored host to another, with and without instrumentation. Both

hosts were connected over a 100Mbps local network and

were idle during the measurements. On average, enabling the

DTrace uaudits introduced an overhead of 4% on the total

duration of the file transfers. The overhead of the uaudits is

low enough to go unnoticed by the end users.

We also evaluated the Inspector component of our pro-

totype. Recall that the inspection component utilizes the

Spotlight desktop search engine. Figure 3 shows the duration

of each query (y axis) for a different number of keywords. As

we can see, the duration of the queries is proportional to the

number of keywords they contain. However, it is important

to note that the time spent for queries with a few number

of keywords (e.g., less than ten) is negligible. This result

indicates that by extracting a small but representative set

of keywords from the auditing data, we can issue a few

hundreds of queries per second.

VI. RELATED WORK

Previous work on information leakage protection uses

information flow tracking (IFT) combined with data labeling.

Confidential data are tagged using user-defined annotations

(labels), and tracked during execution. Checks are intro-

duced into programs to prevent the illegal propagation of

data labeled as sensitive, thus achieving information flow

control (IFC). Jif [6] and JFlow [7] are extensions to the

Java language that statically check information flow using

the label model to deliver IFC. These approaches offer a

more fine grained IFC than iLeak, but require significant

changes to deployed software (i.e., they require manual

annotation of the source code). Trishul [8] also targets

Java programs, but it does so dynamically, by providing a

modified Java virtual machine (VM) that checks information

flow at runtime. Unfortunately, it also requires that the Java

runtime environment is replaced, while it is not able to track

Java native interfaces (JNI).

TaintBochs [19] employs IFT to analyze the lifetime (i.e.,

duration of exposure) of private data such as credit cards,

passwords, etc. It builds on the assumption that as sensitive

data remain in memory, the risk of leaking the data due to a

program error or an attack increases. TaintBochs differs from

iLeak, as it aims to only evaluate the lifetime of critical data

in applications. Furthermore, it is based on the Bochs IA-32

emulator, which causes slowdowns of approximately x100,

making it impractical for production systems.

HiStar [9] also uses labels to provide IFC for sensitive

data. It is a new OS design based on Asbestos [28], which

provides the labeling mechanisms. Its main focus is to

protect the system from components that start exhibiting

malicous behavior after being compromised. HiStar suffers

from the same problems as other labeling systems (i.e., the

user must do the labeling). Furthermore, it presents a new OS

design that cannot be effortlessly applied to current systems.

In [29], Carbalho et al. attempt to identify accidental

information leaks over email. Data mining techniques are

used to create a model that correlates content with recipients.

Emails that fail to be classified by the generated model

are treated as potential information leaks, and the user is

warned. The authors also attempt to exploit social network

information to enrich their model and increase accuracy. In

later work, they also developed a plugin that implements

their model, for a popular email client [30]. iLeak is a more

generic solution, since it is able to scan all outbound data

to detect leaks.

Popular email servers, like Microsoft’s Exchange Server

2010, also offer protection from information leaks [31].

Emails are scanned for certain text patterns, and rejected

when addressed to external recipients (i.e., outsiders). Emails

can be also scanned for sensitive data such as credit card and

social security numbers. Such software is similar to iLeak,

but it is only able to handle emails transmitted through the

server. For instance, it is not able to filter emails that are

sent through a cloud service like GMail for businesses [32].

Other work observes that information will always leak in

unpredictable ways, and that it is hard to determine which

information is sensitive.

Instead of trying to eliminate information leaks, it focuses

on quantifying the amount of data being exposed. Backes et

al. [33] present such an approach that uses information flow

analysis to offer a useful quantification of the data being

leaked. Similarly, Borders et al. [34] attempt to quantify

and limit the amount of data that are leaked through HTTP.

VII. CONCLUSIONS AND FUTURE WORK

We described iLeak, a lightweight personal data loss

detection system that protects users from inadvertent in-

formation leaks. Unlike other approaches, iLeak utilizes

mechanisms already available in commodity OSs, combining

them in a novel way to detect leaks of potentially sensitive

data like corporate documents, credit cards numbers, SSNs,

etc. Our design utilizes tracing facilities like DTrace and

data indexing services such as Spotlight to detect when po-

tentially sensitive information is exfiltrated. We implemented

a prototype of iLeak on Mac OS X, and show that it has

a negligible performance impact. Furthermore, by adopting

a modular design, iLeak can be easily ported to other OS

architectures such as Windows and Linux, which support

different tracing and indexing facilities.

Though our results indicate that it is feasible to offer a

composable data loss detection service using components

already present in modern OSs, additional research is nec-

essary in order to complete this study. More specifically,

in section V we showed that the overhead of a query to the

indexing service is negligible when the number of keywords

is relatively small. Hence, additional experimentation is

necessary in order to investigate how to automatically extract

small, but representative, sets of keywords. Moreover, given

that we can issue some hundreds of queries per second, we

need to better estimate how many queries are necessary on

a typical system. Finally, since our detection approach relies

on keywords for representing sensitive information, there is

a chance for false alerts. As part of our future work, we plan

to thoroughly study the false-positive and false-negative rates

of iLeak on production systems.

ACKNOWLEDGMENT

This work was supported by the National Science Science

Foundation through Grant CNS-09-14321, with additional

support by Intel Corporation. Opinions, findings, conclu-

sions and recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the NSF or Intel.

REFERENCES

[1] Financial Services Technology, “The true cost of a data leak,”
http://www.usfst.com/article/The-true-cost-of-a-data-leak/,
July 2010.

[2] SecureList, “Global Research on Data Leaks in 2009,”
http://www.securelist.com/en/analysis/204792108/Global
Research on Data Leaks in 2009, March 2010.

http://www.usfst.com/article/The-true-cost-of-a-data-leak/
http://www.securelist.com/en/analysis/204792108/Global_Research_on_Data_Leaks_in_2009
http://www.securelist.com/en/analysis/204792108/Global_Research_on_Data_Leaks_in_2009

[3] PCWorld, “Personal Data on 17,000 Pfizer Employees
Exposed,” http://www.pcworld.com/article/132840/personal
data on 17000 pfizer employees exposed.html, June 2007.

[4] Pittsburgh Post-Gazette, “UPMC patients’ personal data
left on Web,” http://www.post-gazette.com/pg/07102/
777281-114.stm, April 2007.

[5] journalism.co.uk, “How social networks are using your email
address book data - and what it means for journalists,” http://
www.journalism.co.uk/5/articles/538366.php, April 2010.

[6] A. C. Myers and B. Liskov, “Protecting Privacy using the
Decentralized Label Model,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 9, no. 4, pp.
410–442, 2000.

[7] A. C. Myers, “JFlow: Practical Mostly-Static Information
Flow Control,” in Proceedings of the 26

th ACM Symposium
on Principles of Programming Languages (POPL), 1999, pp.
228–241.

[8] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum,
“A Virtual Machine Based Information Flow Control System
for Policy Enforcement,” Electronic Notes in Theoretical
Computer Science (ENTCS), vol. 197, no. 1, pp. 3–16, 2008.

[9] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making Information Flow Explicit in HiStar,” in Proceedings
of the 7

th Symposium on Operating Systems Design and
Implementation (OSDI), 2006, pp. 263–278.

[10] Oracle, “Solaris Dynamic Tracing (DTrace),” http://www.sun.
com/software/solaris/ds/dtrace.jsp, July 2010.

[11] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston,
and B. Chen, “Locating System Problems Using Dynamic
Instrumentation,” in Proceedings of the 7

th Ottawa Linux
Symbosium (OLS), vol. 2, 2005, pp. 46–64.

[12] P.-M. Fournier, M. Desnoyers, and M. R. Dagenais, “Com-
bined Tracing of the Kernel and Applications with LTTng,”
in Proceedings of the 11

th Ottawa Linux Symposium (OLS),
2009, pp. 87–94.

[13] Google, “Google Desktop,” http://desktop.google.com, July
2010.

[14] Beagle, “Main Page—Beagle,” http://beagle-project.org, July
2010.

[15] ChannelWeb, “AT&T Leak Exposes 114,000 iPad
Customer E-mails,” http://www.crn.com/security/225600188;
jsessionid=0QA1HD5EWG00DQE1GHPCKHWATMY32JVN,
June 2010.

[16] Cornell University, “Open-source Forensics Tools for Net-
work and System Administrators – Spider,” http://www2.cit.
cornell.edu/security/tools/, February 2010.

[17] University of Texas, “SENF,” http://www.utexas.edu/its/
products/senf/, October 2009.

[18] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an Em-
ulator for Fingerprinting Zero-Day Attacks,” in Proceedings
of the 1

st ACM European Conference on Computer Systems
(EuroSys), 2006, pp. 15–27.

[19] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum, “Understanding Data Lifetime via Whole System Sim-
ulation,” in Proceedings of the 13

th USENIX Security Sym-
posium, 2004, pp. 321–336.

[20] M. E. Johnson and S. Dynes, “Inadvertent Disclosure—
Information Leaks in the Extended Enterprise,” in Proceed-
ings of the 6

th Workshop on the Economics of Information

Security (WEIS), 2007.

[21] Apple, “Working with Spotlight,” http://developer.apple.com/
macosx/spotlight.html, July 2010.

[22] Apple, “Core Services Framework Reference,” http://
developer.apple.com/mac/library/documentation/Carbon/
Reference/CoreServicesReferenceCollection/index.html, July
2010.

[23] Apple, “dtrace(1) Mac OS X Manual Page,” http://developer.
apple.com/mac/library/documentation/Darwin/Reference/
ManPages/man1/dtrace.1.html, July 2010.

[24] FreeBSD, “DTrace – FreeBSD Wiki,” http://wiki.freebsd.org/
DTrace, July 2010.

[25] P. Fox, “Dtrace,” ftp://crisp.dynalias.com/pub/release/website/
dtrace/, July 2010.

[26] A. V. Aho, B. W. Kernighan, and P. J. Weinberger, The AWK
Programming Language. Addison-Wesley, 1988.

[27] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dy-
namic Instrumentation of Production Systems,” in Proceed-
ings of the USENIX Annual Technical Conference (USENIX
ATC), 2004, pp. 15–28.

[28] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and R. Mor-
ris, “Labels and Event Processes in the Asbestos Operating
System,” in Proceedings of the 20

th ACM Symposium on
Operating Systems Principles (SOSP), 2005, pp. 17–30.

[29] V. R. Carvalho and W. W. Cohen, “Preventing Information
Leaks in Email,” in Proceedings of SIAM International Con-
ference on Data Mining (SDM), 2007.

[30] R. Balasubramanyan, V. R. Carvalho, and W. Cohen, “Cu-
tOnce - Recipient Recommendation and Leak Detection in
Action,” in AAAI Workshop on Enhanced Messaging, 2008.

[31] The Email ADMIN, “Preventing Informa-
tion Leaks with Exchange Server 2010,”
http://www.theemailadmin.com/2010/06/
preventing-information-leaks-with-exchange-server-2010/,
June 2010.

[32] Google, “GMail for business,” http://www.google.com/apps/
intl/en/business/gmail.html, June 2010.

[33] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic Dis-
covery and Quantification of Information Leaks,” in Proceed-
ings of the 30

th IEEE Symposium on Security and Privacy,
2009, pp. 141–153.

[34] K. Borders and A. Prakash, “Towards Quantification of
Network-Based Information Leaks via HTTP,” in Proceed-
ings of the 3

rd USENIX Workshop on Hot Topics in Security
(HotSec), 2008.

http://www.pcworld.com/article/132840/personal_data_on_17000_pfizer_employees_exposed.html
http://www.pcworld.com/article/132840/personal_data_on_17000_pfizer_employees_exposed.html
http://www.post-gazette.com/pg/07102/777281-114.stm
http://www.post-gazette.com/pg/07102/777281-114.stm
http://www.journalism.co.uk/5/articles/538366.php
http://www.journalism.co.uk/5/articles/538366.php
http://www.sun.com/software/solaris/ds/dtrace.jsp
http://www.sun.com/software/solaris/ds/dtrace.jsp
http://desktop.google.com
http://beagle-project.org
http://www.crn.com/security/225600188;jsessionid=0QA1HD5EWG00DQE1GHPCKHWATMY32JVN
http://www.crn.com/security/225600188;jsessionid=0QA1HD5EWG00DQE1GHPCKHWATMY32JVN
http://www2.cit.cornell.edu/security/tools/
http://www2.cit.cornell.edu/security/tools/
http://www.utexas.edu/its/products/senf/
http://www.utexas.edu/its/products/senf/
http://developer.apple.com/macosx/spotlight.html
http://developer.apple.com/macosx/spotlight.html
http://developer.apple.com/mac/library/documentation/Carbon/Reference/CoreServicesReferenceCollection/index.html
http://developer.apple.com/mac/library/documentation/Carbon/Reference/CoreServicesReferenceCollection/index.html
http://developer.apple.com/mac/library/documentation/Carbon/Reference/CoreServicesReferenceCollection/index.html
http://developer.apple.com/mac/library/documentation/Darwin/Reference/ManPages/man1/dtrace.1.html
http://developer.apple.com/mac/library/documentation/Darwin/Reference/ManPages/man1/dtrace.1.html
http://developer.apple.com/mac/library/documentation/Darwin/Reference/ManPages/man1/dtrace.1.html
http://wiki.freebsd.org/DTrace
http://wiki.freebsd.org/DTrace
ftp://crisp.dynalias.com/pub/release/website/dtrace/
ftp://crisp.dynalias.com/pub/release/website/dtrace/
http://www.theemailadmin.com/2010/06/preventing-information-leaks-with-exchange-server-2010/
http://www.theemailadmin.com/2010/06/preventing-information-leaks-with-exchange-server-2010/
http://www.google.com/apps/intl/en/business/gmail.html
http://www.google.com/apps/intl/en/business/gmail.html

	Introduction
	Detecting Information Leaks
	Data Loss Scenarios
	File Sharing
	P2P Sharing

	Architecture
	uaudits (micro-audits)
	Trail Gateway
	Inspectors

	Implementation
	DTrace Background

	Performance Evaluation
	Related Work
	Conclusions and Future Work
	References

