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Abstract—

Lack of well-defined defense perimeter in MANETS prevents
the use traditional firewalls, and requires the security to be
implemented in a distributed manner. We recently introduced
a novel deny-by-default distributed security policy enforcement
architecture for MANETs by harnessing and extending the
concept of network capabilities. The deny-by-default principle
allows compromised nodes to access only authorized services,
limiting their ability to disrupt or even interfere with end-to-end
connectivity and nodes beyond their local communication radius.
The enforcement of policies is done hop-by-hop, in a distributed
manner. In this paper, we present the implementation of this
architecture, called DIPLOMA, on Linux. OQur implementation
works at the network layer, and does not require any changes to
existing applications. We identify the bottlenecks of the original
architecture and propose improvements, including a signature
optimization, so that it works well in practice. We present the
results of evaluating the architecture in a realistic MANET
testbed Orbit. The results show that the architecture incurs
minimal overhead in throughput, latency and jitter. We also
show that the system protects network bandwidth and the end-
hosts in the presence of attackers. To that end, we identify ways
of creating multi-hop topologies in indoor environments so that
a bad node cannot interfere with every other node. We also
show that existing applications are not impacted by the new
architecture, achieving good performance.

Keywords: MANETS, Capabilities, Distributed firewalls

I. INTRODUCTION

Due to lack of well-defined perimeter nodes where access
control could be enforced, MANETSs require a distributed
policy enforcement architecture, which is different from tra-
ditional networks. Recently, we proposed a deny-by-default
architecture [6] that enforces trust relationships and traffic
accountability between mobile nodes through a distributed
policy enforcement scheme for MANETS. In that architecture,
we extended the network capability framework [8] and tailored
it to the resource-constrained MANET environment. A capa-
bility is a token of authority that has associated rights. The
capabilities propagate both access control rules and traffic-
shaping parameters that should govern a node’s traffic. In the
deny-by-default, model nodes can only access the services
and hosts they are authorized for by the capabilities given
to them. The enforcement of the capability is done in a
distributed manner by all the nodes in the path from the source
to the destination. Compromised or malicious nodes cannot
exceed their authority and expose the whole network to an
adversary. Upon detection, we can prevent a compromised
node from further attacking the network simply by revoking
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its capabilities. Moreover, that architecture helps mitigate the
impact of denial of service (DoS) attacks because excess or
unauthorized packets are dropped closer to the attack source.
Thus, we avoid unnecessary data processing and forwarding
at the target node and the network itself.

We look at aspects of implementing the architecture in
real systems. We name our architecture DIPLOMA, which
stands for DIstributed PoLicy enfOrceMent Architecture. We
adapt the original proposal for the real implementation, so
that it provides good performance and is effective against
attacks. We implement DIPLOMA on Linux systems as a
user level protocol engine that interfaces with the rest of the
packet processing system through netfilter-queue APIs. Our
implementation does not require any changes to the existing
applications. However, the applications see the benefit in terms
of receiving only the authorized traffic, and being able to send
the allocated bandwidth even in the presence of rogue nodes
that are trying to send large amount of traffic. Our imple-
mentation uses a simple way of representing and enforcing
bandwidth constraints using the token bucket parameters. In
DIPLOMA, we are doing a clean-slate design. In our design,
we leave the IP layer intact; hence, we can make use of
existing routing and packet forwarding capacities of the nodes.

Furthermore, we propose a novel signature scheme to in-
tegrity protect the packets, and drop the tampered packets
closer to the source. This is a combination of RSA signature
and SHA-1 hashing scheme, and significantly improves the
processing time per packet from the earlier proposal. The
experimental results confirm that it can work well in practice.

We also conduct extensive experiments to evaluate the
performance and the effectiveness of our system. To that end,
we implement our system on the Orbit-lab test-bed [3]. Most
of the indoor wireless testbeds create multi-hop topologies
using MAC address filtering. A major problem with that
approach is that an attacker can get unfair share of the channel,
affecting all the other nodes in the topology. We propose a
novel solution for creating multi-hop topologies on indoor
environments, in which an attacker cannot cause unlimited
damage to the nodes in its proximity by hogging the channel.

Our experiments show the effectiveness of the new authen-
tication scheme, and show that the overhead is minimum on
throughput, latency and jitter for DIPLOMA. Our experiments
on attack resiliency show that the good nodes and the band-
width of the network can be protected from the attackers.
We also show that our system works well in the presence
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Fig. 1. System overview

of multiple flows. We also show that existing applications
like FTP and wger work without any changes, achieving good
performance.

Previously we provided the evaluation of the deny-by-
default architecture using simulations [7]. The simulations
were conducted by implementing the architecture on the
GloMoSim [1] simulator, and adding the additional packet pro-
cessing capability. The simulations reported 5% overhead in
throughput. Our current implementation reports about 19.8%
to 23% reduction in the throughput. This is because the simu-
lator is a discrete event simulator that deals with only certain
packet events. It cannot accurately model the processing at
the nodes, and the load the nodes may encounter due to that
processing. It also cannot accurately model packet delays and
losses due to characteristics of the environment.

We describe the DIPLOMA architecture in Section II, and
its implementation using the netfilter framework in Section III,
and present the packet signature optimization in Section IV.
We describe our experimental methodology and results in
Section V. Section VI discusses related work.

II. SYSTEM ARCHITECTURE

In our architecture, one or more pre-defined nodes act as
a group controller (GC), which is trusted by all the group
nodes. A GC has authority to assign resources to the nodes in
MANET. This resource allocation is represented as a credential
(capability) called policy token, and it can be used to express
the services and the bandwidth a node is allowed to access.
They are cryptographically signed by the GC, which can be
verified any node in the MANET.

When a node (initiator) requests a service from another
MANET node (responder) using the policy token assigned to
the initiator, the responder can provide a capability back to the
initiator. This is called a network capability, and it is generated
based on the resource policy assigned to the responder and its
dynamic conditions (e.g., level of utilization).

Figure 1 gives a brief overview of our system. All nodes in
the path between an initiator to a responder (i.e., nodes relay-
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ing the packets) enforce and abide by the resource allocation
encoded by the GC in the policy token and the responder in
the network capability. The enforcement involves both access
control and bandwidth allocation. A responder accepts packets
(except for the first) from an initiator only if the initiator is
authorized to send, in the form of a valid network capability.
It accepts the first packet only if the initiator’s policy token is
included. An intermediate node will forward the packets from
a node only if they have an associated policy token or network
capability, and if they do not violate the conditions contained
therein. Possession of a network capability does not imply
resource reservation; they are the maximum limits a node
can use. Available resources are allocated by the intermediate
nodes in a fair manner, in proportion to the allocations defined
in the policy token and network capability.

The capability need not be contained in all packets. The
first packet carries the capability, along with a transaction
identifier (TXI) and a public key. Subsequent packets contain
only the TXI and a packet signature based on that public key.
In Section IV, we present a scheme, to avoid the public key
based packet signature computation for majority of the pack-
ets, still maintaining the packet integrity. Intermediate nodes
cache policy tokens and network capabilities in a capability
database, treating them as soft state. A capability database
entry contains the source and the destination addresses, TXI,
the capability, public key for the packet signature and packet
statistics. Capability retransmissions update the soft state of
intermediate nodes when the route changes due to node
mobility. The soft state after a route change is also updated
using an on-demand query for the capability database entry
from the upstream nodes.

III. IMPLEMENTATION DETAILS

We implement DIPLOMA in Debian Linux system running
2.6.30 kernel by creating a user space DIPLOMA engine that
interacted with Linux packet processing system using netfilter
queue framework. In our implementation, the user applications
do not require any change, and all the DIPLOMA related
processing is done by the DIPLOMA engine. We use a popular
implementation of AODV from University of Uppsala (AODV-
UU) for MANET routing [4]. Here, we describe the details of
our implementation.

A. Netfilter overview

Linux kernel provides a series of hooks for intercepting and
manipulating packets in various points in the protocol stack,
called the Netfilter framework [2]. Figure 2 shows the netfilter
framework and how the DIPLOMA fits into it. There are five
types of hooks [14]. When the packet enters the system from
the network it passes through the PREROUTING hook. Then
the packet goes through the routing module. If the packet
is destined to that host, then the packet goes through the
INPUT hook, before it is passed on to any local process. If the
packet is destined for another network interface, then it goes
through the FORWARD hook. Then the packet is send to the
POSTROUTING hook, before it is put in the wire again. If
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Fig. 2. DIPLOMA on Netfilter Architecture

the packet is created locally, then the OUTPUT hook is called
before taking any routing decision. The packet will also go
through the POSTROUTING hook after the routing is done,
before it leaves on the wire.

A kernel module can register to receive the packets on
one or more of these hooks by providing the netfilter with
a callback function. The callback function is invoked when
a packet hits the registered hook, and can optionally modify
the packet and send a “verdict” on the packet. There and five
verdicts: continue the normal processing (NF_ACCEPT), drop
the packet (NF_DROP), the module has consumed the packet
(NF_STOLEN), queue the packet for user space handling
(NF_QUEUE), or call the hook again (NF_REPEAT).

A set of tables has been built on top of the netfilter for
packet selection. A user level program called iptables allows
system administrators to configure these tables. The tables can
be used to filter packets (‘filter’ table), perform a network
address translation (‘nat’ table), or do a pre-route packet
mangling ("mangle’ table). Figure 2 also shows which tables
are present with each of the netfilter hooks. Using iptables,
one can also send the packet to the user space.

A user-level library called netfilter-queue provides APIs
for manipulating packets that has been queued by the kernel
filter. This API can receive the queued packet to the user
space, manipulate the packet, and provide a verdict on the
packet. This library can be used in conjunction with iptables
to implement any user level protocol processing.

B. DIPLOMA Implementation

DIPLOMA is implemented as a user-level daemon (called
DIPLOMA engine), using the netfilter-queue library. At the
system startup, iptables rules are added to the mangle table,
so that all the packets that are leaving, entering or transiting
through the system on selected interfaces are received by
the engine. All the processing related to the DIPLOMA
protocol are handled solely inside the engine. The application
processes do not have to be aware of these processing, and
our implementation does not require any changes to the
applications. The DIPLOMA engine performs the following
packet processing operations:

o It adds DIPLOMA headers and the packet signatures to
all the outgoing packets from the system. It also enforces
the outgoing bandwidth constraints.
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o It removes the DIPLOMA headers of the incoming pack-
ets, before the packet is given to the application.

o It verifies the packet signatures and the bandwidth usage
of the transiting and incoming packets.

o It handles all the DIPLOMA protocol packets and their
processing, including the capability establishment, capa-
bility refresh, error handing, etc.

All the data packets transiting through the network contain

a new header, called capability header. This is placed between
the IP header and the transport header (TCP/UDP). The
protocol field in the IP header is changed to indicate the
presence of the new header. The capability header contains
the type of the packet, a transaction identifier to identify
the capability associated with the packet, a sequence number,
and the signature for the packet. The size of the capability
header in our implementation is 36 Bytes. The capability
header is added by the DIPLOMA engine at the source
node after receiving the packet from the application. The
header is removed by the engine at the destination, before
the application receives the packet.

1) Capability Establishment: Capability establishment is
the process of establishing the mapping between the trans-
action identifier, and the actual capability and the keys for
the packet signatures, on the path from the source to the
destination for any flow. The intermediate nodes store the
relevant information in a data structure for easy lookup and
update. Once the capability is established the source node does
not include the actual capability in the data packets. Instead,
the transaction identifier and the packet signatures are used by
the intermediate nodes to verify the packets.

2) Sending data: When an application sends a packet, it
is first received by the kernel protocol stack. The packet hits
the OUTPUT hook, and the packet is queued by the iptables
mangle rule for user space processing. The DIPLOMA engine
receives the packet using netfilter-queue API. If the packet is
the first packet in the flow, a capability needs to be established
for that flow. The DIPLOMA engine looks for a matching
policy token in its possession. If there is a matching policy
token, then it queues up the packet and initiates the capability
establishment protocol. Once the capability establishment is
complete, the engine adds a capability header to the original
packet and sends the modified packet with an ACCEPT
verdict to the kernel. The kernel continues the normal packet
processing for the packet, and sends it to the corresponding
network interface for transmission. If the application sends
more packets while establishing the capability, those packets
are also queued by the DIPLOMA engine. If the engine
receives a packet from an application for which it does not
possess a policy token or a network capability, it gives a DROP
verdict and the packet is dropped by the kernel.

The DIPLOMA engine also enforces the bandwidth con-
straints of the capability associated with the outgoing packet.
If the sender does not enforce these bandwidth constraints, the
packet will eventually get dropped at the next hop.

3) Forwarding data: All the transit packets are queued by
the kernel filters and send to the DIPLOMA engine using



iptables rule on the FORWARD chain on the mangle table.
The engine in the forward path verifies the data packet against
the capability and gives a verdict. The verification involves
checking whether there is a capability associated with the
packet using the source address and the transaction identifier,
whether the packet signature is correct, and if the packet is
in conformance with the bandwidth constraints. There is no
modification of the packets by the engine during this process.

The bandwidth allocated to a capability is enforced using a
token bucket algorithm. The capability contains two bandwidth
parameters: the rate and the burst size. The rate is number of
bytes per second it is allowed to transmit, and the burst size
is the size of the bucket. Whenever the engine sees a packet,
it first updates the available tokens in the bucket based on
the rate and the bucket size, and then removes the number of
tokens equal to the size of the packet. If the available token
is less than the size of a packet, then the packet is dropped.
The engine updates the token bucket only when there is a
corresponding packet. It keeps track of the time the token
bucket was last updated to perform the proper accounting.

4) Receiving data: All the incoming packets are queued
by the kernel filters for the DIPLOMA engine processing by
adding iptables rules on the INPUT chain on the mangle table.

When the packet is received by the engine, it first verifies that
the packet is in conformance to the capability, similar to the
packet forward path. If it is not conformant, the packet is
dropped by giving a DROP verdict. Otherwise the capability
header is removed from the packet, the IP header is modified to

reflect the correct network protocol and size, and the modifi¢
packet is send back to the kernel with an ACCEPT verdict.
From now on, the normal packet processing happens inside
the kernel and the packet is send to the user application.

5) Fragmented packets: The packets received on the OUT-
PUT hook by the DIPLOMA engine are usually of the MTU
size. The DIPLOMA engine adds a capability header to the
packet, making the size of the packet more than the MTU
size. When this modified packet is send back to the kernel
with an ACCEPT verdict, the protocol stack will fragment the
packet. These fragments pose two issues for the DIPLOMA.
Firstly, the fragments cannot be associated with the capability,
as they do not contain the transaction IDs. Secondly, the
signature is computed for the whole packet by the DIPLOMA;
intermediate nodes will be unable to verify the fragment
signatures.

The fragmentation problem is arising because our imple-
mentation of the DIPLOMA engine is separate from the
network stack. If the engine was integrated into the network
stack, then it can take care of this issue without causing the
fragmentation. Reducing the MTU size of the system also
does not solve this problem, as the network stack will end
up fragmenting the packets using the new MTU size.

We address the problem in two ways. Firstly, we forward a
fragmented packet at the intermediate node only after receiving
all the fragments and verifying them against the capability.
Secondly, for TCP packets, we reduce the maximum segment
size (MSS) of the packet by the capability header size, using
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iptables rules. Hence, the TCP stack will packetize the data
such that there is enough room for the capability header
without exceeding the MTU.

IV. PACKET SIGNATURES

In a MANET, since there are no dedicated nodes for routing,
it is easy for rogue nodes to inject packets into an existing flow.
Hence we require an integrity check for the packets to save
the precious bandwidth resources and to avoid unnecessary
packets reaching to the destination hosts. To integrity protect
the packets, we require an asymmetric scheme where the
sender is able to perform the signature operation that the
intermediate node can only verify, but not sign.

In our earlier proposal, we used RSA signatures with small
keys (256 or 512 bytes) to sign the packets. Though, these
keys can be broken in short time, the nodes refreshes the
keys frequently rendering the key breaking useless to the
attackers. Use of RSA has another property that is useful
for our architecture. The generation of signatures require
much more processing than the verification, making the packet
forwarding task much easier to perform compared to sending.
Other asymmetric algorithms like ECDSA, though require
much smaller key sizes, do not possess this property.

Although the RSA key sizes used are small, signing indi-
vidual packets is still a bottleneck if the sender transmits many
packets. We implement a combination of the packet hash and
the signature to overcome this bottleneck.

When a sender has to send large number of packets, say
P packets, then it computes the RSA signatures only for the
first packet. All the remaining P — 1 packets only contain
their hashes. The first packet’s header also contains these P —
1 packet hashes. The RSA signature for the first packet is
computed on its data and these hashes. In this scheme, P is
called the block size (P). The first packet is marked as of type
DATA-FIRST and the remaining P — 1 packets are marked of
type DATA-NEXT. The sender always sends the DATA-FIRST
packet before any of the DATA-NEXT packets in the block.

When an intermediate node receives a DATA-FIRST packet,
it verifies the packet against its capability for the bandwidth
usage and the signature. It also retrieves the hashes of the
subsequent DATA-NEXT packets from this packet, and saves
in its memory. The packet is forwarded as any other packet,
without waiting for the subsequent DATA-NEXT packets.
When the intermediate node receives a DATA-NEXT packet,
its hash is compared with the hashes stored for that flow. The
packet is accepted for forwarding only if there is a match for
the hash, and the packet satisfies the bandwidth constraints.

If the number of packets the source want to send is less than
P, then the DIPLOMA engine should not to wait indefinitely
for the packet block to fill before sending the first packet. To
handle this case, the engine waits only for a certain time period
called block timeout (T), before it sends out the first packet.
T is typically few tens of milliseconds. When the timer ticks
in, the engine uses the available packets to form a block.

The parameter 7' is useful for the dynamic content and the
last few packets of the static content. If the dynamic content



generated is small, then all the packets that are generated in T’
time are send as a block. When the dynamic content is large,
the block may get filled before the block timeout. In that case,
the packets are send as soon as the block is filled.

A. Priority for DATA-FIRST packets

Since each node implements the token-bucket algorithm
independently, in a distributed manner, it is possible that the
available tokens in the nodes are not synchronized. Different
packet processing and the propagation delays can also cause
this issue. When a sender sends at the rate of its allocated
capacity, it is rarely possible that a few packets may not have
enough available tokens at some intermediate nodes. If the
packet to be dropped is a DATA-FIRST packet, then all the
subsequent DATA-NEXT packets in the block will also get
dropped due to hash verification failure. To overcome this
problem, our implementation accepts a DATA-FIRST packet
even when there is not enough available tokens. This will
make the available token negative. To prevent any misuse, all
the subsequent packets, including DATA-FIRST packets, are
dropped till the available token becomes positive again.

B. Block size and block timeout tradeoffs

There are tradeoffs between choosing a large block size, vs
a small block size. The extra capability header used for the
DATA-FIRST packet increases by 20 bytes for every increase
in the block size. If one wants to remove the fragmentation
processing for TCP, by setting the maximum segment size
(MSS), then the MSS reduces by 20 bytes for every increase
in the block size. This reduces the amount of data bytes per
packet, increasing the percentage overhead of the headers in
the packet. Another issue with the large block size is that
the loss of a DATA-FIRST packet will render the system to
drop all the DATA-NEXT packets in that block. Thus, a larger
block size may cause higher packet loss. The processing cost
of sending the packet can be divided into three components:
ps - signature computation cost
pn, - hash computation cost
po - other processing costs including protocol processing,
scheduling of engine etc.

Per packet processing cost = p, + pp, + 5.

The advantage of using larger block size is lower processing
at the sender. This is because there is only one RSA signature
operation per block, which is the predominant transmission
cost. If the sender has many packets to send, then a larger
block size helps it achieve higher send bandwidth.

There is a similar tradeoff for the block timeout. Recall that
the DIPLOMA engine waits the minimum of block timeout
and the time to fill the packet block, before it sends the packet
block. If the timeout is small, then the engine will end up
sending partially filled blocks. If the timeout is large, then the
packet block likely will get filled before the timeout, reducing
the processing time per packet at the sender. The disadvantage
of large block timeout is larger packet latency. If there are not
enough packets to send, then the latency of the DATA-FIRST
packets will be at least the block timeout. Large block size
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and block timeout tend to send the packets as bursts; this may
reduce the wireless link utilization.

V. EXPERIMENTAL EVALUATION

In this section we describe the test setup, the experiments
conducted to study the effectiveness of DIPLOMA, and the
results and the analysis of those experiments. We study the
throughput of the systems running DIPLOMA, and identify the
block sizes that provides the optimal throughput. We also study
the effectiveness of DIPLOMA in enforcing the bandwidth
constraints. We also measure the latency and jitter for these
systems. We also show how the DIPLOMA can protect the
end-hosts and the network bandwidth in the presence of
attackers. Finally, we show that DIPLOMA can work well
in the presence of multiple flows.

A. Testbed

We implement the DIPLOMA engine as described in Sec-
tion III in Linux systems running Debian Linux with kernel
2.6.30. We run the resulting system on multiple nodes in the
Orbit lab [3] wireless testbed.

Orbit is an indoor wireless testbed consisting of 400 nodes
arranged as a 20x20 grid on a physical area of (20m x
20m). Each node contains 1-GHz VIA C3 processor, 512
MB RAM, a 20 GB hard disk, two wireless mini-PCI 802.11
a/b/g interfaces, and two 100BaseT Ethernet ports. Most of
the cards are Atheros ARS5212-based cards, although there
are a few Intel Pro-wireless 2915-based cards as well. In our
experiments, we use only the nodes that have Atheros cards.
We use only the wireless interfaces for the experimental traffic.

Since the DIPLOMA engine is a user-level process, all pack-
ets are queued for user-level processing before transmission.
To make a fair comparison, we also do a similar queuing of
the packet to a user level process on systems not running the
DIPLOMA (called original). The user level program gives an
ACCEPT verdict on all the packets, without any processing.

1) Topology creation: Since the Orbit grid is housed in
a relatively small physical area, every node is reachable by
every other node on wireless links. The large range (about
300ft) of 802.11 makes it very difficult to create true multi-
hop topologies in indoor environments. A solution used is to
create a network layer topology by filtering out packets of the
non-adjacent senders based on their MAC addresses, at the
receivers. Another approach is to generate large noise [12]; so
that the receivers farther from the sender will not have enough
signal to noise ratio (SNR) to decipher the signal. Orbit has
four noise generator antennas for this purpose. Unfortunately,
only limited topologies can be created with this approach, and
it requires extensive trial and error to find the right noise levels.

MAC address filtering based topologies are not useful for
studying the security properties of a system like DIPLOMA.
This is because a bad node can cause damage in its communi-
cation radius, even if it is not confirming to the protocol. In an
indoor wireless setting like Orbit, the communication radius
is the whole grid.
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An use a different approach for creating the multi-hop
topologies; we use different non-overlapping channels for each
link. Since orbit has two 802.11 antennas at each node, the
intermediate nodes switch the channels when forwarding the
packet. We primarily used 802.11a channels in our experi-
ments, since they are not overlapping. We have also used
non-overlapping 802.11g channels (channels 1 and 11). Even
though we cannot create all the possible topologies similar
to the MAC address filtering, it is possible to create a good
number of multi-hop topologies.

Figure 3 shows an example multi-hop topology. For the
simplicity of discussion, let the nodes be numbered 1,2, 3, .. ..
Let the useful channels also be numbered 1, 2, 3, . ... We assign
an I[P address 10.1.c.i for an interface on the node i that is
transmitting on the channel c¢. Two nodes can communicate
directly, if they have antennas with a common channel. In our
example, two antennas share a channel if they are on the same
255.255.255.0 subnet. In the figure, the nodes are numbered
first from left to right (1 to 5), and then from bottom to top (6
to 9). The connectivity is shown using dashed lines. Note that
nodes 2, 3 and 7 have pairwise connectivity due to sharing
of channel 2. In general, the connectivity graph is a set of
cliques, one for each channel.

We use the popular Linux AODV implementation, AODV-
UU [4], for routing. We modify it to handle multiple interfaces,
as it did not have the support of the same.

B. Throughput

In this section we study the throughput of TCP and UDP
at different packet block sizes. In this set of experiments, we
create a linear (line) topology of multiple nodes, and send high
data rate traffic using iperf. For the DIPLOMA scheme, we
allocate unlimited bandwidth on the capability.

1) Block size: We study the effect of block size on the
throughput for TCP and UDP, and select the best block size
for further experiments. Recall that the larger block sizes
require smaller processing at the sender, but it also has higher
per packet overhead and larger penalty on packet losses. The
results are average of four iperf for 10 seconds each. The
block timeout is 25 ms. The results are similar for 10 ms
block timeout.
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Figure 4 gives the TCP throughput for different block
sizes on paths of increasing hop lengths. The labels on the
plots indicate the path length. For smaller block sizes, the
throughput increase linearly. The throughput at that point is
limited by the sender’s ability to pump traffic, which is limited
by the signature computation. As we increase the block size,
the processing needed per packet at the sender decreases, and
the send rate catches up with the available bandwidth. The end
to end bandwidth decreases as the hop count increases. Hence,
the linear increase in the bandwidth with the block size stays
for longer for smaller hop counts. Once the throughput reaches
a maximum point for a given hop length, further increase in
the block size decreases the throughput. This is due to two
factors. Firstly, the header size increases as the block size
decreases, reducing the MSS of the TCP. Second, packet loss
of a DATA-FIRST packet will force the entire packet block
to be retransmitted, loosing lot of usable bandwidth. The best
packet block size for the TCP is between 4 and 9. The best
block size decreases as the number of hops increases, which
can also explained using a similar argument.

Figure 5 gives a similar result for UDP. Here, the sender
was pumping traffic at 20 Mbps. The results for UDP are
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Fig. 6. TCP and UDP throughput comparison

similar to that of TCP, except that the UDP has higher
bandwidth. This is because UDP does not have to deal with
the complexities of TCP like guaranteed delivery. Because
of the higher bandwidth, the block size at which it achieves
maximum throughput is also larger. The block size between 5
and 10 gives the maximum throughput for hops 3 to 6.

We use a block size of 7 for our experiments, as it is a good
compromise for UDP and TCP, and for different hop counts.

2) Comparison with original scheme: Now we compare the
throughput of the system with and without DIPLOMA. For the
DIPLOMA, we use the block size of 7 and allocate unlimited
bandwidth to the capabilities.

Figure 6 shows the iperf throughput for TCP and UDP for
both the DIPLOMA and the original schemes for various hop
lengths. The DIPLOMA throughput is about 23% lower for
TCP and 19.8% lower for UDP for hop lengths between 3
and 5. This is because of the extra headers and the extra
processing required for the DIPLOMA. For 2 hop distance
the bandwidth for the original scheme is substantially higher
than that of the DIPLOMA scheme. This is because, at 2
hops the available bandwidth is high, and hence the bottleneck
becomes the processing delay. Note that these experiments are
conducted at ideal condition, where the nodes were extremely
close to each other (1m apart), and hence the performance of
the wireless is maximum. In realistic settings, where the nodes
are fairly apart to necessitate multi-hop routing, the available
bandwidth will not be that high. When the available bandwidth
is low, the processing delay is no longer the bottleneck. In
those cases we expect the DIPLOMA scheme’s headers to be
only the factor contributing to its overhead.

We also study the system with the real file transfer appli-
cation by sending files of size 20 MB. The results are very
similar to TCP throughput results. At hop lengths between two
and six, the DIPLOMA throughput is between 28% and 34%
lower than the original.

C. Bandwidth Enforcement

In this subsection, we study the effectiveness of the band-
width enforcement capabilities of our implementation. We use
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a linear topology for these sets of experiments. We allocate
different bandwidth on the capabilities and measure the end
to end throughput using iperf. Recall that we use the token
bucket parameters of rate (in bytes per second) and bucket
size (in bytes) to represent the bandwidth constraints. In our
experiments we have used the bucket size as rate/4, which
allows for a burst equivalent to 250 m.S.

Figure 7 shows the TCP throughput for various bandwidth
allocation for capabilities on paths of different hop lengths.
The labels on the plots indicate the allocated bandwidth to
the capability. The system is able to enforce the bandwidth
constraints, as long as there is sufficient available bandwidth.
The throughput seen by the TCP is lower than the allocated
bandwidth due to capability header overhead. The block size
used was 7, which could cause the DATA-FIRST header to
be as large as 152 bytes. Even though DATA-NEXT header is
smaller (40 bytes), the MSS of TCP was set to 1308 (MTU -
TCP/IP header - 152). When the allocated bandwidth is more
than the available bandwidth, then the flow receives all of the
allocated bandwidth. The plot labeled 20 Mbps is practically
the maximum throughput achievable by the system, because
of the limited available bandwidth.
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Figure 8 shows similar results for UDP. The enforcement
on the UDP traffic gives close to the allocated bandwidth
uniformly across the hops. This is because, unlike TCP, there
is no flow control in UDP and excess bandwidth is dropped
closer to the source. There are enough tokens available at the
intermediate nodes, for the packets that are allowed to leave
the source, except for the synchronization case (Section IV-
A). As expected, the throughput drops for larger bandwidth
or hop lengths, when the available bandwidth is less than the
allocated bandwidth.

D. Latency and Jitter

We now study the packet latency and jitter for the
DIPLOMA, and compare it with the original scheme.

1) Packet Latency: To measure the latency, we use ping
command to send ICMP echo request/reply. Ping gives the
round trip latency, which involves the capability processing
delay at both the ends. One important parameter that affects
the latency is the block timeout, which is the amount of time
the sender has to wait for the packet block to fill before sending
the packet. To remove the effect of packet block time, we use
the packet block size of one. In this case, the engine sends the
packet as soon as it receives the packet.

Figure 9 shows the average round trip latency reported by
ping for 20 packets for different hop lengths. As expected, the
latency increases close to linear, as the hop length increases.
The average latency for the DIPLOMA is 2.8 ms to 3.9
ms higher than the original scheme. This is mainly coming
because of the cryptographic operations at both the ends. The
latency difference increases as the hop count increases, as there
is some processing involved at each intermediate nodes.

2) Packet Jitter: Packet jitter is an important factor in some
of the real world applications like Voice over IP (VOIP). Jitter
is defined as the average deviation from the mean latency.
To measure the jitter, we send UDP packets at low rate (1
Mbps) using iperf. The iperf for UDP reports the jitter values.
One important parameter that affects the jitter in DIPLOMA
is the block timeout; the packet may wait for the timeout
period before the engine sends it, if the block is not full.
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Fig. 10. Packet jitter for DIPLOMA and original schemes

This is especially true for low bandwidth applications. For
small bandwidth latency and jitter critical applications, it is
beneficial to use small block timeout, since the the signature
operation will not be a bottleneck.

Figure 10 shows the jitter for different block timeout as a
function of hop length. The labels on the plots indicate the
block timeout. The block size in these experiments was 7. As
expected the jitter increases with increase in the hop count or
the block timeout. The maximum jitter value for up to six hops
is 1.35 ms, for a block timeout of 4 ms. The maximum jitter
value in this set of experiments is only 6.60 ms; this occurs
on a six hop path at the block timeout of 14 ms.

E. Attacker resiliency

A major goal of the DIPLOMA is to protect the end-host
resources, including the protection against the denial of service
attacks, by dropping the unauthorized traffic closer to the
source. In this section, we study the resiliency of DIPLOMA
towards any attacker that does not conform to the protocol and
the bandwidth allocation.

To study the attacker resiliency, we use a modified topology
on the Figure 3 as follows; we add two more nodes to the
right of node 5 (call it 10 and 11), and remove the nodes 8
and 9. We conduct two sets of experiments here. In the first
experiment, the good node and the attacker share the channel.
In this case the good node is the node 2 and the attacker is
the node 7. In the second experiment, there is no sharing of
channel between the attacker and any node in the path from the
good node to the receiver. In this case, the good node is node 1
and the attacker is the node 6. In both sets of experiments, the
attacker is allocated only 1 Mbps bandwidth, but the good node
is allocated either 2Mbps, 3 Mbps, or 5 Mbps. The attacker
sends as much data as it wants, but the good node conforms
to the allocated bandwidth.

1) Attacker and the good sender sharing the spectrum:
Figure 11 shows the iperf bandwidth for both the good node
and the attacker for both the schemes, when the allocated
bandwidth to the good node is 5 Mbps. As it can be seen, for
the DIPLOMA scheme, both the nodes receive the allocated
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bandwidth. In spite of attacker sending large bandwidth, the
27% hop node drops any excess bandwidth. This essentially
protects the end host (receiver), from receiving the unnecessary
traffic. The spectrum sharing did not have an effect here, as
the good node was able to deliver the allocated bandwidth
to the 2"¢ hop node. In the original scheme, the node that
sends the maximum traffic (i.e. the attacker) gets the maximum
bandwidth, at the expense of the other nodes.

2) Attacker and the good sender not sharing the spectrum:
Figure 12 shows the similar results when the attacker and
the good sender are not sharing the spectrum. Here the good
node and the attacker get the allocated bandwidth for the
DIPLOMA scheme. The attacker hogs most of the bandwidth
in the original scheme. It is also interesting to see that the
good node in the DIPLOMA scheme ends up getting more
bandwidth than the attacker gets in the original scheme for
six-hop path. The same thing happens at the hop 5 for the
shared spectrum case.

F. Multiple flows

Now we study the performance of the system for multiple
flows. We use the topology given in Figure 3 with two source
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Fig. 13. UDP throughput when there are multiple flows in the system

nodes and two destination nodes. Each of the source nodes
send UDP iperf traffic of varying bandwidth to each of the
destination nodes. Hence, there are four parallel flows in the
system. The source nodes are nodes 1 and 6 in the figure.
The destination nodes are either nodes 4 and 8 (i.e. 4 hop
paths), or nodes 5 and 9 (i.e. 5 hop paths). Figure 13 shows
the resulting bandwidth for both the schemes for 4 hop paths,
for varying UDP bandwidth. The label on the x-axis shows
the source node and the requested UDP bandwidth. Each bar
shows the received bandwidth at both the destinations. For the
DIPLOMA scheme, the capabilities have the same allocated
bandwidth as the requested UDP bandwidth. The results are
similar for five hop paths, but with lower bandwidth.

It can be seen from the histogram that both the schemes
receive roughly same amount of bandwidth for all the four
flows. The DIPLOMA receives slightly higher bandwidth for
the requested bandwidth of 2 Mbps and 3 Mbps. At 2 Mbps
speed, the packet loss are minimum, and the send rate by iperf
is higher for the DIPLOMA. This may be because the iperf
datagram size for the DIPLOMA was 1430 bytes, whereas the
size was 1470 for the original. When the requested bandwidth
is 5 Mbps, the DIPLOMA and the original receive only 3.11
Mbps and 3.53 Mbps respectively due to the limited available
bandwidth.

VI. RELATED WORK

The concept of capabilities was used in operating system
for securing resources [15]. Follow-on work investigated the
controlled exposure of resources at the network layer using the
concept of “visas” for packets [9], which is similar to network
capabilities. More recently, network capabilities were proposed
to prevent DoS in wired networks [8]. We extend the concept
to MANET and use it for both access control rules and traffic
shaping parameters [6]. Previous work on distributed firewalls
[10] focused on wired fixed-network environments, attempting
to protect only end-hosts, using a host-based solution.

Signing and verification of packets between a sender and a
receiver were commercially available in early 1990s. Novell’s
Netware 3.11 and 4.x supported NCP Packet Signature Option,
where a unique signature was appended to each packet sent
between the client and the server [13]. Mitigating DoS attacks



by including a message authentication code and the certificate
of the sender for each packet has been previously proposed
[16]. That work does not study the high overhead associated
with sending a large signature or a large certificate on each
packet. The authors use game theory to study the problem
of dealing with selfish nodes that do not verify the packet
signatures, using incentives and punishments. This mechanism
or any other reputation based mechanism [11] can also be used
in our scheme to deal with selfish nodes.

HEAP [5] mitigates various MANET attacks from outsider
nodes by doing a hop-by-hop packet authentication using
HMAC. MACs (end-to-end or hop-by-hop) cannot deal with
insider attacks. They also cannot provide access control unless
different MAC keys are used for different policies. MACs
allow rogue nodes to “hide” since MACs are repudiable as
all the intermediate nodes in the path between a sender and a
receiver need to know the key. Only public key mechanisms
allow packet source validation by all intermediate nodes.

VII. CONCLUSIONS AND FUTURE WORK

We implemented a novel distributed deny-by-default archi-
tecture for enforcing the security policies in MANETS, in
real systems running Linux. The architecture, which is based
on the concept of network capabilities, can protect both the
end-host resources and the network bandwidth from denial of
service attacks, as well as limit the exposure of the MANET
to compromised and malicious nodes. We showed that the
system is easy to implement, does not require changes to the
existing applications, and works well in practice. We presented
a packet signature scheme that reduces the public key signature
operation, but still provides verifiable integrity protection for
the packets. We evaluated the system on a real MANET testbed
Orbit. We showed that the impact of the scheme is minimal on
throughput, latency, and jitter. We also showed that the scheme
allocates resources in a fair manner even in the presence of
attackers, and can protect the end-hosts from the attackers.
We also showed that the existing applications achieve good
performance without modifications. For our future work, we
plan to extend the DIPLOMA for multicast traffic, and for
protecting routing protocols.
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