Evaluation of a Spyware Detection System using
Thin Client Computing

Vasilis Pappas, Brian M. Bowen, and Angelos D. Keromytis

Department of Computer Science, Columbia University
{vpappas, bmbowen, angelos}@cs.columbia.edu

Abstract. In previous work, we introduced a bait injection system de-
signed to delude and detect crimeware by forcing it to reveal itself during
the exploitation of monitored information. Although effective as a tech-
nique, our original system was practically limited, as it was implemented
in a personal VM environment. In this paper, we extend our system
by applying it to thin-clien to demonstrate how the approach can be
used in a large-scale deployment. Adapting our system to such an en-
vironment revealed a number of challenging issues, such as scalability,
portability, and choice of physical communication means. We provide
implementation details, as well as experimental results that demonstrate
the scalability and effectiveness of our system.

Keywords: Spyware, Thin Client Computing

1 Introduction

Spyware has traditionally targeted individual consumers for purposes of
conducting fraud and identity theft. Much of the defense has typically
been left to anti-virus software operating on individual consumers’ PCs
and the financial institutions themselves who monitor for suspicious ac-
tivity in an attempt to mitigate financial loss. More recently, the enter-
prise as has become the target [16] for spyware where the attackers’ goal
is to pilfer corporate information including webmail accounts, VPN ac-
counts, and other enterprise credentials. One study conducted by RSA’s
FraudAction Anti-Trojan division found that almost all Fortune 500 com-
panies have shown activity from the Zeus Trojan [12], one of the largest
botnets. Given that many existing trojans and malware samples evade
detection by traditional anti-virus software most of the time [12], there is
demand for new approaches that can be applied at scalable levels within
an enterprise.

In prior work [4], we developed a system that was designed to detect
spyware proactively through the use of tamper resistant decoys. The sys-
tem is intended to complement traditional signature and anomaly based

defense systems rather than replace them. The system works by inject-
ing decoys made up of monitored information that triggers alerts during
exploitation. The system makes the malware’s task significantly harder
by requiring it to distinguish real actions from simulated actions to in
order to avoid decoys. We demonstrated the system’s ability to detect
spyware using various types decoy credentials including those for PayPal,
a large bank, and Gmail. The implementation relied upon an out-of-host
software agent to drive user-like interactions in a virtual machine, seeking
to convince malware residing within the guest OS that it has captured
legitimate credentials. The system successfully demonstrated that decoys
can be used for detecting spyware on a single host.

In this work, we explore and demonstrate the scalability of the ap-
proach across many hosts, making this work applicable to enterprise en-
vironments. Specifically, we address threats within a thin-client based
environment and propose a novel architecture for bait injection on thin
clients. The maturity of thin-clients has increased their usage in corporate
computing environments, making this approach especially applicable [9,
7]. In this system, we rely on virtualized mouse and keyboard devices to
inject decoy actions and credentials to an innumerable number of hosts
with very low network and CPU overhead.

In summary, the contributions for this work include:

— An extension of an already proven system that aims to proactively
detect malware on a single host to one that scales to service any
number of hosts.

— A thin-client based architecture that supports the injection of bait
information to and from a scalable number of servers and clients.

— A demonstration of the thin-client based architecture showing that it
provides reasonable performance.

— The results of experiments that examine how these new systems in-
duce malware to exfiltrate information.

Organization: Section 2 presents previous work, related to ours. In
Section 3 we describe our original system and we detail our new scal-
able architecture based on thin client computing. We then present our
evaluation results in Section 4 and conclude in Section 5.

2 Related

The use of manually injected human input for generating network requests
has been shown to be useful by Borders et al. [3] for detecting malware.

The aim of their system is to is to thwart malware that attempts to blend
in with normal user activity to avoid anomaly detection systems. Chan-
drasekaran et al. [5] expanded upon this system and demonstrated an
approach to randomizing generated human input to foil potential analy-
sis techniques that may be employed by malware. Work by Holz et al. [8]
investigated keyloggers and dropzones, relied on executing maleware in
CWSandbox [13] and automating user input with Autolt ! for the purpose
of detecting harvesting channels. Since Autolt resides within the host, at-
tackers are provided with a simple means of detecting and avoiding it.
In prior work, we demonstrated a platform for the automatic generation
and injection of bait information designed to convince malware it has
captured legitimate credentials [4]. In addition, we adapted our original
system to personal workstation environments where the convenience of
virtualization is usually absent [10]. In contrast to all prior work, this ef-
fort is focused on designing a system for the large-scale injection of decoys
to detect malware that may otherwise go undetected.

Taint analysis is another technique that has been used to detect cre-
dential stealing malware [6,15]. This approach works well, but does so
with a cost of a 10-20 times slowdown. Taint analysis systems also con-
tain components that reside on the guest, which is undesirable because
they can be used by malware to detect and elude the injected decoys. Our
system aims to be undetectable by malware residing within so that it is
not easily avoided.

The authors of [14] evaluated a number of different remote screen
protocols. Although this is not directly related to the goals of our system,
it is closely related to the evaluation of our system’s application to thin
clients.

3 Architecture

In this section, we begin by briefly presenting the goal and architecture
of our original system. We then detail an architecture that demonstrates
how the same approach can be scaled to handle a large number of hosts in
a thin client environment, which is achieved by exploiting its centralized
computation nature.

3.1 Original System

The ultimate goal of our technique is to detect crimeware using tamper
resistant injection of believable decoys. In summary, we can detect the

! http://www.autoitscript.com

existence of credential stealing malware by (i) impersonating a user login
to a sensitive site (using decoy credentials) and (ii) detecting whether this
specific account was accessed by anyone else except for our system. That
would be a clear evidence that the credentials were stolen and somebody
tried to check the validity and/or the value of that account. Our technique
depends on the following properties:

— Out-of-host Detection. Our system must live outside of the host
to be protected. This prerequisite is for the tamper resistance feature
of our system.

— Believable Actions. The replayed actions must be indistinguishable
by any malware in the host we protect so as to not be easily eluded.

— Injection Medium. There must be a medium, able to transmit user
like actions (mouse, keyboard, etc.) to the protected host.

— Verification Medium. Optionally, but highly preferable, there should
be a medium that can be used to verify the injected actions. This can
actually be the same medium as above, if possible.

Fig. 1. Thin client environment — our system is on the top left corner.

Our original system’s implementation was on a personal VM-based
environment. More precisely, in order to fulfill the Out-of-host Detection
requirement, our system resided on the host operating system and oper-
ated on the guest operating system(s). To verify the Believability of the
replayed actions, we conducted a user study which concluded that the ac-
tions generated by our system were indeed indistinguishable. Moreover,
as an Injection Medium, we utilized the X server of the host operating
system to replay the actions. Finally, by slightly modifying the compo-
nent of the virtual machine manager that was responsible for drawing the

screen, we were able to verify the actions by checking the color value of
selected pixels.

The original system relied on a language for the creation of believable
actions. It is worth noting here that the approach is generic enough to
be used as-is in the application bellow. This stands because the injection
medium is flexible enough to support replaying of believable actions, al-
though there could be cases where the believability of the actions can be
degraded due to artifacts of the injection medium itself.

3.2 Thin Clients

The environment we chose to apply our technique to is thin clients, which,
although they have been around for a long time, they are recently becom-
ing more and more prominent in corporate networks. The main benefits
of choosing such a setup are low cost, easy maintenance and energy effi-
ciency.

A typical thin client setup consists of two main components: (i) a
central virtual machine host (can be one physical server or more) and (ii)
a collection of “dummy” computers connected to that host over a local
and fast network. All the computation is offloaded to the central server,
leaving the user terminals responsible only for transmitting user actions
(keyboard, mouse, etc.) and remotely displaying the screen output of the
virtual machine. Each user is then able to access and use virtual machines
hosted on the central server, using these terminals (thin clients).

The application of our technique in this case was straightforward.
In summary, we deployed our system like an ordinary thin client that
periodically connects to each hosted virtual machine and injects decoy
credentials. It is trivial to show that this type of application satisfies all
the properties, previously introduced. First, the out-of-host property is
covered by deploying our system as a thin client and not inside the VMs
under protection. Second, all the remote access protocols used in thin
client environments provide a medium both for injection and verification.
Figure 1 depicts what we previously described. On the lower right corner
is the central server, on the left side, the thin clients and on the top right
corner, our system. As our system only needs to communicate with the
central server, we can safely adjust its proximity to it, reducing network
overhead imposed on intermediate links.

In our prototype implementation, we assumed that there is a Linux
version of the client part of the remote access protocol. For instance,
in our evaluation (Section 4.1) we used VNC [11], which is a standard
remote access protocol. Although this is not a requirement, it greatly

improves scalability, because it allows us to easily initiate many remote
access sessions, concurrently. Overall, the implementation was similar to
our original system with the primary exception being that we leveraged
out-of-the-box tools, as opposed to customizing. The main motivation
behind that was to make our system as generic as possible and thus eas-
ily portable to other remote access protocols. More precisely, we used a
vanilla version of GNU Xnee? for the injection of the previously recorded
believable user actions, both mouse and keyboard. These actions were in-
jected in a full screen view of the client side remote access software, Xvnc
here. For the verification, we used the ImageMagick software suite®. More
specifically, we made use of the import utility in order to grab arbitrary
portions of the screen and the compare utility, to count the absolute
number of different pixels. Finally, in order to enable the capability of
concurrently injecting to multiple virtual machines, and thus the scala-
bility of the system, we leveraged the Virtual Frame buffer (part of the X
server). By doing this, we could simultaneously execute many full screen
remote access sessions, each in a distinct X server (using the xvfb-run
utility).

4 Evaluation

Our evaluation is divided in three parts, Subsection 4.1 examines the
performance and scalability factors of our technique, when applied to a
thin client environment. Next, we present the results on an exfiltration
study we did using a relatively large number of malware samples. Finally,
we discuss some real “hits” we had during the evaluation of our system.

4.1 Performance

In order to evaluate the performance and scalability of our system in a
thin client setup, we set up such an environment in our lab. Using that as
a testbed, we measured both the overhead and the limits of our system.

More precisely, we used three Dell PowerEdge R410 servers, each hav-
ing 8 CPU cores, 24Gb of memory and 1 TB of storage. For the virtu-
alization layer, we chose to use Xen|[2, 1] because it has built-in remote
guest access through VNC. We installed the Xen hypervisor 4.0.0 on top
of Ubuntu 10.04 server edition. On each server we hosted 32 virtual ma-
chines, running Windows XP SP2 as their guest operating system. In

2 Website: http://www.gnu.org/software/xnee/
3 Website: http://www.imagemagick.org/

total, our setup was comprised of 96 virtual machines. Our prototype
was also running on a virtual machine (on top of a different host), with
just one CPU and 1 GB of memory.

Memory: The amount of memory required by our system is propor-
tional to the number of concurrent sessions. Each virtual frame buffer
consumes its number of pixels times the number of bytes to encode the
color for each of them. For example, during our evaluation, the screen
settings on the Windows guests were set to 800x600 pixels using 32-bit
colors. This equals to 800 x 600 * 4 = 1,920,000 bytes, or ~2 MB. The
total memory consumption for the whole 96 VM set is ~176 MB.

Scalability: In the first part of our evaluation we examine the scala-
bility of our system. In order to do that, we monitored both the network
and CPU utilization, under various workloads — in terms of simultaneous
injections. More precisely, the different workloads we used were 24, 48, 72
and 96 concurrent injections using our bait credentials. As for the VNC
settings, we used the default values (full color and heztile encoding).

Figure 2(a) shows the CPU utilization under each workload. In this
figure, we observe two expected things. First, the CPU load is propor-
tional to the number of concurrently replayed sessions. Second, we notice
an increase in the total duration. This increase is the result of failed ver-
ification attempts, which leads to more wait periods. These verification
failures are caused both because of the virtual machine host’s high load
and network level congestion which causes poor refresh rates in VNC.

T T T T
24 VMs mmm— 24 VMs

72 VMs | 700 - 72 VMs - -7
. | J 96 VMs memm 96 VMs

CPU %
MBIt
IS
=
3

N At
N Wl e A VAR O T
10 20 30 40 50 60 70 80 90 100 110 0 20 40 60 80 100 120
Time (seconds) Time (seconds)

(a) CPU (b) Network

n
S
T
i

Fig. 2. CPU and network utilization when simultaneously replaying to 24, 48, 72 and 96
VMs (using full color and HEX encoding). As expected, both metrics are proportional
to the number of the VMs.

The other resource we measured, in order to analyze the scalability
of our system, is network utilization. Figure 2(b) shows the total network

usage, under different workloads. In general, we see that network usage
is high in the beginning of the injection sessions (first 30 seconds) and
decreases afterwards. This is caused because VNC transmits only the por-
tions of the screen that have been changed. In the very beginning, the
whole screen has to be transmitted (first peak) and right after, Internet
Explorer is started in maximized mode (high usage around the 20th sec-
ond). Although the network utilization may seem forbiddingly high at
times, we have to keep in mind that (i) we try to measure the scalability
in the worst case scenario — that is all the injection sessions are initiated
simultaneously — and (ii) this is a prototype unoptimized implementa-
tion, using of-the-self tools. The most important thing to keep from this
measurement is that our system, even under these conditions, was robust
enough to sustain and adapt to the workload increases.

Optimizations: After we demonstrated the scalability and adapt-
ability to resource variations, we experimented with application level op-
timizations. Although we could achieve much better overall performance
by developing custom injection and verification tools, we wanted to ex-
amine the benefits of tweaking parameters of the remote access protocol
— VNC in this case. There are two such parameters that are related to
the quality of the transmitted screen view. These are: (i) color depth and
the encoding algorithm used. The different options for color depth are: 8,
256 or full colors. Each time something has changed on the screen, VNC
transmits the surrounding rectangle of that portion, encoded in one of
the following ways:

— RAW. This is the simplest out of all the encoding schemes. As its name
implies, rectangles are transmitted in width x height pixel values.

— HEXTILE. In this case, the rectangles to be transmitted are firstly
partitioned in 16x16 tiles. Then, each of them is either sent raw (as
above) or using a variant of Rise-and-Run-length-Encoding, where a
sequence of identical pixels are compacted to a single color value and
repeat count.

— ZRLE. Finally, this encoding scheme combines a form of the previous
one with Zlib compression.

In order to measure the benefits and tradeoffs of the different encod-
ings and color depths, we evaluated four typical combinations. These were
full color-RAW, full color-HEXTILE, 8 colors-HEXTILE and 8 color-ZRLE. For
each combination, we concurrently injected bait credentials to the whole
VM set — the 96 of them. As before, we collected CPU and network uti-
lization statistics. Figure 3(a) shows the CPU usage under the different

CPU %
MBIt

10 20 30 40 50 60 70 80 90 100 110 0 60 80 100 120
Time (seconds) Time (seconds)

(a) CPU (b) Network

Fig. 3. CPU and network utilization when replaying to all 96 VMs, using different
combinations of color depth and encoding schemes. RAW encoding is clearly the most
demanding. As for the low color depth ones, there is no big difference between HEX
and ZRLE.

encoding-color depth pairs. Using full color yields slightly higher CPU
utilization, but, overall the benefit seems negligible. On the other hand,
network utilization (shown in Figure 3(b)) is indeed affected by the dif-
ferent encoding-color depth combinations. As expected, using full color
and RAW encoding is the most network demanding scheme. Switching to
HEXTILE encoding clearly results to a first improvement. Finally, lowering
the color depth reduces network utilization even more. It is interesting
to see that the encoding scheme does not play such a big role when us-
ing just a few colors. Hence, it would be sufficient to use even HEXTILE
instead of ZRLE, in order to save a few CPU cycles.

4.2 Exfiltration Study

In order to demonstrate the threat posed by credential stealing spyware,
we conducted a study using a relatively large number of distinct samples.
For the purposes of our study, we used variations of the Zeus (also known
as ZBot) malware which is notorious for its credential stealing capabilities.
All the samples were downloaded from Zeus Tracker?.

In previous work, we also did provide a similar study, but somehow
more limited, as each malware sample was only active on a VM for a
small amount of time — order of a few tens of minutes. In our current
study, we installed each malware sample on a separate VM, running on
the virtualized infrastructure we built in order to simulate a thin client
environment. By keeping each malware active for a relatively long period
(weeks or even months) we want to explore two probable phenomena, not

4 Site: https://zeustracker.abuse.ch

covered by our previous study. Firstly, we want to examine whether there
are malware instances that wait for a period of time before exfiltrating
the stolen credentials, and secondly, it would be interesting to see whether
instances not intended to exfiltrate, get updated in a later time to do so.
Both of these cases, if existent, would require a larger time window than
our previous study, to happen.

We bootstrapped the study by installing all the malware samples
available at the Zeus Tracker, and also we automated the procedure of
installing new samples as they are made available. In total, during the
study there were 108 Zeus malware instances installed on distinct VMs
running on our Dell servers for a period of 3 to 4 weeks. During that
time, we periodically injected both Paypal and anonymous bank’s bait
credentials. The component that monitors for external login attempts to
the bait accounts was running for the next few months, as login attempts
can occur even months after the credentials are stolen — based on our
previous study. Along with the injections, we also monitored the network
traffic in order to see which of the malware samples have already started
exfiltrating data.

|[Domain / IP address |Count||Dropzone Script Count
1 |varxx.com 29808||/xt/gate.php 29808
2 |nevereversite.ru 18890)||/gate321.php 18890
3 195.224.124.151:555 17101||/temp/stuk.php 17820
4 165.60.36.114 13218||/~ataactcl/z/gate.php 13218
5 |podgorz.org 9599|| /zuo/zsweb_cleaned /gate.php| 9599
6 |iesahnaepi.ru 8042||/y93/-gate.php 6238
7 |wifahquaht.ru 4763||/cpll/zengate.php 4243
8 |community.infinitie.net| 3436||/cp01/zengate.php 2945
9 |esvr3.ru 2945||/klo/_gate.php 2892
10|phaizeipeu.ru 2702||/cache/lang_cache/web/s.php| 2888

Table 1. Topl0 domain names / IP addresses that malware communicate with (left).
Topl0 script names that exfiltrated data are “dropped” to (right).

Even in a such a short time period, we already encountered thousands
of suspicious data transmissions. More precisely, we saw that from 74
out of the 108 VMs, outbound HTTP POST messages were transmitted
to websites other than the ones we are navigating to while injecting,
or even to raw [P addresses. These are most probably drop zones for
the credentials stolen by the malware samples and/or configuration or
command updates. In total, we recorded 134,302 such requests. The body

of each POST message is in binary format, most probably encrypted in
some way. Table 1 contains both the top 10 host names / IP addresses
that exfiltrated data were sent to and the top 10 script names in the
POST messages that handle the data, along with the number of times
they appeared in our logs. By examining the counter values on both lists,
we see that there are cases where there is an one to one match between
host names and script names. After looking into these cases, we saw that
these script names were only accessed on these host names. On the other
hand, in the rest of the cases, where host name counters do not match
script name counters, some scripts with the same name were installed on
different hosts and some host names had more than one scripts installed.

4.3 Feasibility study

In total, we encountered two hits on the bait accounts from the 108 in-
stalled malware samples (described in the previous subsection). The first
one was on an account from the anonymous bank, after 26 days. The sec-
ond hit was a Paypal account access almost two months after (57 days).
These results show that our technique is indeed effective, which does val-
idate that our new architecture is working.

As far as the number of hits is concerned, it does raise some interesting
questions. On one hand, it could be normal for only a ~2% of the accounts
to be accessed. Some of the dropzones could be inactive or offline. Or,
some malware samples may be unable to steal the accounts from the
financial services we used, or their owners were not interested to these
type of accounts, etc. On the other hand, the low hits percentage could
be due to the nature of our study. One thing that we have to keep in
mind is the fact that all the malware samples we used were downloaded
from Zeus Tracker. As the attackers get more and more sophisticated
and cautious, it would be no surprise to us that they could discard any
credentials reported by malware samples that have been published in sites
like Zeus Tracker. Similarly, as our main goal was the performance and
scalability evaluation, the injection of the bait credentials was periodical
and simultaneous to all the accounts and all the VMs were connected
to the Internet through a single public IP address (NAT). It would be
trivial for an attacker with several malware instances to filter out our
credentials as suspicious, because they are all reported from the same IP
address, periodically and simultaneously.

5 Conclusion

We presented the application of our spyware detection technique for a
common setup in multiuser enterprise environments. We demonstrated
it for thin client environments where we utilized out-of-the-box tools to
implement our tamper resistant bait injection and action verification. The
system was designed to be generic and portable to different remote access
protocol stacks to make it generally applicable.

We experimentally demonstrated the scalability of our system when
applied to a thin client environment. Our results showed that our sys-
tem can successfully operate concurrently on a scalable number of VMs.
Finally, the study we conducted using more than a hundred of malware
samples revealed a number of different relationships between the malware
samples and the dropzones. In addition, the relatively small number of
bait account accesses from the attackers raises some interesting questions
about their sophistication.

Acknowledgements

This work was supported by the NSF through Grants CNS-09-14312
and CNS-04-26623, and ONR through MURI Contract N00014-07-1-0907.
Any opinions, findings, conclusions or recommendations expressed herein
are those of the authors, and do not necessarily reflect those of the US
Government, ONR or the NSF.

References

1. Xen website. http://www.xen.org/.

2. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Tan Pratt, and Andrew Warfield. Xen and the art of virtualization.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164-177, New York, NY, USA, 2003. ACM.

3. Kevin Borders, Xin Zhao, and Atul Prakash. Siren: Catching evasive malware.
In Proc. of the IEEE Symposium on Security and Privacy, pages 78-85, Oakland,
CA, USA, May 2006.

4. Brian M. Bowen, Pratap Prabhu, Vasileios P. Kemerlis, Stelios Sidiroglou, Ange-
los D. Keromytis, and Salvatore J. Stolfo. Botswindler: Tamper resistant injection
of believable decoys in vm-based hosts for crimeware detection. In RAID, 2010.

5. M. Chandrasekaran, S. Vidyaraman, and S. Upadhyaya. SpyCon: Emulating User
Activities to Detect Evasive Spyware. In Proc. of the Performance, Computing,
and Communications Conference (IPCCC), pages 502-509, May 2007.

6. Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song.
Dynamic spyware analysis. In Proc. of the USENIX Annual Technical Conference,
pages 233-246, Santa Clara, CA, USA, June 2007.

10.

11.

12.

13.

14.

15.

16.

Glen Fest. Why thin is back in. http://www.americanbanker.com/usb_issues/
120_3/why-thin-is-back-in-1014707-1.html, March 2010.

Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning More About the
Underground Economy: A Case-Study of Keyloggers and Dropzones, volume 5789
of Lecture Notes in Computer Science (LNCS), pages 1-18. Springer Berlin /
Heidelberg, September 2009.

Steve Lohr. Thin-client boom, finally? http://bits.blogs.nytimes.com/2007/
07/26/thin-client-boom-finally/, July 2007.

Vasilis Pappas, Brian M. Bowen, and Angelos D. Keromytis. Crimeware swin-
dling without virtual machines. In Proceedings of the 13th Information Security
Conference (ISC), 2010.

Tristan Richardson. The rfb protocol, version 3.8.
http://realvnc.com/docs/rfbproto.pdf.

The Security Division of EMC RSA. Malware and enterprise. White paper, April
2010.

Carsten Willems, Thorsten Holz, and Felix Freiling. Toward Automated Dynamic
Malware Analysis Using CWSandbox. In Proc. of the IEEE Symposium on Security
and Privacy (S&P), pages 32-39, March 2007.

S. Jae Yang, Jason Nieh, Matt Selsky, and Nikhil Tiwari. The performance of
remote display mechanisms for thin-client computing. In ATEC ’02: Proceedings
of the General Track of the annual conference on USENIX Annual Technical Con-
ference, pages 131-146, Berkeley, CA, USA, 2002. USENIX Association.

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panaroma: Capturing System-wide Information Flow for Malware Detection and
Analysis. In Proc. of the 14" ACM conference on Computer and Communications
Security, pages 116—127, 2007.

Kim Zetter. Google hack attack was ultra sophisticated, new details show. http:
//www.wired.com/threatlevel/2010/01/operation-aurora/, January 2010.

