
Crimeware Swindling without Virtual Machines?

Vasilis Pappas, Brian M. Bowen, and Angelos D. Keromytis

Department of Computer Science, Columbia University
{vpappas, bmbowen, angelos}@cs.columbia.edu

Abstract. In previous work, we introduced a bait-injection system de-
signed to delude and detect crimeware by forcing it to reveal itself during
the exploitation of captured information. Although effective as a tech-
nique, our original system was practically limited, as it was implemented
in a personal VM environment. In this paper, we investigate how to ex-
tend our system by applying it to personal workstation environments.
Adapting our system to such a different environment reveals a number
of challenging issues, such as scalability, portability, and choice of phys-
ical communication means. We provide implementation details and we
evaluate the effectiveness of our new architecture.

1 Introduction

The existence of an underground economy that trades in stolen digital cre-
dentials drives an industry that creates and distributes crimeware aimed
at stealing sensitive information. Mechanisms employed by crimeware typ-
ically include web-based form grabbing, key stroke logging, the recording
of screen shots, and video capture. Depending on the features and sophis-
tication of the malicious software, it can be purchased on the blackmarket
for hundreds to thousands of dollars. The ease at which one can find such
malware and the relatively low cost of this software, provides easy op-
portunity for those looking to trade and exploit stolen identities. The
difficulty of detecting such software [4] poses a problem for everyone from
home users to large corporations.

We focus our effort on the use of bait information to detect crimeware
that may otherwise go undetected. Our system is designed to complement
traditional detection mechanisms rather than replace them. In prior work
[2], we demonstrated a system that was designed for the tamper resistant
injection of decoys to detect crimeware. The system worked by forcing

? This work was supported by the NSF through Grant CNS-09-14312 and ONR
through MURI Contract N00014-07-1-0907. Any opinions, findings, conclusions or
recommendations expressed herein are those of the authors, and do not necessarily
reflect those of the US Government, ONR or the NSF.

the crimeware to reveal itself during the exploitation of monitored infor-
mation. We demonstrated the system’s ability to detect crimeware using
various types decoy credentials including those for PayPal, a large bank,
and Gmail. The implementation relied upon an out-of-host software agent
to drive user-like interactions in a virtual machine, seeking to convince
malware residing within the guest OS that it has captured legitimate cre-
dentials. The system successfully demonstrated that decoys can be used
for detecting malware, but did so only on a single host. In addition, we
adapted and evaluated our system on a thin-client based environment [5],
but still our system depended on virtualization.

Prior related work includes that by Borders et al. [1] where they used
manually injected human input to generate network requests to detect
malware. The aim of their system was to thwart malware that attempts
to blend in with normal user activity to avoid anomaly detection systems.
Chandrasekaran et al. [3] expanded upon this system and demonstrated
an approach to randomize generated human input to foil potential analy-
sis techniques that may be employed by malware. Unlike our system, these
did not rely on automatically injected bait that is externally monitored.

In this work, we explore and demonstrate a new approach that does
away with the limitation of using virtual machines. Our scheme is aimed
at environments where wireless devices (such as keyboards and mouse
devices) are prevalent. Although applicability is the primary goal of this
effort, we note that this approach may also provide utility in proactively
defending against wireless device snooping [6], a threat model that has
not yet been addressed.

In summary, the contributions for this work include:

– An extension of an already proven system that proactively detects
malware on a host to one that scales to serve any number of hosts.

– A wireless device-based architecture in which simulated mouse and
keyboard strokes are injected wirelessly using the Bluetooth protocol.

– An approach to running simulations that verifies the success and fail-
ure of simulated actions using traffic analysis of encrypted protocols.

2 Original System

The ultimate goal of our technique is to detect crimeware using tamper
resistant injection of believable decoys. In summary, we can detect the
existence of credential stealing malware by (i) impersonating a user login
to a sensitive site (using decoy credentials) and (ii) detecting whether this
specific account was accessed by anyone else except for our system. That

would be a clear evidence that the credentials were stolen and somebody
tried to check the validity and/or the value of that account. Our technique
depends on the following properties:

– Out-of-host Detection. Our system must live outside of the host
to be protected. This prerequisite is for the tamper resistance feature
of our system.

– Believable Actions. The replayed actions must be indistinguishable
by any malware in the host we protect so as to not be easily eluded.

– Injection Medium. There must be a medium capable of transmit-
ting user like actions (mouse, keyboard, etc.) to the protected host.

– Verification Medium. Optionally, but highly preferable, there should
be a medium that can be used to verify the injected actions. This can
actually be the same medium as above, if possible.

Network

Bluetooth

Fig. 1. Personal workstation environment – our system is in the center.

Our original system was implemented on a personal VM-based en-
vironment. More precisely, in order to fulfill the Out-of-host Detection
requirement, our system resided on the host operating system and op-
erated on the guest operating system. To verify the Believability of the
replayed actions, we conducted a user study which verified that the ac-
tions generated by our system are indeed indistinguishable. Moreover, we
utilized the X server of the host operating system to replay the actions
– Injection Medium. Finally, by modifying the component of the virtual
machine manager that is responsible for drawing the screen, we were able
to verify the actions by checking the color value of selected pixels.

The original system relied on a language for the creation of believable
actions. It is worth noting here that the approach is generic enough to
be used as-is in our current work too. This stands because the injection
medium was flexible enough to support replaying of believable actions,
although there could be cases where the believability of the actions can
be degraded due to artifacts of the injection medium itself.

3 Personal Workstations

In order to make the system practical in corporate computing environ-
ments, we consider how it can be applied to personal workstations. The
lack of centralized control over traditional workstations poses the great-
est challenge for our approach. Recall that a critical component of our
system is the injection medium, which has to be deployed out-of-host in
order to be tamper resistant. The approach we propose relies on sim-
ulated Bluetooth input devices as an out-of-host injection medium. In
selecting Bluetooth, we leverage the physical proximity of the personal
workstations to one another within a typical workspace.

One challenge for this approach is the absence of a way to monitor the
screen of the hosts under protection, which was the verification medium
in our original system implementation (VM-based). A naive solution to
this problem would be to mirror the output of each screen using dedi-
cated cables and monitor each of them through a video switch. However,
this would be cumbersome to deploy and not scalable. The solution we
adopted in this case was to move from visual verification to Network Level
Verification. Instead of trying to verify an action by checking whether the
screen output changed, we verify that some network level effects are ev-
ident. In order to apply this type of verification, we only need to mirror
the network traffic and feed it to our system. This is easily applicable in
most corporate environments (most enterprise level switches and routers
provide this functionality out of the box) and scalable, as no physical
level modifications are necessary when adding or removing workstations.

One apparent limitation of network level verification is that it can
only be applied to actions that have network level effects. For instance,
we would not be able to verify opening a text editor, writing some sen-
sitive data and storing that file. However, since we are only interested in
detecting crimeware that steal credentials from sensitive websites, being
able to verify that a login using decoy data was successful is sufficient.

The main challenge of network level verification is that, most of the
time, communication with these sensitive websites is encrypted. If, for
instance, the communication was cleartext, the verification would be as
trivial as searching for some specific keywords within the resulting web-
page. To overcome that, we perform the verification in the following two
steps: (i) verify that a connection to an IP address of the sensitive web-
site’s web server is established and (ii) watch for a specific conversation
pattern, in terms of bytes sent and received. Although the first step is
trivial, the second one poses a challenge.

For the implementation of our system, we utilized GNU Xnee to replay
the believable actions in conjunction with a Bluetooth proxy to transmit
them. The Bluetooth proxy is a modified version of Bluemaemo1, which
is a remote controller program for mobile devices that runs the Maemo
OS.

Network level verification was implemented as an application on top of
libnids2. It was designed to monitor the traffic and report conversation
summaries. Both the Bluetooth and the network level verification compo-
nents are designed to execute in a synchronized manner. The Bluetooth
proxy program receives actions from Xnee, translates them to Bluetooth
HID protocol, and transmits them to the host. If the action is network-
level verifiable, it starts the network monitor and verifies that its output
is the expected.

4 Evaluation

In this section, we evaluate the effectiveness of the network level verifica-
tion. In order to do that, we collected network traffic dumps during both
successful and failed login attempts. Using this data, we show that there
are some network level characteristics that can be used in order to verify
whether a login attempt was successful.

After manually analyzing some of the network traffic dumps, we con-
cluded that an effective and lightweight way to achieve our goal is by
comparing three metrics: the number of conversations, the number of ex-
changed request/response messages and the number of bytes transferred
in each message. By conversations, we are referring to data exchanged
between our host and the web servers of the sensitive site, excluding any
other data exchanged with third party CDNs, etc. For example, consider
the following sequence:

192.168.0.1 192.168.0.42 >70 <2728 >204 <67 >762 <1260

The first two fields represent the IP addresses of the participators and
each of the next fields shows the aggregated number of bytes transmitted
in each direction. Initially, 192.168.0.1 sent 70 bytes to 192.168.0.42,
who then replied with 2728 bytes and so forth.

After computing the conversation summaries for each of the successful
logins to both Paypal and an anonymous bank website, we saw that the
number of distinct conversations and request/response pairs was constant

1 Website: http://wiki.maemo.org/Bluemaemo
2 Website: http://libnids.sourceforge.net/

across different login sessions in most cases. More precisely, each login ses-
sion to the anonymous bank website was comprised of only one conversa-
tion with ten messages – or, five request/response pairs. Similarly, success-
fully logging into Paypal resulted in several conversations, but there was
always one comprised of eight messages, or, four request/response pairs.
On the other hand, failed login attempts to each of these two websites
resulted in clearly different conversations, in terms of number of streams,
number of messages and number of bytes transmitted in each message.
In more detail, an unsuccessful login attempt on Paypal produced more
streams and none of them were comprised of four request/response pairs.
In a similar fashion, failed login attempts to the anonymous bank website
produced a number of streams, out of which, none was comprised of ten
messages. Also, recall that successfully logging into the same site yielded
just one stream, so the distinction was even simpler in that case.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
D

ev
ia

tio
n

(%
)

Message

Anonymous
Paypal

Fig. 2. Standard deviation of the num-
ber of bytes transmitted during a suc-
cessful login attempt, expressed as per-
centage of the average – 100 attempts.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
uc

ce
ss

 R
at

e
(%

)

Threshold variation (%)

Conversations
Bytes

Fig. 3. Network verification success rate
as a function of: (i) number of conversa-
tions and (ii) number of bytes variations.

Figure 2 shows the standard deviation of the number of bytes of each
message transmitted during a successful login attempt, both for Paypal
and the anonymous bank website. Odd numbered messages were sent from
the client to the web server, whereas even numbered where the server’s
responses. In order to make it more compact and clear, the values are
expressed as percentage of the average case. Although the deviation may
seem large in some cases, it does not really affect our detection method be-
cause we can be permissive when choosing the thresholds. This is because
the conversation matching part of the verification is performed in three
levels: (i) number of conversations, (ii) number of messages exchanged
and (iii) number of bytes in each message.

As a classification method, network level verification could lead to
false positives and false negatives. The only case that could be labeled

as a false positive, is a failed login attempt, verified as successful by our
procedure. Recall that, we did examine that simple case for both websites
we used and we verified that our procedure can effectively distinguish a
successful from a failed login. On the other hand, due to the dynamic
nature of web and other network protocols, there could be cases where
verification could fail, even though the action executed normally (false
negatives). Figure 3 depicts the success rate of network level verification as
a function of both the number of conversations and the number of bytes in
each message – number of messages did not affect the success rate in this
case. The y axis represents the percentage of successful verifications out
of the 100 successful logins on Paypal. The X axis shows the percentage
of variation we allowed on the average number of number of conversations
(red line) and number of bytes in each message (blue line). It is worth
mentioning here, that even with these “relaxed” parameters, 30% and
80%, our verification procedure had no false positives.

5 Conclusion

We presented a practical application of our crimeware detection technique
on personal workstations environments. The absence of virtualization,
which was an important component of the original system, made the
application even more challenging. In order for our system to remain out-
of-host and thus tamper-resistant, we utilized simulated wireless input
devices (Bluetooth) and also developed a network level verifier for the
injected actions. Finally, our experimental results on the effectiveness of
the network level verification showed that it is indeed practical.

References

1. Kevin Borders, Xin Zhao, and Atul Prakash. Siren: Catching evasive malware. In
Proc. of the IEEE Symposium on Security and Privacy, pages 78–85, Oakland, CA,
USA, May 2006.

2. Brian M. Bowen, Pratap Prabhu, Vasileios P. Kemerlis, Stelios Sidiroglou, Ange-
los D. Keromytis, and Salvatore J. Stolfo. Botswindler: Tamper resistant injection
of believable decoys in vm-based hosts for crimeware detection. In RAID, 2010.

3. M. Chandrasekaran, S. Vidyaraman, and S. Upadhyaya. SpyCon: Emulating User
Activities to Detect Evasive Spyware. In Proc. of the Performance, Computing, and
Communications Conference (IPCCC), pages 502–509, May 2007.

4. RSA (EMC’s Security Division). Malware and enterprise. White paper, April 2010.
5. Vasilis Pappas, Brian M. Bowen, and Angelos D. Keromytis. Evaluation of a spyware

detection system using thin client computing. In ICISC, 2010.
6. Thorsten Schroeder and Max Moser. Practical exploitation of modern wireless

devices. http://www.remote-exploit.org/?p=437, March 2010.

