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C ode-injection attacks are one of the most 
powerful vectors for compromising a sys-
tem remotely. Attackers insert code of their 
choosing into a remote system and somehow 

induce its execution. This injected code then acts as a 
“beach head” through which, if undetected or other-
wise unchecked, attackers can explore and use the sys-
tem to their own ends. Although the remote insertion 
of new code into a target system can take many forms, 
the term code injection typically means that the code was 
surreptitiously added to an existing, running process 
or application (as opposed to, for example, a malicious 
executable received as an email attachment). 

For many years, the most common method for 
code injection was via buffer overflow vulnerabilities. 
By exploiting weaknesses involving input validation 
and array-bounds-checking in C/C++ programs, an 
attacker could inject code to a remote process’s address 
space and cause the program to cede control to the 
injected code. In the simplest case, the return pointer 
of a specific function’s stack frame is made to point to 
the injected code, causing the program to jump to the 
attack code upon returning from that function. More 
recently, different types of code-injection attacks have 
also started to appear, but they typically operate at a 
different level of abstraction and exploit completely 
different vulnerabilities. SQL-injection attacks, for 
example, involve inserting database commands into 
data sent to Web applications, allowing the attacker 
to extract or manipulate information in a Web site’s 
back-end database. Cross-site scripting (XSS) attacks 
let intruders bypass modern Web browsers’ security 
mechanisms by making their JavaScript code appear as 

if it were coming 
from a different, 
possibly trusted, site.

Researchers and practitioners have proposed several 
techniques to counter code-injection attacks, includ-
ing safe languages, static code analysis tools, software 
hardening techniques, hardware extensions such as 
the No-eXecute (NX) feature in modern processors, 
attack detection and containment mechanisms, and so 
forth. One such technique is instruction set random-
ization (ISR). The basic idea behind this approach is 
that attackers don’t know the language “spoken” by 
the runtime environment on which an application 
runs, so a code-injection attack will ultimately fail 
because the foreign code, however injected, is written 
in a different language. In contrast to other defense 
mechanisms, we can apply ISR against any type of 
code-injection attack, in any environment. Moreover, 
its use results in diversifying the runtime environment 
such that a successful attack against one process or host 
won’t succeed verbatim against another. This is par-
ticularly useful in the context of self-propagating mal-
code (such as worms), which depends on exploiting 
the same vulnerability in the same way across different 
systems, to compromise large numbers of systems.1

Naturally, we can’t depend on the secrecy of the 
language or runtime environment for any significant 
time period in the presence of a determined attack-
er. Instead, following modern cryptography’s lead, 
we should depend on robust algorithms for creating 
numerous different languages or runtime environ-
ments and then choose randomly from among them. 
Think of this random choice as a key: we can use it to 
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transform legitimate, authorized code to something 
compatible with the corresponding instance of the 
runtime environment or language. 

In the remainder of this article, I discuss two spe-
cific applications of ISR—protecting against binary 
code injection and SQL injection. I also discuss the use 
of ISR as an adaptive protection mechanism in a host-
based intrusion prevention system. My goal is to cover 
the technique’s limitations—for example, it doesn’t 
work well with self-modifying code and requires ad-
ditional debugger support—and, where possible, how 
to overcome these obstacles in future work.

ISR for Binaries
The first application of ISR targeted code-injection 
attacks in program binaries, with two independent 
research groups (University of New Mexico and Co-
lumbia University) demonstrating the concept and 
their differing implementations at the same 2003 con-
ference.2,3 At the time, hardware features that enforce 
separation of code and data at the page level (such 
as the NX extension) weren’t available. Today, such 
features largely obviate the need for binary ISR in 
desktop computers and servers, but not all processors 
and operating systems support sophisticated memory 
management (a necessary component for using hard-
ware protection features), especially in the embedded 
systems space.

Although the typical injection vehicle is via a buf-
fer overflow attack, ISR itself is agnostic with respect 
to said vehicle. To demonstrate the concept, my team 
at Columbia University’s Network Security Labora-
tory in collaboration with Vassilis Prevelakis (Drexel 
University) applied ISR to network server applica-
tions because such systems generally represent often-
targeted (and thus high-risk) environments. As Figure 
1 shows, our approach aims to create a “randomized 
CPU” on which software that has undergone a com-
patible transformation can operate; foreign code that’s 
incompatible with the randomized CPU will mal-
function. Depending on the underlying mechanism 
for implementing ISR, the CPU could execute the en-
tire system (including the operating system kernel) in 
randomized mode; alternatively, the system could ex-
ecute only individual processes in randomized mode, 
possibly using different keys for different processes. 
During the code randomization process, the user or 
administrator chooses the key at random and provides 
it to the CPU either at system startup or process-start 
time. In the latter case, the key could change periodi-
cally or even across individual invocations of the same 
program binary—but every time the key changes, so 
must the program binary. In principle, it’s even pos-
sible for the operating system to re-randomize the text 
segment of a running process periodically and then 
reconfigure the CPU accordingly.

From a security perspective, it’s desirable to change 
the key frequently because we’ve seen that, in some 
situations, attackers can use a series of carefully con-
structed timing attacks to guess it in linear time if it 
doesn’t change in response to a software failure.4,5 It’s 
also desirable (but not crucial) to use independent 
keys for different processes. One complication is the 
use of dynamically loaded shared libraries in modern 
systems: we can’t pre-randomize them, nor can we 
randomize them with a single key (several randomized 
processes might actively use them simultaneously). 
Thus, we must either use whole-system randomiza-
tion (with the operating system kernel, shared librar-
ies, and all programs using the same key) or resort to 
statically linking the libraries of those processes that 
we want to randomize, which are typically network-
facing server applications.

The second complication with our scheme is that 
no commercially available CPU supports ISR. Al-
though the logic for implementing ISR is relatively 
straightforward (requiring an additional register on 
which to load the ISR key and appropriate decod-
ing logic in the CPU’s instruction decode stage), it’s 
impossible to retrofit existing CPUs without resorting 
to custom fabrication. One possibility is to implement 
the CPU itself inside a field-programmable gate ar-
ray (FPGA). Other possibilities we briefly investigated 
but ultimately couldn’t pursue due to lack of resources 
and relevant documentation were the use of micro-
code updates to CPUs that support them and repro-
grammable CPUs such as the TransMeta Crusoe chip. 
However, microcode details and update procedures 
are valuable assets to processor manufacturers, making 
it very unlikely that we would be able to implement 
ISR this way.

Although we could imagine several different ran-
domization schemes, we decided to use relatively 
straightforward transformations that we could in prin-
ciple efficiently implement in hardware. Perhaps the 
two most obvious involve XOR-ing the program text 
with the randomization key or using the key to trans-
pose the bits within an instruction. For concreteness, 
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Figure 1. Instruction set randomization- (ISR-) enabled system. The 
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we focus on XOR as the randomization algorithm. 
The disadvantage of using such simple randomization 
schemes is that an adversary that managed to some-
how see the randomized code could easily determine 

the key. Because our threat model focuses on remote 
code injection (that is, we aren’t concerned about users 
with legitimate local access to the system), this was an 
acceptable limitation.

However, partly due to the simplicity of the ran-
domization scheme, we needed to ensure that an ad-
versary couldn’t overcome ISR simply by exhaustively 
searching the key space. Although attacks against ISR 
are generally orders of magnitude slower than equiva-
lent attacks against passwords or cryptographic keys 
because they involve interaction with a complex sys-
tem over a network, it’s important to minimize the 
probability of an adversary correctly guessing the key 
at random. One related complication arose from our 
choice of demonstration platform/processor—specifi-
cally, we chose to demonstrate ISR on the commonly 
available and widely used x86 family of CPUs. In 
contrast to reduced instruction set computer (RISC) 
architecture processors, which have fixed-length in-
structions (typically 32 or 64 bits), x86 processors use 
variable-length instructions. Because x86 instructions 
need not be aligned to any byte multiple (as almost 
all RISC processors require), and some instructions 
are 1 byte long, we would need to perform full code 
disassembly to correctly apply the randomization al-
gorithm at the instruction boundary. This task is dif-
ficult even in the best of circumstances—the code 
might be reachable only through jump tables, object 
methods, or other instances of function pointers, all 
of which are unknown to us because we don’t assume 
access to the source code. We compromised by using 
16-bit randomization keys (which give an adversary 
a 1-in-65,536 chance of correctly guessing the key) 
and relying on the fact that most commonly used x86 
compilers (including GCC and Microsoft’s Visual 
Studio C++) seem to align code blocks to 16-bit (2-
byte) boundaries by silently adding 1-byte NOP (no 
operation) instructions as needed. If the developer or 
user compiles the code with the appropriate flags, we 
could also use larger randomization keys (at the ex-
pense of some memory overhead). In practice, 16-bit 
ISR keys (with rekeying on program startup) should 
provide sufficient protection for most environments.

To demonstrate the feasibility (if not immediate 
deployability) of ISR, we ran a prototype based on 
emulation. To avoid the complexity of dealing with 
shared libraries, we decided to pursue whole-system 
randomization; likewise, the University of New 
Mexico ISR prototype pursued independent-process 
randomization through emulation as well, but used 
static linking of libraries. In our prototype, we modi-
fied the Bochs open source whole-system emulator to 
provide an additional register for the ISR key and the 
necessary logic in the instruction decode stage. We 
also modified CPU interrupt-handling logic to save 
and reload the ISR key from the stack. Thus, although 
our implementation used whole-system randomiza-
tion, we could implement single-process randomiza-
tion (and independent keys for different ISR-protected 
processes) under the supervision of the operating sys-
tem, which simply needs to save and reload the ISR 
register at each context switch.

Our implementation was relatively straightfor-
ward and operated as expected—that is, it caught 
all the code-injection attacks we launched against 
it. Because this was a pure software implementation, 
the underlying system’s performance significantly 
lagged behind that of a real system. Specifically, for 
I/O-heavy tasks such as file copying, we observed 
an overhead of approximately 30 percent; for more 
CPU-heavy tasks such as email handling, the over-
head rose to 2,000 percent.

We concluded that absent hardware support or 
significant optimizations in the emulation method,6 
ISR for binaries might be too expensive for whole-
sale use. Moreover, ISR doesn’t protect against all 
control-hijacking attacks—for example, it doesn’t 
protect against “jump into libc” attacks, which abuse 
existing program code to achieve an attacker’s goals. 
To counter such attacks, we can use address space 
layout randomization (ASLR),7 which most oper-
ating systems today already incorporate (including 
Vista, Linux, and Mac OS X). ASLR also protects 
against code-injection attacks, so it would appear 
that ISR is redundant in this case. However, the cur-
rent generation of 32-bit processors provides insuf-
ficient protection against determined attackers due 
to the (relatively) limited address space in which ran-
domization must take place;8 ASLR is much more 
effective in 64-bit processors. Unfortunately, em-
bedded systems can’t effectively use ASLR for the 
same reasons as for hardware-enforced protection 
features. Finally, as mentioned earlier, we must be 
careful to change keys frequently (especially after 
each software failure or crash) to avoid certain key-
guessing attacks.4,5

An attractive feature of ISR is that it provides a 
“halt on failure” protection mechanism: once the 
injected code starts executing, it quickly terminates 
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the software.9 Furthermore, it’s relatively easy to turn 
ISR on and off for a given process—for example, by 
keeping two copies of the program text and actively 
managing the ISR register. Similarly, we can activate 
ISR for selected parts of the program—that is, parts 
of the program’s code and processes will execute in a 
randomized context, with the rest executing “in the 
clear.” This latter intuition lets us use ISR as part of a 
larger, adaptive, host-based protection system despite 
its performance penalty.

FLIPS and Adaptive Defenses
The Feedback Learning Intrusion Prevention System 
(FLIPS) brings together ISR and anomaly detection 
to create an adaptive system that allows defenses to 
gradually learn what constitutes malicious input to a 
process.10 Anomaly detection systems, which use sta-
tistical means to summarize inputs or events of in-
terest, typically require a training phase in which the 
administrator feeds the system with known-good and 
known-bad inputs. During this phase, the anomaly 
detector builds models of good and bad inputs, so 
during operation, we can use the anomaly detection 
system’s output to block abnormal inputs without re-
quiring precise attack signatures. However, the non-
requirement for precise signatures also introduces 
uncertainty and error in the classification of inputs, 
which can lead to anomalous inputs (“attacks”) being 
classified as benign and legitimate inputs classified as 
anomalous—these are called the false-negative (FN) 
and false-positive (FP) problems, respectively. FPs 
adversely impact legitimate user requests and actions, 
whereas FNs can lead to system compromise. With 
some exceptions, system operators try to minimize 
FPs, but this typically leads to over-permissive models 
of normalcy, which can increase the risk of FNs (and 
hence successful undetected attacks).

FLIPS was the first system to combine anomaly 
detection and software-based ISR in a feedback loop. 
In FLIPS, the defenses wouldn’t necessarily block in-
puts deemed anomalous outright; instead, they would 
cause the process to execute with ISR enabled. If the 
input represented an actual attack, it would lead to a 
software failure, a fact that the defense mechanism 
then feeds back to the anomaly detection system to 
improve its model of normalcy. The input itself is 
added to a list of known malicious inputs to be filtered 
(signature-based blocking). If no failure occurs while 
processing inputs flagged as anomalous, we indicate 
to the anomaly detection system that it generated an 
FP—again, to improve the model of normalcy—and 
the input can be added to a list of inputs that should 
be passed through (to avoid ISR next time the system 
encounters them). Conversely, normal inputs would 
cause the process to execute without ISR, although 
if enough resources are available (or the system load 

is low), the administrator can enable ISR to random-
ly detect FNs. The net effect of this scheme is that 
FPs simply cause slower processing but no outright 
blockage and would thus be less noticeable and objec-
tionable to users (and administrators). Consequently, 
administrators can tune the anomaly detection sys-
tem conservatively to minimize FNs at the cost of 
higher FPs.

Because we can apply ISR selectively, we can use 
it as part of an adaptive defense system: once an attack 
is identified (whether through FLIPS or some other 
technique, such as a honeypot system) and localized in 
some region of the code, we can randomize only that 
part of the application (potentially down to an indi-
vidual function) implicated in the attack. Specifically, 
we randomize the function whose stack-frame return 
pointer is corrupted, or where a corrupted control 
structure (such as an overwritten function pointer) is 
exploited. If the program jumps to injected code upon 
returning from that function, a fault will occur; if the 
program executes without failure past the point, we 
can disable ISR. To enable this mode of operation, 
we re-implemented our ISR-enabled emulator such 
that it could be called from within the program as a 
library function; upon return from the function, the 
program executes inside the emulator. To terminate 
emulation and switch program execution to the proc-
essor itself, we simply add a call to another function 
inside the emulator library. Upon return from that 
function, the program executes directly on the pro-
cessor. Note that in both cases, the program executes 
within the same process and address space and has ac-
cess to the same program state. The last piece, then, 
is a binary-rewriting tool that lets us insert function 
calls to the emulator library inside a program binary. 
In this way, we incur the cost of software-only ISR as 
needed. Our experiments show that the performance 
overhead in this scenario can be very low, potentially 
down to zero if the vulnerable code is seldom or never 
used aside from the attack.11

SQLrand
A second application of ISR involves protecting 
against SQL-injection attacks in Web applications.12 

Such applications use input received from a client (for 
example, as part of filling out a Web form) to populate 
a SQL query template. The application then transmits 
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the completed query to the back-end database, and 
the Web application processes this operation’s results 
before presenting them to the user as part of another 
Web page. SQL-injection attacks exploit weaknesses 
in validating the input and in combining the data re-
ceived from the remote user (possibly an attacker) and 
the SQL template—for example, consider a simple 
(but insecure) template populated via a cookie called 
USERNAME to find all orders by that user:

SELECT *
FROM orders
WHERE customer=‘$USERNAME’;

Typically, the value embedded in the cookie would be 
something like “ANGELOS”, in which case the Web 
application would emit the following SQL query to 
the database:

SELECT *
FROM orders
WHERE customer=‘ANGELOS’;

However, a crafty adversary could easily cause the da-
tabase to return all orders by all users (exposing their 
private information) by editing the cookie to instead 
use ‘or 1 = 1; as a username, which would cause 
the emitted query to be

SELECT *
FROM orders
WHERE customer=“or 1=1;’;

More creative uses of the attack can lead to data-
base modifications or even changes to the underlying 
system through stored procedures and other facilities 
available in modern database management systems 
(DBMSs). Such attacks have become extremely pre-
valent in recent years, surpassing buffer overflows in 
terms of the numbers of incidents and reported vul-
nerabilities in several bug-tracking databases. Despite 
the problem’s severity, very few practical solutions 
exist. Surprisingly, even the research community has 
only recently begun looking at the problem seriously.

Our application of ISR to SQL injection, named 

SQLrand, is straightforward, following our approach 
to binary ISR. We randomize both the underlying 
runtime environment (in this case, the SQL parser 
in the DBMS) and the SQL “program” (the template 
that the Web application uses). A simple approach for 
randomizing the SQL grammar consists of append-
ing a random numeric tag (the randomization key) to 
each statement and operator in SQL. Using our previ-
ous example, the randomized SQL template using tag 
“123456” would look like

SELECT123456 *
FROM123456 orders
WHERE123456 customer=123456 
   ‘angelos’;123456

In this case, the previously shown attack fails the pars-
ing stage because the resulting query doesn’t conform 
to the randomized SQL grammar. Tags can be arbi-
trarily long, although in practice they rarely have to 
be longer than 10 digits. Unlike binary ISR, an im-
proper input will lead to a parsing failure without any 
random code sequence being executed. Moreover, 
SQL queries’ looser structure and formatting require-
ments makes using arbitrarily long randomization 
keys trivial.

It’s worth highlighting the difference between 
SQLrand and input sanitization techniques because 
both approaches require that the programmer iden-
tify both the “code” and the “data.” With SQLrand, 
the programmer merely needs to randomize the code, 
which defeats injection attacks regardless of how the 
attack payload is injected. Furthermore, an improp-
erly constructed SQLrand-enabled site or script won’t 
work, which initial developer testing will likely catch. 
With sanitization, the programmer must ensure that 
all inputs are cleaned of potentially unsafe characters; if 
he or she somehow misses an execution path (a distinct 
possibility, given pressure to deliver functionality over 
security), an attack is still possible. An insufficiently 
sanitized script will still work, but it’s difficult to en-
force or verify that proper defenses are in use. Other 
recently proposed techniques involve “taint” tracking 
data received from untrustworthy sources (such as the 
network) as the program processes it; if the program 
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Figure 2. SQLrand system architecture. The proxy is a separate process that can run on the same or separate machines as the Web 
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attempts to use such data as “code,” the system stops 
the operation.13 This can be an effective way of stop-
ping injection attacks, but it typically requires exten-
sive modifications to the runtime environment. Other 
approaches to dealing with SQL-injection problems 
involve domain-specific automated testing14 and static 
analysis techniques.15

The only problem with the SQLrand approach is 
that, in general, we can’t modify the SQL parser in the 
DBMS; this is similar to the “immutable CPU” prob-
lem in binary ISR. As in that case, we can solve the 
problem by introducing an intermediate processing 
step. As Figure 2 shows, our system (SQLrand) uses a 
proxy that sits between the Web application and the 
actual database, parses the randomized SQL queries, 
and emits de-randomized SQL queries to the DBMS, 
relaying back the results. If a parsing error occurs, the 
SQLrand parser drops the query.

Our implementation of SQLrand was fairly 
straightforward, and the prototype protected against 
all SQL-injection attacks with which we experi-
mented. Furthermore, the performance impact of the 
randomization process and the proxy were negligible. 
In fact, most benchmarks failed to show a statistically 
significant difference in performance, while the worst 
reproducible result we could obtain was a 2 percent in-
crease in query-processing latency. The reason for the 
minimal overhead lies in the fact that SQL parsing—
and Web applications in general—already involves an 
interpreter or similar runtime environment that can 
be easily extended to support ISR. 

 Finally, because many runtime environments and 
Web applications are relatively “chatty” in case of fail-
ure (often revealing the SQL queries that failed, along 
with internal system variables and so forth), an attacker 
could induce an error report that reveals the random-
ization key. One straightforward solution to this prob-
lem is to parameterize the template itself, populating it 
with a value (or tag) received from the DBMS when 
the connection is first created. It’s also possible to filter 
Web server output such that the Web server removes 
instances of the tag, either by updating the filter with 
the specific tag in use or by using tags with a known 
invariant part and a random part (such as using tags 
starting with “SQLRANDKEY123” followed by a ran-
dom sequence of digits). Care must be taken to pre-
vent the attacker from using, as part of the attack, any 
variables that store the tag. Despite these caveats, we 
found SQLrand a powerful and easy-to-develop and 
use technique against SQL-injection attacks.

Future Directions for ISR
Our SQLrand work showed us that some of the most 
promising applications of ISR probably lie in the 
realm of interpreted languages. SQL injection itself 
remains a big problem; ways to improve the practi-

cality of SQLrand are thus of some importance. The 
primary limitation of SQLrand is that programmers 
must manually replace the query templates that are 
often embedded in their Web applications with a ran-
domized version. Tools to help programmers with 
this randomization would probably also improve the 
chances of SQLrand’s adoption and use.

Attackers have launched strikes similar to SQL in-
jection against various languages (including PHP and 
Perl); we believe that the ISR concept can be readily 
translated to such environments. In fact, a randomized-
Perl prototype proved remarkably straightforward to 
construct. The only source of complexity, similar to 
the case of binary ISR, was the use of shared libraries 
(external Perl code included in a script). A good solu-
tion to this general problem remains to be found.

An interesting and relatively new problem area is 
that of XSS attacks against Web browsers. These attacks 
violate the same-origin policy browsers enforce to pro-
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Figure 3. Cross-site scripting attacks. The Web browser fetches a page from 

a malicious Web server (1), which returns a page containing a redirect or 

an image URL pointing to the trusted Web server (2). Malicious JavaScript 

might be embedded in the URL that the browser then resolves and follows 

(3), such that the Web server or Web application on the trusted site will 

mirror it (the malicious JavaScript) back to the Web browser as part of 

a page (4). Unless the mirrored input is properly escaped, the browser 

will treat it as if it were purposely provided by the trusted Web server, 

and according to the same-origin policy, the Web browser will allow it to 

interact with other open frames from the same Web site (or, indeed, with 

the trusted Web site itself).

A t its core, the same-origin policy allows interaction between browser 

frames (through scripting) but only if the frames come from the 

same source domain (in most cases, this means from the same Web 

server). The same-origin policy prevents JavaScript code attached to 

a page from site A, for example, from interacting (that is, reading or 

manipulating the contents) with a frame containing a page from site B. 

Furthermore, the JavaScript code attached to a page from site A can only 

communicate with site A. Violation of this browser sandbox mechanism 

would let malicious sites manipulate user sessions with other sites and 

fool the user (and, in some cases, the browser) into providing login cre-

dentials for a secure site to a fake site or to a compromised Web page. To 

enforce the same-origin policy, browsers track from where each piece of 

HTML, CSS, JavaScript, Flash, and so on was received.

What Is the Same-Origin Policy?
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tect Web pages from each other (see the “What Is the 
Same-Origin Policy?” sidebar for a brief description). 
XSS attacks disguise the source of such elements (typi-
cally JavaScript code) by “bouncing” them off miscon-
figured or buggy servers and Web applications. This is 
possible if the Web server itself or a Web application on 
it includes in its output part of the input verbatim, as 
explained in Figure 3. This is a form of code injection, 
whereby one site inserts JavaScript (or other HTML 
elements) of its choosing in the contents returned from 
another site, such that the injected JavaScript operates 
with the target site’s privileges. Short of careful scrub-
bing of output at a Web server, it’s very difficult to 
protect against XSS attacks. One possibility we’re in-
vestigating involves using ISR for active content (spe-
cifically, JavaScript). Similar to the case of interpreted 
SQL or Perl, the JavaScript interpreter in a browser 
would use a different tag (ISR key) for JavaScript code 
received from different sites. This tag, which the Web 
server would append to each JavaScript keyword and 
operand returned by site A, would be received from 
the site during first contact and would remain some-
what persistent (that is, change periodically but not 
constantly for each user or browser). For example, the 
Web server could securely embed it in a cookie during 
the first visit to site A. The XSS-injected JavaScript 
wouldn’t be transformed and would thus fail to parse 
while executing on the browser in the context of site 
A (that is, under the appropriate randomization key). 
Several smaller complications must be resolved, in-
cluding (unsurprisingly) the case of shared JavaScript 
code legitimately “pulled” by the browser from a third 
site that doesn’t implement ISR. An obvious limita-
tion of the approach is that it requires support from 
both browser and server. We’re investigating ways of 
improving on this basic scheme.

In terms of binary ISR, several possible improve-
ments and directions already exist. Perhaps most 
obviously, administrators and users can use ISR to 
construct secure application-specific appliances (such 
as hardened Web servers). If performance is a major 
issue, programmers can use advanced code transla-
tion techniques to significantly reduce the penalty;6 
alternatively, they could implement the appliance via 
an FPGA to simulate the CPU and some of the pe-
ripherals. Programmers often use this approach to test 
small architectural tweaks, and several versions of Li-
nux can run on such boards. We should be able to use 
our existing whole-system prototype—as is in such a 
runtime environment. We can also apply the general 
concept of randomization in different parts of the op-
erating system/process interface.7

Even in a pure software implementation, ISR has 
some interesting uses stemming from the ability to apply 
it selectively. I already described its use as a targeted de-
fense in an adaptive system, but a different use, similar in 

concept to FLIPS, applies ISR as an attack sensor across 
a large number of identical software instances. Each in-
stance uses ISR for only a small part of its code (thus only 
detecting attacks that happen to manifest within that 
part of the application) or for some randomly selected 
fraction of requests (for example, once every 10,000 re-
quests). Consequently, the cost of monitoring for attacks 
is spread across many distinct, cooperating instances of 
the software (an “application community”).16 By adjust-
ing the code fraction or the sampling rate, we can bring 
the per-instance overhead within acceptable levels but 
still maintain some detection (and defensive) capability. 
The trade-off in such a system involves performance and 
speed of detecting new attacks. We’re currently pursu-
ing several research leads in this direction.

O ne way to view ISR is as a form of probabilistic 
dynamic type-checking of code;17 another is as 

an amendment to the classic von Neumann computer 
architecture and its corollaries with respect to the sep-
aration (or lack thereof ) between code and data. Oth-
er techniques for providing such separation exist, all 
of them ultimately involving some marking scheme 
(of memory pages, input data, “important” addresses, 
and so on), but ISR is unique in that it’s applicable 
in so many distinct application domains. Perhaps un-
surprisingly, it’s sometimes less efficient than other 
techniques that are tailored to specific environments 
or classes of vulnerabilities, and, as with any security 
mechanism, we must be aware of its limitations and 
the potential pitfalls in its use. 
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