
IT Monoculture

18	 Published by the IEEE Computer Society ■ 1540-7993/09/$25.00 © 2009 IEEE ■ IEEE Security & Privacy

C ode-injection attacks are one of the most
powerful vectors for compromising a sys-
tem remotely. Attackers insert code of their
choosing into a remote system and somehow

induce its execution. This injected code then acts as a
“beach head” through which, if undetected or other-
wise unchecked, attackers can explore and use the sys-
tem to their own ends. Although the remote insertion
of new code into a target system can take many forms,
the term code injection typically means that the code was
surreptitiously added to an existing, running process
or application (as opposed to, for example, a malicious
executable received as an email attachment).

For many years, the most common method for
code injection was via buffer overflow vulnerabilities.
By exploiting weaknesses involving input validation
and array-bounds-checking in C/C++ programs, an
attacker could inject code to a remote process’s address
space and cause the program to cede control to the
injected code. In the simplest case, the return pointer
of a specific function’s stack frame is made to point to
the injected code, causing the program to jump to the
attack code upon returning from that function. More
recently, different types of code-injection attacks have
also started to appear, but they typically operate at a
different level of abstraction and exploit completely
different vulnerabilities. SQL-injection attacks, for
example, involve inserting database commands into
data sent to Web applications, allowing the attacker
to extract or manipulate information in a Web site’s
back-end database. Cross-site scripting (XSS) attacks
let intruders bypass modern Web browsers’ security
mechanisms by making their JavaScript code appear as

if it were coming
from a different,
possibly trusted, site.

Researchers and practitioners have proposed several
techniques to counter code-injection attacks, includ-
ing safe languages, static code analysis tools, software
hardening techniques, hardware extensions such as
the No-eXecute (NX) feature in modern processors,
attack detection and containment mechanisms, and so
forth. One such technique is instruction set random-
ization (ISR). The basic idea behind this approach is
that attackers don’t know the language “spoken” by
the runtime environment on which an application
runs, so a code-injection attack will ultimately fail
because the foreign code, however injected, is written
in a different language. In contrast to other defense
mechanisms, we can apply ISR against any type of
code-injection attack, in any environment. Moreover,
its use results in diversifying the runtime environment
such that a successful attack against one process or host
won’t succeed verbatim against another. This is par-
ticularly useful in the context of self-propagating mal-
code (such as worms), which depends on exploiting
the same vulnerability in the same way across different
systems, to compromise large numbers of systems.1

Naturally, we can’t depend on the secrecy of the
language or runtime environment for any significant
time period in the presence of a determined attack-
er. Instead, following modern cryptography’s lead,
we should depend on robust algorithms for creating
numerous different languages or runtime environ-
ments and then choose randomly from among them.
Think of this random choice as a key: we can use it to

Instruction set randomization offers a way to combat

code-injection attacks by separating code from

data (specifically, by randomizing legitimate code’s

execution environment). The author describes the

motivation behind this approach and two application

environments.

Angelos D.
Keromytis

Columbia
University

Randomized Instruction Sets
and Runtime Environments
Past Research and Future Directions

IT Monoculture

	 www.computer.org/security/ ■ IEEE Security & Privacy� 19

transform legitimate, authorized code to something
compatible with the corresponding instance of the
runtime environment or language.

In the remainder of this article, I discuss two spe-
cific applications of ISR—protecting against binary
code injection and SQL injection. I also discuss the use
of ISR as an adaptive protection mechanism in a host-
based intrusion prevention system. My goal is to cover
the technique’s limitations—for example, it doesn’t
work well with self-modifying code and requires ad-
ditional debugger support—and, where possible, how
to overcome these obstacles in future work.

ISR for Binaries
The first application of ISR targeted code-injection
attacks in program binaries, with two independent
research groups (University of New Mexico and Co-
lumbia University) demonstrating the concept and
their differing implementations at the same 2003 con-
ference.2,3 At the time, hardware features that enforce
separation of code and data at the page level (such
as the NX extension) weren’t available. Today, such
features largely obviate the need for binary ISR in
desktop computers and servers, but not all processors
and operating systems support sophisticated memory
management (a necessary component for using hard-
ware protection features), especially in the embedded
systems space.

Although the typical injection vehicle is via a buf-
fer overflow attack, ISR itself is agnostic with respect
to said vehicle. To demonstrate the concept, my team
at Columbia University’s Network Security Labora-
tory in collaboration with Vassilis Prevelakis (Drexel
University) applied ISR to network server applica-
tions because such systems generally represent often-
targeted (and thus high-risk) environments. As Figure
1 shows, our approach aims to create a “randomized
CPU” on which software that has undergone a com-
patible transformation can operate; foreign code that’s
incompatible with the randomized CPU will mal-
function. Depending on the underlying mechanism
for implementing ISR, the CPU could execute the en-
tire system (including the operating system kernel) in
randomized mode; alternatively, the system could ex-
ecute only individual processes in randomized mode,
possibly using different keys for different processes.
During the code randomization process, the user or
administrator chooses the key at random and provides
it to the CPU either at system startup or process-start
time. In the latter case, the key could change periodi-
cally or even across individual invocations of the same
program binary—but every time the key changes, so
must the program binary. In principle, it’s even pos-
sible for the operating system to re-randomize the text
segment of a running process periodically and then
reconfigure the CPU accordingly.

From a security perspective, it’s desirable to change
the key frequently because we’ve seen that, in some
situations, attackers can use a series of carefully con-
structed timing attacks to guess it in linear time if it
doesn’t change in response to a software failure.4,5 It’s
also desirable (but not crucial) to use independent
keys for different processes. One complication is the
use of dynamically loaded shared libraries in modern
systems: we can’t pre-randomize them, nor can we
randomize them with a single key (several randomized
processes might actively use them simultaneously).
Thus, we must either use whole-system randomiza-
tion (with the operating system kernel, shared librar-
ies, and all programs using the same key) or resort to
statically linking the libraries of those processes that
we want to randomize, which are typically network-
facing server applications.

The second complication with our scheme is that
no commercially available CPU supports ISR. Al-
though the logic for implementing ISR is relatively
straightforward (requiring an additional register on
which to load the ISR key and appropriate decod-
ing logic in the CPU’s instruction decode stage), it’s
impossible to retrofit existing CPUs without resorting
to custom fabrication. One possibility is to implement
the CPU itself inside a field-programmable gate ar-
ray (FPGA). Other possibilities we briefly investigated
but ultimately couldn’t pursue due to lack of resources
and relevant documentation were the use of micro-
code updates to CPUs that support them and repro-
grammable CPUs such as the TransMeta Crusoe chip.
However, microcode details and update procedures
are valuable assets to processor manufacturers, making
it very unlikely that we would be able to implement
ISR this way.

Although we could imagine several different ran-
domization schemes, we decided to use relatively
straightforward transformations that we could in prin-
ciple efficiently implement in hardware. Perhaps the
two most obvious involve XOR-ing the program text
with the randomization key or using the key to trans-
pose the bits within an instruction. For concreteness,

Choose
ISR key

Execution on CPU
supporting ISR

Transform software
using ISR key

Initialize CPU
using ISR key

Crash

Code
injection

Figure 1. Instruction set randomization- (ISR-) enabled system. The

randomization key could be system-wide or process-specific, depending on

implementation choice.

IT Monoculture

20	IEEE Security & Privacy ■ January/February 2009

we focus on XOR as the randomization algorithm.
The disadvantage of using such simple randomization
schemes is that an adversary that managed to some-
how see the randomized code could easily determine

the key. Because our threat model focuses on remote
code injection (that is, we aren’t concerned about users
with legitimate local access to the system), this was an
acceptable limitation.

However, partly due to the simplicity of the ran-
domization scheme, we needed to ensure that an ad-
versary couldn’t overcome ISR simply by exhaustively
searching the key space. Although attacks against ISR
are generally orders of magnitude slower than equiva-
lent attacks against passwords or cryptographic keys
because they involve interaction with a complex sys-
tem over a network, it’s important to minimize the
probability of an adversary correctly guessing the key
at random. One related complication arose from our
choice of demonstration platform/processor—specifi-
cally, we chose to demonstrate ISR on the commonly
available and widely used x86 family of CPUs. In
contrast to reduced instruction set computer (RISC)
architecture processors, which have fixed-length in-
structions (typically 32 or 64 bits), x86 processors use
variable-length instructions. Because x86 instructions
need not be aligned to any byte multiple (as almost
all RISC processors require), and some instructions
are 1 byte long, we would need to perform full code
disassembly to correctly apply the randomization al-
gorithm at the instruction boundary. This task is dif-
ficult even in the best of circumstances—the code
might be reachable only through jump tables, object
methods, or other instances of function pointers, all
of which are unknown to us because we don’t assume
access to the source code. We compromised by using
16-bit randomization keys (which give an adversary
a 1-in-65,536 chance of correctly guessing the key)
and relying on the fact that most commonly used x86
compilers (including GCC and Microsoft’s Visual
Studio C++) seem to align code blocks to 16-bit (2-
byte) boundaries by silently adding 1-byte NOP (no
operation) instructions as needed. If the developer or
user compiles the code with the appropriate flags, we
could also use larger randomization keys (at the ex-
pense of some memory overhead). In practice, 16-bit
ISR keys (with rekeying on program startup) should
provide sufficient protection for most environments.

To demonstrate the feasibility (if not immediate
deployability) of ISR, we ran a prototype based on
emulation. To avoid the complexity of dealing with
shared libraries, we decided to pursue whole-system
randomization; likewise, the University of New
Mexico ISR prototype pursued independent-process
randomization through emulation as well, but used
static linking of libraries. In our prototype, we modi-
fied the Bochs open source whole-system emulator to
provide an additional register for the ISR key and the
necessary logic in the instruction decode stage. We
also modified CPU interrupt-handling logic to save
and reload the ISR key from the stack. Thus, although
our implementation used whole-system randomiza-
tion, we could implement single-process randomiza-
tion (and independent keys for different ISR-protected
processes) under the supervision of the operating sys-
tem, which simply needs to save and reload the ISR
register at each context switch.

Our implementation was relatively straightfor-
ward and operated as expected—that is, it caught
all the code-injection attacks we launched against
it. Because this was a pure software implementation,
the underlying system’s performance significantly
lagged behind that of a real system. Specifically, for
I/O-heavy tasks such as file copying, we observed
an overhead of approximately 30 percent; for more
CPU-heavy tasks such as email handling, the over-
head rose to 2,000 percent.

We concluded that absent hardware support or
significant optimizations in the emulation method,6
ISR for binaries might be too expensive for whole-
sale use. Moreover, ISR doesn’t protect against all
control-hijacking attacks—for example, it doesn’t
protect against “jump into libc” attacks, which abuse
existing program code to achieve an attacker’s goals.
To counter such attacks, we can use address space
layout randomization (ASLR),7 which most oper-
ating systems today already incorporate (including
Vista, Linux, and Mac OS X). ASLR also protects
against code-injection attacks, so it would appear
that ISR is redundant in this case. However, the cur-
rent generation of 32-bit processors provides insuf-
ficient protection against determined attackers due
to the (relatively) limited address space in which ran-
domization must take place;8 ASLR is much more
effective in 64-bit processors. Unfortunately, em-
bedded systems can’t effectively use ASLR for the
same reasons as for hardware-enforced protection
features. Finally, as mentioned earlier, we must be
careful to change keys frequently (especially after
each software failure or crash) to avoid certain key-
guessing attacks.4,5

An attractive feature of ISR is that it provides a
“halt on failure” protection mechanism: once the
injected code starts executing, it quickly terminates

The disadvantage of using such simple

randomization schemes is that an adversary

that managed to somehow see the randomized

code could easily determine the key.

IT Monoculture

	 www.computer.org/security/ ■ IEEE Security & Privacy� 21

the software.9 Furthermore, it’s relatively easy to turn
ISR on and off for a given process—for example, by
keeping two copies of the program text and actively
managing the ISR register. Similarly, we can activate
ISR for selected parts of the program—that is, parts
of the program’s code and processes will execute in a
randomized context, with the rest executing “in the
clear.” This latter intuition lets us use ISR as part of a
larger, adaptive, host-based protection system despite
its performance penalty.

FLIPS and Adaptive Defenses
The Feedback Learning Intrusion Prevention System
(FLIPS) brings together ISR and anomaly detection
to create an adaptive system that allows defenses to
gradually learn what constitutes malicious input to a
process.10 Anomaly detection systems, which use sta-
tistical means to summarize inputs or events of in-
terest, typically require a training phase in which the
administrator feeds the system with known-good and
known-bad inputs. During this phase, the anomaly
detector builds models of good and bad inputs, so
during operation, we can use the anomaly detection
system’s output to block abnormal inputs without re-
quiring precise attack signatures. However, the non-
requirement for precise signatures also introduces
uncertainty and error in the classification of inputs,
which can lead to anomalous inputs (“attacks”) being
classified as benign and legitimate inputs classified as
anomalous—these are called the false-negative (FN)
and false-positive (FP) problems, respectively. FPs
adversely impact legitimate user requests and actions,
whereas FNs can lead to system compromise. With
some exceptions, system operators try to minimize
FPs, but this typically leads to over-permissive models
of normalcy, which can increase the risk of FNs (and
hence successful undetected attacks).

FLIPS was the first system to combine anomaly
detection and software-based ISR in a feedback loop.
In FLIPS, the defenses wouldn’t necessarily block in-
puts deemed anomalous outright; instead, they would
cause the process to execute with ISR enabled. If the
input represented an actual attack, it would lead to a
software failure, a fact that the defense mechanism
then feeds back to the anomaly detection system to
improve its model of normalcy. The input itself is
added to a list of known malicious inputs to be filtered
(signature-based blocking). If no failure occurs while
processing inputs flagged as anomalous, we indicate
to the anomaly detection system that it generated an
FP—again, to improve the model of normalcy—and
the input can be added to a list of inputs that should
be passed through (to avoid ISR next time the system
encounters them). Conversely, normal inputs would
cause the process to execute without ISR, although
if enough resources are available (or the system load

is low), the administrator can enable ISR to random-
ly detect FNs. The net effect of this scheme is that
FPs simply cause slower processing but no outright
blockage and would thus be less noticeable and objec-
tionable to users (and administrators). Consequently,
administrators can tune the anomaly detection sys-
tem conservatively to minimize FNs at the cost of
higher FPs.

Because we can apply ISR selectively, we can use
it as part of an adaptive defense system: once an attack
is identified (whether through FLIPS or some other
technique, such as a honeypot system) and localized in
some region of the code, we can randomize only that
part of the application (potentially down to an indi-
vidual function) implicated in the attack. Specifically,
we randomize the function whose stack-frame return
pointer is corrupted, or where a corrupted control
structure (such as an overwritten function pointer) is
exploited. If the program jumps to injected code upon
returning from that function, a fault will occur; if the
program executes without failure past the point, we
can disable ISR. To enable this mode of operation,
we re-implemented our ISR-enabled emulator such
that it could be called from within the program as a
library function; upon return from the function, the
program executes inside the emulator. To terminate
emulation and switch program execution to the proc
essor itself, we simply add a call to another function
inside the emulator library. Upon return from that
function, the program executes directly on the pro-
cessor. Note that in both cases, the program executes
within the same process and address space and has ac-
cess to the same program state. The last piece, then,
is a binary-rewriting tool that lets us insert function
calls to the emulator library inside a program binary.
In this way, we incur the cost of software-only ISR as
needed. Our experiments show that the performance
overhead in this scenario can be very low, potentially
down to zero if the vulnerable code is seldom or never
used aside from the attack.11

SQLrand
A second application of ISR involves protecting
against SQL-injection attacks in Web applications.12

Such applications use input received from a client (for
example, as part of filling out a Web form) to populate
a SQL query template. The application then transmits

An attractive feature of ISR is that it provides

a “halt on failure” protection mechanism:

once the injected code starts executing,

it quickly terminates the software.

IT Monoculture

22	IEEE Security & Privacy ■ January/February 2009

the completed query to the back-end database, and
the Web application processes this operation’s results
before presenting them to the user as part of another
Web page. SQL-injection attacks exploit weaknesses
in validating the input and in combining the data re-
ceived from the remote user (possibly an attacker) and
the SQL template—for example, consider a simple
(but insecure) template populated via a cookie called
USERNAME to find all orders by that user:

SELECT *
FROM orders
WHERE customer=‘$USERNAME’;

Typically, the value embedded in the cookie would be
something like “ANGELOS”, in which case the Web
application would emit the following SQL query to
the database:

SELECT *
FROM orders
WHERE customer=‘ANGELOS’;

However, a crafty adversary could easily cause the da-
tabase to return all orders by all users (exposing their
private information) by editing the cookie to instead
use ‘or 1 = 1; as a username, which would cause
the emitted query to be

SELECT *
FROM orders
WHERE customer=“or 1=1;’;

More creative uses of the attack can lead to data-
base modifications or even changes to the underlying
system through stored procedures and other facilities
available in modern database management systems
(DBMSs). Such attacks have become extremely pre
valent in recent years, surpassing buffer overflows in
terms of the numbers of incidents and reported vul-
nerabilities in several bug-tracking databases. Despite
the problem’s severity, very few practical solutions
exist. Surprisingly, even the research community has
only recently begun looking at the problem seriously.

Our application of ISR to SQL injection, named

SQLrand, is straightforward, following our approach
to binary ISR. We randomize both the underlying
runtime environment (in this case, the SQL parser
in the DBMS) and the SQL “program” (the template
that the Web application uses). A simple approach for
randomizing the SQL grammar consists of append-
ing a random numeric tag (the randomization key) to
each statement and operator in SQL. Using our previ-
ous example, the randomized SQL template using tag
“123456” would look like

SELECT123456 *
FROM123456 orders
WHERE123456 customer=123456
 ‘angelos’;123456

In this case, the previously shown attack fails the pars-
ing stage because the resulting query doesn’t conform
to the randomized SQL grammar. Tags can be arbi-
trarily long, although in practice they rarely have to
be longer than 10 digits. Unlike binary ISR, an im-
proper input will lead to a parsing failure without any
random code sequence being executed. Moreover,
SQL queries’ looser structure and formatting require-
ments makes using arbitrarily long randomization
keys trivial.

It’s worth highlighting the difference between
SQLrand and input sanitization techniques because
both approaches require that the programmer iden-
tify both the “code” and the “data.” With SQLrand,
the programmer merely needs to randomize the code,
which defeats injection attacks regardless of how the
attack payload is injected. Furthermore, an improp-
erly constructed SQLrand-enabled site or script won’t
work, which initial developer testing will likely catch.
With sanitization, the programmer must ensure that
all inputs are cleaned of potentially unsafe characters; if
he or she somehow misses an execution path (a distinct
possibility, given pressure to deliver functionality over
security), an attack is still possible. An insufficiently
sanitized script will still work, but it’s difficult to en-
force or verify that proper defenses are in use. Other
recently proposed techniques involve “taint” tracking
data received from untrustworthy sources (such as the
network) as the program processes it; if the program

Web server

Client HTTP requests

Database server

Randomized SQL Standard SQL

Query resultsQuery results
CGI scripts SQLrand proxy

Database
management

system

Figure 2. SQLrand system architecture. The proxy is a separate process that can run on the same or separate machines as the Web

server or database management system.

IT Monoculture

	 www.computer.org/security/ ■ IEEE Security & Privacy� 23

attempts to use such data as “code,” the system stops
the operation.13 This can be an effective way of stop-
ping injection attacks, but it typically requires exten-
sive modifications to the runtime environment. Other
approaches to dealing with SQL-injection problems
involve domain-specific automated testing14 and static
analysis techniques.15

The only problem with the SQLrand approach is
that, in general, we can’t modify the SQL parser in the
DBMS; this is similar to the “immutable CPU” prob-
lem in binary ISR. As in that case, we can solve the
problem by introducing an intermediate processing
step. As Figure 2 shows, our system (SQLrand) uses a
proxy that sits between the Web application and the
actual database, parses the randomized SQL queries,
and emits de-randomized SQL queries to the DBMS,
relaying back the results. If a parsing error occurs, the
SQLrand parser drops the query.

Our implementation of SQLrand was fairly
straightforward, and the prototype protected against
all SQL-injection attacks with which we experi-
mented. Furthermore, the performance impact of the
randomization process and the proxy were negligible.
In fact, most benchmarks failed to show a statistically
significant difference in performance, while the worst
reproducible result we could obtain was a 2 percent in-
crease in query-processing latency. The reason for the
minimal overhead lies in the fact that SQL parsing—
and Web applications in general—already involves an
interpreter or similar runtime environment that can
be easily extended to support ISR.

 Finally, because many runtime environments and
Web applications are relatively “chatty” in case of fail-
ure (often revealing the SQL queries that failed, along
with internal system variables and so forth), an attacker
could induce an error report that reveals the random-
ization key. One straightforward solution to this prob-
lem is to parameterize the template itself, populating it
with a value (or tag) received from the DBMS when
the connection is first created. It’s also possible to filter
Web server output such that the Web server removes
instances of the tag, either by updating the filter with
the specific tag in use or by using tags with a known
invariant part and a random part (such as using tags
starting with “SQLRANDKEY123” followed by a ran-
dom sequence of digits). Care must be taken to pre-
vent the attacker from using, as part of the attack, any
variables that store the tag. Despite these caveats, we
found SQLrand a powerful and easy-to-develop and
use technique against SQL-injection attacks.

Future Directions for ISR
Our SQLrand work showed us that some of the most
promising applications of ISR probably lie in the
realm of interpreted languages. SQL injection itself
remains a big problem; ways to improve the practi-

cality of SQLrand are thus of some importance. The
primary limitation of SQLrand is that programmers
must manually replace the query templates that are
often embedded in their Web applications with a ran-
domized version. Tools to help programmers with
this randomization would probably also improve the
chances of SQLrand’s adoption and use.

Attackers have launched strikes similar to SQL in-
jection against various languages (including PHP and
Perl); we believe that the ISR concept can be readily
translated to such environments. In fact, a randomized-
Perl prototype proved remarkably straightforward to
construct. The only source of complexity, similar to
the case of binary ISR, was the use of shared libraries
(external Perl code included in a script). A good solu-
tion to this general problem remains to be found.

An interesting and relatively new problem area is
that of XSS attacks against Web browsers. These attacks
violate the same-origin policy browsers enforce to pro-

Trusted Web server

Web browser

Malicious Web server

4 1

23

Figure 3. Cross-site scripting attacks. The Web browser fetches a page from

a malicious Web server (1), which returns a page containing a redirect or

an image URL pointing to the trusted Web server (2). Malicious JavaScript

might be embedded in the URL that the browser then resolves and follows

(3), such that the Web server or Web application on the trusted site will

mirror it (the malicious JavaScript) back to the Web browser as part of

a page (4). Unless the mirrored input is properly escaped, the browser

will treat it as if it were purposely provided by the trusted Web server,

and according to the same-origin policy, the Web browser will allow it to

interact with other open frames from the same Web site (or, indeed, with

the trusted Web site itself).

A t its core, the same-origin policy allows interaction between browser

frames (through scripting) but only if the frames come from the

same source domain (in most cases, this means from the same Web

server). The same-origin policy prevents JavaScript code attached to

a page from site A, for example, from interacting (that is, reading or

manipulating the contents) with a frame containing a page from site B.

Furthermore, the JavaScript code attached to a page from site A can only

communicate with site A. Violation of this browser sandbox mechanism

would let malicious sites manipulate user sessions with other sites and

fool the user (and, in some cases, the browser) into providing login cre-

dentials for a secure site to a fake site or to a compromised Web page. To

enforce the same-origin policy, browsers track from where each piece of

HTML, CSS, JavaScript, Flash, and so on was received.

What Is the Same-Origin Policy?

IT Monoculture

24	IEEE Security & Privacy ■ January/February 2009

tect Web pages from each other (see the “What Is the
Same-Origin Policy?” sidebar for a brief description).
XSS attacks disguise the source of such elements (typi-
cally JavaScript code) by “bouncing” them off miscon-
figured or buggy servers and Web applications. This is
possible if the Web server itself or a Web application on
it includes in its output part of the input verbatim, as
explained in Figure 3. This is a form of code injection,
whereby one site inserts JavaScript (or other HTML
elements) of its choosing in the contents returned from
another site, such that the injected JavaScript operates
with the target site’s privileges. Short of careful scrub-
bing of output at a Web server, it’s very difficult to
protect against XSS attacks. One possibility we’re in-
vestigating involves using ISR for active content (spe-
cifically, JavaScript). Similar to the case of interpreted
SQL or Perl, the JavaScript interpreter in a browser
would use a different tag (ISR key) for JavaScript code
received from different sites. This tag, which the Web
server would append to each JavaScript keyword and
operand returned by site A, would be received from
the site during first contact and would remain some-
what persistent (that is, change periodically but not
constantly for each user or browser). For example, the
Web server could securely embed it in a cookie during
the first visit to site A. The XSS-injected JavaScript
wouldn’t be transformed and would thus fail to parse
while executing on the browser in the context of site
A (that is, under the appropriate randomization key).
Several smaller complications must be resolved, in-
cluding (unsurprisingly) the case of shared JavaScript
code legitimately “pulled” by the browser from a third
site that doesn’t implement ISR. An obvious limita-
tion of the approach is that it requires support from
both browser and server. We’re investigating ways of
improving on this basic scheme.

In terms of binary ISR, several possible improve-
ments and directions already exist. Perhaps most
obviously, administrators and users can use ISR to
construct secure application-specific appliances (such
as hardened Web servers). If performance is a major
issue, programmers can use advanced code transla-
tion techniques to significantly reduce the penalty;6
alternatively, they could implement the appliance via
an FPGA to simulate the CPU and some of the pe-
ripherals. Programmers often use this approach to test
small architectural tweaks, and several versions of Li-
nux can run on such boards. We should be able to use
our existing whole-system prototype—as is in such a
runtime environment. We can also apply the general
concept of randomization in different parts of the op-
erating system/process interface.7

Even in a pure software implementation, ISR has
some interesting uses stemming from the ability to apply
it selectively. I already described its use as a targeted de-
fense in an adaptive system, but a different use, similar in

concept to FLIPS, applies ISR as an attack sensor across
a large number of identical software instances. Each in-
stance uses ISR for only a small part of its code (thus only
detecting attacks that happen to manifest within that
part of the application) or for some randomly selected
fraction of requests (for example, once every 10,000 re-
quests). Consequently, the cost of monitoring for attacks
is spread across many distinct, cooperating instances of
the software (an “application community”).16 By adjust-
ing the code fraction or the sampling rate, we can bring
the per-instance overhead within acceptable levels but
still maintain some detection (and defensive) capability.
The trade-off in such a system involves performance and
speed of detecting new attacks. We’re currently pursu-
ing several research leads in this direction.

O ne way to view ISR is as a form of probabilistic
dynamic type-checking of code;17 another is as

an amendment to the classic von Neumann computer
architecture and its corollaries with respect to the sep-
aration (or lack thereof) between code and data. Oth-
er techniques for providing such separation exist, all
of them ultimately involving some marking scheme
(of memory pages, input data, “important” addresses,
and so on), but ISR is unique in that it’s applicable
in so many distinct application domains. Perhaps un-
surprisingly, it’s sometimes less efficient than other
techniques that are tailored to specific environments
or classes of vulnerabilities, and, as with any security
mechanism, we must be aware of its limitations and
the potential pitfalls in its use.

References
S. Forrest, A. Somayaji, and D.H. Ackley, “Building Di-1.	
verse Computer Systems,” Proc. HotOS, 1997, pp. 67–72.
G.S. Kc, A.D. Keromytis, and V. Prevelakis, “Counter-2.	
ing Code-Injection Attacks with Instruction-Set Ran-
domization,” Proc. 10th ACM Int’l Conf. Computer and
Comm. Security, ACM Press, 2003, pp. 272–280.
E.G. Barrantes et al., “Randomized Instruction Set 3.	
Emulation to Disrupt Binary Code Injection Attacks,”
Proc. 10th ACM Int’l Conf. Computer and Comm. Security,
ACM Press, 2003, pp. 281–289.
A. Sovarel, D. Evans, and N. Paul, “Where’s the 4.	
FEEB?: The Effectiveness of Instruction Set Random-
ization,” Proc. Usenix Security Symp., Usenix Assoc.,
2005, pp. 145–160.
Y. Weiss and E.G. Barrantes, “Known/Chosen Key 5.	
Attacks against Software Instruction Set Randomiza-
tion,” Proc. Annual Computer Security Applications Conf.
(ACSAC), ACSA, 2006, pp. 349–360.
W. Hu et al., “Secure and Practical Defense against 6.	
Code-Injection Attacks Using Software Dynamic
Translation,” Proc. 2nd ACM/Usenix Int’l Conf. Virtual
Execution Environments, Usenix Assoc., 2006, pp. 2–12.

IT Monoculture

 www.computer.org/security/ ■ ieee seCurity & PrivaCy 25

X. Jiang et al., “RandSys: Thwarting Code Injection 7.
Attacks with System Service Interface Randomiza-
tion,” Proc. IEEE Symp. Reliable Distributed Systems,
IEEE CS Press, 2007, pp. 209–218.
H. Shacham et al., “On the Eff ectiveness of Address-Space 8.
Randomization,” Proc. 11th ACM Int’l Conf. Computer and
Comm. Security, ACM Press, 2004, pp. 298–307.
E.G. Barrantes et al., “Randomized Instruction Set 9.
Emulation,” ACM Trans. Information and System Security,
vol. 8, no. 1, 2005, pp. 3–40.
M.E. Locasto et al., “FLIPS: Hybrid Adaptive Intru-10.
sion Prevention,” Proc. 8th Int’l Symp. Recent Advances in
Intrusion Detection, Springer, 2005, pp. 82–101.
S. Sidiroglou et al., “Building a Reactive Immune Sys-11.
tem for Software Services,” Proc. Usenix Ann. Technical
Conf., Usenix Assoc., 2005, pp. 149–161.
S.W. Boyd and A.D. Keromytis, “SQLrand: Prevent-12.
ing SQL Injection Attacks,” Proc. 2nd Int’l Conf. Applied
Cryptography and Network Security, Springer, 2004, pp.
292–302.
W. Halfond, A. Orso, and P. Manolios, “Using Posi-13.
tive Tainting and Syntax-Aware Evaluation to Coun-
ter SQL Injection Attacks,” Proc. 14th ACM SIGSOFT
Int’l Symp. Foundations of Software Eng., ACM Press,
2006, pp. 175–185.

M. Emmi, R. Majumdar, and K. Sen, “Dynamic Test 14.
Input Generation for Database Applications,” Proc. Int’l
Symp. Software Testing and Analysis, 2007, pp. 151–162.
N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static 15.
Analysis Tool for Detecting Web Application Vulner-
abilities (Short Paper),” Proc. IEEE Symp. Security and
Privacy, IEEE CS Press, 2006, pp. 258–263.
M.E. Locasto, S. Sidiroglou, and A.D. Keromytis, 16.
“Software Self-Healing Using Collaborative Appli-
cation Communities,” Proc. ISOC Symp. Network and
Distributed Systems Security, Internet Soc., 2006, pp.
95–106.
R. Pucella and F.B. Schneider, “Independence from 17.
Obfuscation: A Semantic Framework for Diversity,”
Proc. Computer Security Foundations Workshop, IEEE CS
Press, 2006, pp. 230–241.

Angelos D. Keromytis is an associate professor with the De-

partment of Computer Science at Columbia University, where

he also serves as director of the Network Security Laboratory.

His research interests revolve around systems and network

security. Keromytis has a PhD in computer and information

science from the University of Pennsylvania. He is a member

of the IEEE and a senior member of the ACM. Contact him at

 angelos@cs.columbia.edu.

From the analytical engine to the supercomputer,
from Pascal to von Neumann, from punched
cards to CD-ROMs—the IEEE Annals of the
History of Computing covers the breadth of
computer history. The quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history activities,
and international conferences.

www.computer.org/annals

