
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

LETTER

On the Deployment of Dynamic Taint Analysis for

Application Communities∗

Hyung Chan KIM†a), Member and Angelos KEROMYTIS†, Nonmember

SUMMARY Although software-attack detection via dy-
namic taint analysis (DTA) supports high coverage of program
execution, it prohibitively degrades the performance of the mon-
itored program. This letter explores the possibility of collabo-
rative dynamic taint analysis among members of an application
community (AC): instead of full monitoring for every request at
every instance of the AC, each member uses DTA for some frac-
tion of the incoming requests, thereby loosening the burden of
heavyweight monitoring. Our experimental results using a test
AC based on the Apache web server show that speedy detection
of worm outbreaks is feasible with application communities of
medium size (i.e., 250–500).
key words: Dynamic taint analysis, 0-day attack detection,

application community, software security

1. Introduction

Dynamic taint analysis (DTA) [3]–[5] is a technique for
tracking information flow within a software application.
DTA can be used to detect 0-day (previously unknown)
attacks or information leakage. A DTA tool tracks in-
formation flow by supervising execution of program in-
structions. Such instrumentation granularity supports
substantial coverage of program execution. However, it
also means that the instrumented program can suffer
prohibitive performance degradation.

Widely used homogeneous applications form de
facto software monocultures [8]. This is viewed as
detrimental to security, since a single vulnerability can
kead to compromise of all instances of that applica-
tion. However, such homogeneity offers the chance to
distribute the workload of heavyweight security moni-
toring, such as DTA, to spot 0-day attacks and share
the attack information among members of such “appli-
cation communities” (AC) [9].

In this letter, we describe an implementation of a
DTA tool and performance results of deploying the tool

Manuscript received January 1, 2008.
Manuscript revised January 1, 2008.
Final manuscript received January 1, 2008.

†The authors are with the the Department of Computer
Science, Columbia University, NY 10027, USA.

a) E-mail: hckim@cs.columbia.edu
∗This material is based on research sponsored in part

by the Air Force Research Laboratory under agreement
number FA8750-06-2-0221, NSF Grant 06-27473, with ad-
ditional support from Google and Intel. The opinions ex-
pressed herein reflect those of the authors, and not of the
U.S. Government. This work is supported in part by the
Korea Research Foundation Grant funded by the Korean
Government(MOEHRD) (KRF-2007-357-D00240).

with the Apache web server. Our approach is based
on loosening the request coverage of each AC member
so that they can achieve acceptable performance. Our
analysis shows that medium-sized ACs (250–500 mem-
bers) can feasibly use our tool to form a community for
collaborative defense.

2. SeeC: A Dynamic Taint Analysis Tool

This section describes our implementation of DTA tool.

2.1 Implementation

The goal of the basic architecture [Fig. 1] is to keep
track of the association between a taint tag in shadow
memory and memory/registers handled by program in-
structions. For example, if an instruction causes infor-
mation to flow directly (e.g., via memory copying) or
indirectly (e.g., as part of an arithmetic operation that
uses a tainted memory location as an operand) from
one memory location to the other, the DTA tool re-
flects the flow by marking taint tags to corresponding
locations in the shadow memory.

Depending on the data source, specific informa-
tion flow can be dealt with. Assuming that we track
untrustworthy data and supervise the taint markings
propagated with the information flow directed by pro-
gram execution, while tracking taint tags, a detector
can raise an alert if some tainted memory or registers
are used in a certain execution context. For example,
for overwrite attack detection, incoming network data
or keyboard inputs can be initially marked and, if prop-
agated markings are found in some memory place that
corresponds to a target address of return or branch in-
structions, the detector raises a warning that the mem-
ory place is overwritten and the control of program ex-
ecution is about to be subverted.

The implementation can be realized with two dif-
ferent view points; (1) whole system approach [6], [7]
based on virtual machine monitors or system emulators,
and (2) application program approach [4], [5] based
on dynamic binary instrumentation (DBI) frameworks
such as PIN [1] or Valgrind [2]. Our implementation of
the DTA tool is based on PIN.

Our tool (SeeC) supports initial taint markings
from network and file sources by hooking system calls
and tagging incoming data. We instrument data

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Shadow Memory

Data PropagationSource Sink

mov eax, [ebx]

mov [esi], eax

......

Input

File

Network

Keyboard

Output

File

Network

(1)

(2)

(2)

(3)

Fig. 1 Dynamic taint analysis architecture: (1) initial mark-
ing, (2) propagation, and (3) assertion

movement (e.g., mov, push, pop), string (e.g., movs)
and arithmetic instructions (e.g., add, sub) for taint
mark propagation according to the policy: if at least
one source operand is tainted, then the destination
operands should be also tainted. We also apply a clear-
ance policy: if all inputs to an operation are clear, the
destination operands are also cleared. The propaga-
tion policy includes implicit operands such as the esp
register and memory indicated by that register when
push/pop instructions are used. We check taint marks
at branch/call instructions such as ret, call, and jmp to
observe whether the memory or register containing the
target location or the target itself is tainted.

Table 1 is an example basic block that demon-
strates how SeeC performs taint propagations. In the
table, tag(x) is the taint tag value in shadow memory
associated with native memory address or register x.
tag(constant) yields 0. Assuming that the register ebp
is tainted in the initial context, data bytes in ss[ebp]
are also tainted by simple induction with the line 1 and
6. For other dependencies, if bytes in ds[ebx+0x034e8]
in line 2 or gs[0x18] in line 5 is tainted, then eax is
tainted in line 7. If data from those memory locations
came from a network stream, the control flow decision
at line 7 is unduly influenced from outside the process
(or possibly the host).

In SeeC, each byte of application memory is
mapped to 1 bit in shadow memory. In addition, we
track the 8 general registers of the x86 architecture.

2.2 Attack Detection

To validate the ability of overwrite attack detection
in SeeC, we have tested with a software vulnerability
testbed [10] that enables us to check against 18 types
of buffer overflow attacks targeting return address, base
pointer, function pointer, and longjmp buffer. Our tool
successfully blocks all the attacks in the testbed. For
real-world applications, we have also tested with some
vulnerable server applications shown in Table 2 and
those attacks are also correctly detected with SeeC.

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 280

 0 1 2 3 4 5 6 7 8 9 10

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Request Sampling Interval

Native Apache
Apache with Nullpin

Apache with DTA
210 Req/Sec

Fig. 2 Request throughput of a single process Apache under
DTA monitoring

2.3 Performance of SeeC

To evaluate the performance overhead of our tool, we
have tested with a CPU-bound application, gzip com-
pressing 261MB of Linux kernel source code in a lightly
loaded machine. The incurred overhead was approx-
imately 28.11X with SeeC compared to 1.28X with
Nullpin tool (that only instruments instructions and
does nothing for analysis). For a desktop application,
FireFox version 1.5 with SeeC took 38.8X overhead to
render 792KB of randomly generated web pages [13].

3. Deployment of DTA tool for Application

Communities

DTA has been considered very effective way to detect
0-day attacks and many recent works have illuminated
the approach. However, it is basically relying on heavy-
weight instrumentation of program instructions; thus,
it can incur application slowdown at least over two
orders of magnitude without serious optimization (as
shown in Section 2.3).

Our approach to mitigate the performance impact
is to distribute heavyweight monitoring among mem-
bers of an application community (AC). Specifically,
we try to loosen temporal workload: each member does
not fully monitor all the incoming requests. Instead, a
member processes only a single request out of every r
requests (request coverage: 1/r). In this section, we
present (1) experimental results of finding appropriate
r at which the performance could be the best it can
be, and (2) our preliminary analysis about the AC size
with the given request coverage. For our prototype, we
assume an AC consisting of instances of the Apache
web server [19] version 1.3.31.

3.1 Performance Experience of DTA with Apache

Our performance observation is on the request through-
put, that is, the number of requests that a single

LETTER
3

Table 1 Example taint propagation in a basic block

Instruction Propagation
1 lea edx, ptr [ebp-0x78] tag(edx) = tag(ebp)
2 mov eax, dword ptr ds[ebx+0x34e8] tag(eax) = tag(ds[ebx + 0x034e8])
3 mov dword ptr ss[esp+0x4], 0x0 tag(ss[esp + 0x4]) = tag(0x0)
4 ror eax, 0x9 tag(eax) = tag(eax)|tag(0x9)
5 xor eax, dword ptr gs[0x18] tag(eax) = tag(eax)|tag(gs[0x18])
6 mov dword ptr ss[esp], edx tag(ss[esp]) = tag(edx)
7 call eax

Table 2 Overwrite/taint-based attacks tested with SeeC

Application Application Type Attack Type CVE/Bugtraq ID

Apache 1.3.31 Web server Local buffer overflow CVE-2004-0940 [14]
Atphttpd-0.4b Web server Remote buffer overflow CVE-2002-1816 [16]

ShoutCast 1.9.4 MP3 media server Remote format string CVE-2004-1373 [15]
CoreHTTP 0.5.3 alpha Web server Remote buffer overflow CVE-2007-4060 [17]

PHP Agenda Web application Input validation error Bugtraq 30034 [18]

Apache process can handle per second, serving a 100KB
HTML file. To overload HTTP requests, we use two
httperf clients [20] in a Gigabit network environment.
We could selectively process requests by turning on and
off SeeC operation instrumenting ap read request()

and ap process request() function calls in the main
request processing loop of Apache. Figure 2 shows the
throughput results. In the figure, request sampling in-
terval means the number of requests skipped between
two consecutive DTA processing sessions; thus, 0 means
all requests are monitored by SeeC.

The apache with Nullpin tool incurs a relatively
small overhead. The third bar in the figure shows
that only half of requests can be processed with full
DTA monitoring compared to the native case. As
the request sampling interval increases, the through-
put quickly converges to a constant rate (210 req/sec).
After reaching a sampling interval 10, there is no fur-
ther throughput improvement. Therefore, we conclude
that processing a request out of every 10 or 11 requests
represents the best performance/coverage tradeoff. In-
creasing the interval further will only drop request cov-
erage without any throughput gain.

The possible best throughput (210 req/sec) was
75% of the native case. This is due to the flag-checking
overhead to do selective DTA processing; all instru-
mented instructions check a boolean flag to determine
whether they need to propagate taint marks or not.
The ideal implementation is to move the on/off flag-
checking at the function granularity instead of doing
for every instructions; check on/off flag just before a
function, and call native or Just-In-Time (JIT) instru-
mented version of the function accordingly. Unfortu-
nately, the current version of PIN does not support
dynamic mode change between JIT and native.

3.2 Analysis

Let fi be the probability of an attack occurrence on a i-

th member of a AC. This factor can be varied dependent
on the position of monitoring in the network or the
attack volume. For example, a rapidly spreading worm
such as SQL Slammer may raise this value toward 1.
The temporal attack coverage of an individual member
is fi × ri, where ri is the temporal coverage rate of the
i-th member. Thus, the probability of at least one of
member detecting the attack is

P (AC) =

N∑

i=1

fi × ri (1)

To determine the appropriate size for the AC, we
may set fi from statistics of previous attack-spreading
data or results from a simulation of worm propagation.
For example, according to the simulation result of Zou
et al. [11], 1% to 2% of the vulnerable population was
infected in the slow start phase of the Code Red worm,
when the infection rate is relatively low. Therefore,
using that assumption, to prevent an unknown attack
that has a similar spreading pattern we set fi to be
2/100 for all members uniformly. All members config-
ure SeeC to do DTA processing for one out of every
10 requests to achieve their best throughput, as shown
in Section 3.1, thus ri will be 1/10. In that case, an
AC with 500 members will detect the attack within the
slow-start phase with high probability.

Note that, in the above example, we assume that
there is enough time to disseminate alert information
among the AC members. In the simulation of Zou et
al., the time of Code Red’s slow start phase of 2% pop-
ulation infection was 223 minutes, therefore, a small
alert message (at around 1–2KB) could be shared in
a few seconds through the 500 members, thereby re-
ducing threats for remaining 98% population. For the
reference, we performed a test of disseminating 4KB
alert messages with 500 members in a centralized con-
figuration (100bps) in Deterlab testbed [21]. It took 41
sec in average. Therefore, it would be sufficient to im-
munize against Code Red style worms within the AC.

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 280

 0 1 2 3 4 5 6 7 8 9 10

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Request Sampling Interval

Native Apache
Apache with Nullpin

Apache with DTA
250 Req/Sec

Fig. 3 Performance of a single process Apache under DTA
monitoring, with taint path profiling information

Moreover, it would be also effective against Slammer
style worms as the time for 1% population infection is
45 sec [11].

However, a hit-list worm [12] can infect a large por-
tion of the population in a very short time, depending
on hit-list entry size. Even though an initial member
can detect the attack, much of the remaining popu-
lation could face it without the alert report from the
member because of the dissemination delay.

3.3 Further Improvement

From equation (1), it is evident that we can realize a
smaller AC if members can increase the temporal cov-
erage rate. In the experiment of Section 3.1, we identi-
fied the flag-checking overhead. As for possible perfor-
mance improvements, we have tried taint path profiling.
First, we run Apache process with SeeC in full monitor-
ing. During the running, we collect information about
functions involved in taint propagation: if any of the
instructions of a function propagate taint, we include
that function in the monitoring list. We fed several
types of HTTP requests to trigger various taint paths.
In selective monitoring, we only process functions in the
concerned list. Figure 3 shows our improved through-
put result. This time the best throughput is even more
quickly converged to 250 req/sec, which is 90% of the
native case, compared to 210 req/sec. With this im-
provement, we may increase temporal coverage rate to
1/5 thereby requiring a smaller AC.

4. Conclusions

We have presented an implementation of a dynamic
taint analysis tool (SeeC) and experimental perfor-
mance results focusing on the deployment of SeeC to a
web server application community. We are encouraged
by our results showing significant performance gains
through DTA sampling, while achieving adequate (and
tunable) detection speeds. We are now working to-
ward implementing a full proof-of-concept application

community: a framework to share attack information
among AC members. Moreover, we will explore the an-
alytical model on the relationship between worm prop-
agation and alert dissemination in varying AC sizes.

References

[1] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instru-
mentation,” Proc. of the ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (PLDI),
pp. 190–200, 2005.

[2] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” SIGPLAN
Not., Vol. 42, No. 2, pp. 89–100, 2007.

[3] J. Newsome and D. Song, “Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software,” Proc. of the 12th Sympo-
sium on Network and Distributed System Security (NDSS),
2005.

[4] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou and Y. Wu,
“LIFT: A Low-Overhead Practical Information Flow Track-
ing System for Detecting Security Attacks,” Proc. of the
39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pp. 135–148, 2006.

[5] J. Clause, W. Li and A. Orso, “Dytan: a generic dynamic
taint analysis framework,” Proc. of the International Sym-
posium on Software Testing and Analysis, pp. 196–206,
2007.

[6] G. Portokalidis, A. Slowinska and H. Bos, “Argos: an emu-
lator for fingerprinting zero-day attacks for advertised hon-
eypots with automatic signature generation,” Proc. of the
1st ACM SIGOPS/EuroSys European Conference on Com-
puter Systems (EuroSys), pp. 15–27, 2006.

[7] H. Yin, D. Song, M. Egele, C. Kruegel and E. Kirda,
“Panorama: capturing system-wide information flow for
malware detection and analysis,” Proc. of the 14th ACM
Conf. on Computer and Communications Security (CCS),
pp. 116–127, 2007.

[8] G. Goth, “Addressing the monoculture,” IEEE Security &
Privacy, Vol. 1, No. 6, pp. 8–10, 2003.

[9] M. Locasto, S. Sidiroglou, and A. D. Keromytis, “Soft-
ware Self-Healing Using Collaborative Application Com-
munities,” Proc. of the 13th Symposium on Network and
Distributed System Security (NDSS), pp. 95–106, 2006.

[10] J. Wilander and M. Kamkar, “A comparison of publicly
available tools for dynamic buffer overflow prevention,”
Proc. of the 10th Symposium on Network and Distributed
System Security (NDSS) pp. 149–162, 2003.

[11] C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and
early warning for internet worms,” Proc. of the 10th ACM
Conf. on Computer and Communications Security (CCS),
pp. 190–199, 2003.

[12] S. Staniford, V. Paxson, and N. Weaver, “How to own the
internet in your spare time,” Proc. of the 11th USENIX
Security Symposium, pp. 149–167, 2002.

[13] http://scragz.com/tech/mozilla/test-rendering-time.php

[14] http://nvd.nist.gov/nvd.cfm?cvename=CVE-2004-0940

[15] http://nvd.nist.gov/nvd.cfm?cvename=CVE-2004-1373

[16] http://nvd.nist.gov/nvd.cfm?cvename=CVE-2002-1816

[17] http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-4060

[18] http://www.securityfocus.com/bid/30034

[19] http://www.apache.org/

[20] http://www.hpl.hp.com/research/linux/httperf/

[21] http://www.isi.deterlab.net/

