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_Abstract—Current Network Access Control (NAC) technolo-  typically checks the status of the antivirus software (AY) o
gies manage the access of new devices into a network to preventhe new device, determines whether software patches are up
rogue devices from attacking network hosts or services. Typically to-date, or it inspects the types of applications executgd b

new devices are checked against a set of manually definedth devi A . ted onlv if the devi liek wit
policies (rules) before being granted access by the NAC enforcer. € device. ACCess IS granted only 1T the device complies wi

The main difficulty with this approach lies in the generation all the manually pre-determined policies (rules). Othesyi
and update of new policies manually as time elapses and all the device is quarantined or expellefonSentrys agentless

devices have to reestablish their access rights. ThBB-NAC | ANShield Nevis LANenforcerand Cisco’s NAC Appliance
mechanism was the first to introduce a novel Behavior-Based are examples of such technologies. Unfortunately, defining

Network Access Control architecture based orbehavior profiles d updati lici v b d di
and not rules, where behavior-based access control policies were @N0 Updating new policies manually becomes very demanding

automatically generated. As originally presented BB-NAC relied ~@nd highly inefficient as time elapses and all devices have to
on manually pre-determined clusters of behaviowhich required reestablish their access rights.

human intervention and prevented the fully automation of the Previous work introduced a network access control archi-
mechanism. In this paper, we present an enhance®B-NAC ioctre BB-NAG in which behavior profiles of network hosts,
mechanism that fully automatizes the creation of clusters of .

behavior. The access control is enhanced with the incorporation modeleq by an Anomaly Dete.ct|on Sensor (AD), were gseq to
of automatic behavior clustering, which improves the intrusion automatically compute behavior-based access contratipsli
detection capabilities by allowing for a more fine-grained def- [1]. These behavior profiles characterized the typical comm
inition of normal behavior. Apart from the lack of automatic  njcations of network deviceise., the traffic payload observed
clustering, the original BB-NAC overlooked the evolution of the or specific volumetric measurements of the traffic such as

mechanism as new behavior profiles were computed over time. . .
As part of our enhancements, we also present an incremental- average number of packets. BB-NAG the behavior profiles

learning algorithm that automatically updates the behavior-based Of the network members were grouped into two manually pre-
access control policies. We show that the algorithm is resilient determinedclusters of behaviorclients and servers. A device
to compromised or fabricated profiles trying to manipulate the  attempting to access the network (newcomer) was required to
policies. We provide extensive experiments with real user profiles present its behavior profile and a self declaration of itsireat
computed with their network flows processed from Cisco NetFlow .
logs captured at our host institution. Our results show that (client or s_erver) to the NAC enforcer. To reach an access
behavior-based access control policies enhance conventional ®A control decision, the NAC enforcer then proceeded to conduc
technologies. Specifically, we achieve true rejection rates of 95% a voting process among behavior profiles within the cluster o
for anomalous user profiles separated by one standard deviation pehavior of the same nature (client or server). If a majority
from the normal user network behavior. In addition, we also show a4reeq that the behavior profile of the newcomer was normal,
that the enhanced mechanism can differentiate between normal . . .
changes in the behavior profiles ¢oncept drif) and attacks the _dewce was granted access into fche network. Othe_r\/mee, t
device was deemeahomalousand rejected from entering the
network. Once a device had been accepted into the network,
|. INTRODUCTION its real-time behavior was continuously checked against th

Network Access Control (NAC) technologies are respons1?_ehavior profiles within its respective cluster of behavior
ble for regulating the access of devices to a network. Théfevices that drifted in behavior were considered comprethis
main aim is to prevent the intrusion of rogue devices thahd placed in quarantine [2]. _ _
could potentially attack other devices and services in theWhile the original BB-NAC mechanism offered a first
network. In most NAC architectures, a NAC enforcer locate@PProximation to the automatic creation of access control
at the edge of the network evaluates devices trying to enR&licies, it suffered from two significant drawbacks. First
the network (wired, wirelessly or VPN) before access ibe clusters of behaviohad to be manually specified, which

granted. This preventive phase, called fite-connect phase '€duired human intervention in the mechanism. Secéfgt,
NAC focused mainly on the initial creation of access con-

[1]Work performed while being a PhD student at Columbia Ursitgr trol policies disregarding the evolution of the mechanisin a



new behavior profiles were computed over time. This papstrap and access control. Section Il details the increatent
presents novel solutions to these problems. In our enhandearning algorithm. Possible attack scenarios and regsom®
mechanism, the NAC enforcer uses an automatic clusteridigcussed in Section IV. Section V presents our validation
method to group similar behavior profiles intdusters of experiments while section VI describes related work. $acti
behavior Theseclusters of behaviordefine the behavior- VII presents the conclusions and future work.

based access control policies. Automatic clustering esabl
the identification of common behaviors among hosts (andII
their users) as well as the generation of behavior-basessacc
control policies without human intervention. Moreoverg th
inclusion of clustering in the access control improves om th The network access control mechanism consists of three
intrusion detection capabilities @&B-NAC by allowing for a phasesclustering bootstrapandaccess controlinitially, each

more fine-grained definition of normal behavior. network member communicates its behavior profile to the

Additionally, we incorporate an automatic update ONAC enforcer. We assume that all network members have
behavior-based access control policies to account forarktw normal behavior profiles and that communications between
members that may recompute their behavior profiles over.tilibe members and the NAC enforcer are secured in such a
To accomplish this, it is imperative to understand the ratuway that profiles cannot be manipulated during the exchange.
of the changes in the behavior profiles prior to the updatéhroughout, we refer to profiles that have been modeled with
Therefore, we have designed and implemented an incrementéan datasets that do not contain any type of attactoamal
learning algorithm that differentiates between new bedravibehavior profiles. Once the NAC enforcer has received all
profiles that derive from existing clusters of behavicorfcept the initial profiles, it performs &lustering phasehat builds
drift) and fabricated profiles attempting to maliciously modifglusters of common behavior among its members. Clusters are
the access control policiesatfackd. Finally, we evaluate computed on ger-portbasise.g.,port 22 for service SSH or
the enhancements to the origindB-NAC mechanism using port 80 for service HTTP. As a result, the NAC enforcer keeps
extensive real network flows generated from Cisco NetFlowdependent clusters of behavior for each port whose dgcuri
logs with a large amount of users and a wide diversity efeeds to be enforced.
behaviors. Next, thebootstrap phaseés responsible for the determi-

In terms of deployment, the mechanism presented herenigtion of thresholds for each cluster member. Each thrdshol
to be installed and executed at the NAC enforcer to guaranteeasures the largest distance between a host and each of the
appropriate access control. We further assumegent-based other cluster members. These thresholds are then used in the
NAC architecturewhere each of the members of the networkiccess control phase as a measure of similarity between pro-
has an AD sensor (similar to a COTS AV scanner) théites. The bootstrap phase is performed whenever the bahavio
computes its local behavior profile. Every time a new profile profile of a member changes.
computed by a host or device, it is communicated to the NAC Finally, every time a new device attempts to enter the
enforcer. A fully distributed version of our mechanism fonetwork, it presents its behavior profile to the NAC enforcer
Mobile Ad-hoc Networks (MANETS) is presented in [3]. Thethat performs th@ccess control phas®uring access control,
latter provides a light-weight adaptation that fully distites the NAC enforcer conducts a voting process in the cluster tha
the access control decisions among the MANET devices usiisgclosest to the newcomer's presented profile. Each profile

. DESCRIPTION OF THENETWORK ACCESSCONTROL
MECHANISM BASED ONBEHAVIOR PROFILES

a threshold cryptographic layer. emits an acceptance or rejection individual vote based on it
The main contributions of the enhanced behavior-basgtteshold (derived from the bootstrap phase). A majoritievo
network access control mechanism are the following: determines the final decision. In the case where multipléspor

« The application of a clustering method to identify comare being considered, this phase is performed separately fo
mon behaviors among network members as well aach individual port. The device is accepted only when all
to automatically generate behavior-based access conyotts agree on a decision. Below we detail each phase of the
policies without human intervention. Clustering enhancesechanism.
the access control by providing robust intrusion detection
capabilities. .

« The incorporation of an incremental-learning algorithr- Phase I Clustering
that manages the automatic update of behavior-basedevices on a network may span a range of different types
access control policies by differentiating between newf behaviors. For port 80, for example, some webservers
profiles that derive from existing clusters of behaviomay experience a large number of connections from different
(concept driff and malicious profiles aftack9. This IPs and a large number of flows, while others observe a
makes the mechanism resilient to attackers attemptinggmaller number of connections from different IPs and a small
modify the behavior-based access control policies.  number of flows. The goal of clustering is to create clustérs o

« Efficient scalability to a large amount of users and a wideommon behavior among the network members that will be
diversity of behaviors. used to detect anomalous profiles during access contralrgig

The organization of the rest of the paper is as followd(a)). The clustering is performed at the NAC enforcer using

Section Il presents the behavior-based mechanism in gredtee behavior profiles communicated by the initial members
detail and describes each of its phases: clustering, boof-the network. Although this phase may be computationally
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(a) Clustering: Creates clusters of behavior. Each doesgmts(b) Bootstrap: Computes thresholds for each cluster member.
an individual behavior profile. Shown is the threshold computation of an individual member
of a cluster.
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(c) Access Control: A newcomer attempts to access the net-
work. Members of the closest cluster vote to decide on accep-
tance.

Fig. 1. Schematics of the three Phases: Clustering, Boptaimd Access Control.

expensive, it is executed only once to setup the networksaccthe average measure of a feature= 0..n. These features

control. may stand for the typical payload exchanged by a user or
To create the clusters of behavior, we use a partitioniﬁgr the volumetric characteristics of connections esthgld

clustering methodK-means++[4]. The K-means][5] algo- by a user. For instance, the profizle = 485466.5, 12000000

rithm is a non-deterministic method that iteratively dmites Would represent a very active user with a large number of

the profiles intok clusters according to the euclidean distandéows (@85466.5) and a large number of total IPs contacted

between them until a stable state is reached. Unlike {t52000000). TheK-means++method distributes these profiles

p|ain versionK-means K-means++initia”y executes a smart into k clusters aCCOI’ding to distance. The distance between two

selection of seeds in such a way that non-outlier samples &féfilesp; andp; is calculated using the euclidean distance:

favored. AlthoughK-means++increases the complexity of the

execution, we find that the smart selection of seeds de@ease

the number of times that the method needs to be executed due

to its non-deterministic nature. d(pi, p;)

A partitioning method was chosen over hierarchical tech- £=0..n
nigues such as Linkage based [6] to take advantage of the
a priori knowledge that the administrator may have about

the initial number of different behaviors (range of values wherep, andp; are profiles and is the number of features

of k) in the network. While hierarchical techniques are lesf the profile. Because the scaling across features might be

computationally intense, these require knowledge of thstet  gifferent, it may be the case that the distance calculation

width which is far more difficult to guess using behaviofs dominated by certain individual features. In order toldea

profiles. with this problem, we normalize the profiles as in [7]. Each
We assume that each device’s behavior profile is representeature is modified according to a group averagend a group

by a vectorp; = {p;[0], p;:[1],...p;[n]} where eachp;[¢] is standard deviatiow calculated as:
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wherec,, represents the —th component of the centroid and

1 q is the total number of behavior profiles in cluster
pll) = m Z pill] @) The cluster chosen as the closespjg,, is then responsible
1 i=t.m for its rejection or acceptance to the network. The NAC
olf] = \ﬂm Z (pi[€] — p[€])?) (3) enforcer conducts a voting process among the profiles of the
i=1..m members of the closest cluster, where members vote for or

where m is the total number of profiles to be clustered@dainst acceptance based on their thresholds calculatedydu

Each featuré in the profilep; is then normalized as follows: the bootstrap phase (Figure 1(c)). The outcome of the voting
process is decided either by a simple majority or a weighted

majority. In simple majority, all votes are weighted equall
and access is granted to the newcomer when at least 50% of
the members agree on a decision. In short,

g — 2l @

wherep’; corresponds to the normalized profile.
In order to select a suitable value flr K-means++clus-

1
tering is repeated multiple times for each inputo account v=— " (1)
for its non-deterministic nature. For each clustering itesue 157,
perform a cross-validation test that ranks the quality & th v; =0 if d(pi, Prew) > ti (8)
cluster distribution. The highest ranked cluster distitiu is v; =1 if d(ps,Pnew) < ti (9)

chosen. Details about cross-validation and cluster seteate .
covered in Section V. In an actual application of the systehereq is the number of members of the closest cluster and
the clustering method is performed onpar-port basis i.e., t: is the threshold of profilg; as calculated during bootstrap.

clusters of behavior are identified for each port (servieghg f the final votev exceeds 50% i.e;; > 0.5, the newcomer
secured. is accepted into the network. In weighted majority, the vote

of a profile is weighted based on its distance to the profile of
the newcomer. In other words, the weight of the vote of the

B. Phase II: Bootstrap o
, cluster member farthest away from the newcomer’s profile is
Once the clusters of behavior have been computed, the Ngg; ¢, 0, whereas the weight of the vote of the closest profile

enforcer calculates the threshold for each profile. Thestiotel 1, 1o newcomer is set to 1. All other weights are linearly
measures the maximum distance between a profile and egljited among the remaining members of the cluster. The

of the other profiles in its cluster as illustrated by Fig“rﬁleighted votew; for devicei is computed as follows
1(b). These thresholds are later used to determine whether ’ '

a newcomer’s profile is deemed normal or anomalous during

the access control phase. For each prafjlethe threshold w; = M X V;
is calculated as: dmaz = dmin
where d,,;, is the distance of the closest profile to the
tp, = maxj—1.q(d(ps,p;)) (5) newcomerd,,.. is the distance of the farthest profile to the

newcomer andl; is the distance of profileé to the newcomer.
ofne final vote is computed as = 3, , wi. . .
Once a newcomer is accepted into the network, its profile
is saved as a member of its closest cluster. Newly accepted
devices are given access to resources but are banned from
C. Phase IIl: Access Control participating in the access control mechanism. This prsven
After completingclusteringand bootstrap the mechanism temporal members of the network from modifying the access
is ready to perform the access control of new devices. Upaontrol policies. As a result, only the initial members are
arrival to the network, a newcomer presents its profile to thesponsible for defining the network access control pdlicie
NAC enforcer. The NAC enforcer first normalizes the profilén order for a newcomer to be able to participate in the access
as defined in Equation 4. It then proceeds to calculate whicbntrol mechanism, the clustering and bootstrap would have
cluster of behavior is closest to the newcomer’s prafile,, to be recomputed with the newcomer as an initial member

wheregq is the number of profileg; in the cluster where; is
a member and is the distance between the profiles comput
as in Equation 1.

as follows: of the network. If a newcomer is rejected during the access
control phase, it can retry to gain access up to three times.
closest_cluster = min;—g. ;(d(cli], prew)) (6) After that, further requests are ignored in order to avoiatéor

force attempts to gain access or DoS attacks attempting to

wherek is the number of clusters andi| is the centroid of )
ek collapse the NAC enforcer with requests.

each clustei. The centroidc[i] for clusteri is calculated as,

Ill. I NCREMENTAL-LEARNING ALGORITHM

clt| = (eo, 1, ..., C . o .
[ = (co,e1,r¢n) Over time, the initial members of the network will com-

q
ey = lz piln] pute new behavior profiles. As a result, the access control
q°= mechanism must be able to automatically update its policies
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Fig. 2. Basic Scheme of the Incremental-Learning Algorithm. and attack (see Figure 3). Newcandidate clusterghat are

within the decision boundanare interpreted asoncept drift
from existing clusters of behavior whereeandidate clusters

dinaly. T fully adant t file ch trﬁ)utside thedecision boundarare considered attacks.
accordingly. 10 successiully adapt fo profiie changes, the,, practical terms, the algorithm first computes the cedtroi

megham;m needs :O dqmere:ltla:te bketlvvemrr:nzl ct:)harr:gef of each cluster of behaviat; (see Figure 3). Then, global
in behavior ¢oncept drify and attacks launched by hosts centroid C is computed as the average of all centroigs

atte_mpting to_manipulate the access control by lying aboI‘i'ltext, the algorithm calculates the maximum distamgg, .
th?" ne(;/v pioﬂles. ith attacks while allowing f ¢ from each cluster's centroid; to the global centroidC.
n order to cope with attacks while aflowing M@oncept - ry;q gistance represents tdecision boundaryor the cluster

drift, we present an incrementgl-le_arning algorithm .(Figure Hstribution. The algorithm then computes the centroidhef t
that arises from an approach first introduced by Spinosa et ndidate clustem the bufferc,.,,, and estimates its distance

(8D Evgry t’[lmgt ?n ;QltlzlzlArgemt]c)er corr;p;:Jtes anew ptrr?flle, 'ctlnew to the global centroid. If d,,,, is smaller thand,,,,..,
communicates 1t to the entorcer. After receving the NeYha candidate clusteis accepted as a new behavioramncept

profile, the NAC enforcer executes the incremental-le@miny .. oterwise. ifd v is larger thand, .., the candidate
algorithm. The algorithm initially performs the access koh %usteris deeméd ar’;(;;nalous and atlaékglért is raised.

phase to determine whethe_r the_ new profile is accepted Yn the case that a new profile is generated by a device that is
one of the cluste'rs. (.Jf behavior within .the network. In case ?1fot an initial member of the network, the algorithm performs
acceptance, the_lnmal member has simply changed from g ® access control phase. If none of the clusters of behavior
accepted behavior to another. As a result, the NAC enforc (fcept the new profile, the device is placed in quarantine to

updates the cluster members and executes the bootstrap p Alerstand the origin of its anomalous behavior. In general

to recompute the thresholds. devices that are not initial members of the network cannot

If the new profile fa!ls to .be acceptt_ad by ane of th? CIusm@eate new clusters of behavior to modify the access control
of behavior, the algorithm is faced with two alternativebeT policies

new prqfile ”?‘ght constitute a new behaviqobcept drif) or As presented, the algorithm may only handle the identifi-
alternatively it may represent aattack coming from a host cation of onecandidate clusterat a time. One can think of

that is lying about its own profile. In order to d|fferent|atea ?ituation where initial members generate multiggadidate

betvyeen these alte_rnatives, the a_lgorifchm keeps a bUﬁerc?usters In such a case, the algorithm can be expanded by
profiles that have failed to be classified into one of the eltsst first clustering the profiles in the buffer using temeans++

of behavior. Once the number of different profiles in thisfeuf clu§tering method and then proceeding to identify whether
reaches the average number of members among the cluster

. . . . ?a%hcandidate clusteconstitutesconcept driftor anattack

behavioravg, the algorithm attempts to identify the nature o
this candidate clusterThe need to have a critical number of
profiles in the buffer is justified because in our approacly onl
clusters (rather than single behavior profiles) define biehsv  In this section we discuss potentiattacksto a network
For completeness, we note that devices with profiles in thecess control mechanism based on behavior profiles. We
buffer must wait until the nature of their new behavior pefilenvision that the main line of attacks will focus on modifyin
is determined. the access control policies that determine which devices ar

In order to identify the nature of theandidate clustetin accepted into the network. Since the access control pslaie
the buffer, we rely on the existing clusters of behavior. Thepdated by an incremental-learning algorithm, attackets w
union of the boundaries of all clusters of behavior in theoncentrate on crafting manipulated profiles with the ihten
distribution defines aecision boundarpetweenconcept drift alter the clusters of behavior that define the access control

IV. TYPES OFATTACKS



‘ diversity of behaviors. For that purpose, we gathered Cisco

N oo~ ves NetFlow logs from a router at out host institution for a
/:.",:. el period of two weeks (around 95Gb containing millions of IPs)
/° L * . From all the IPs collected during this period, we randomly

selected a sample of 30@ternal users (with IPs from our
host institution) and proceeded to process their netwokksflo
(a) Diversified Attack. (b) Unified Attack. from_ the logs. Throughout, we assume th_at_ eac_h IP represents
a unique user. A flow corresponds to a unidirectional seqeienc
Fig. 4. Types of Threshold Attacks. Each dot represents aividual of packets between a given source and destination endpoints
behavior profile. [9]. We strictly focused on flows from port 80 where traffic
was more abundant than in other ports.

policies. Attacks that involve devices with granted access!" order to compute behavior profiles, we designed an AD

sending anomalous traffic to compromise other devices Shsor that models user behavior based on the network flows
discussed in [1]. A description of two types of attacks fako each user generates. Each behavior profile was characterize
' by a set of seven features that include the total number

] of flows, average flow size, average flow duration, total

A. Collusion Attack number of packets contained in all flows, average number

Compromised hosts may try to lie to the NAC enforceof packets per flow, total number of unique IP addresses
about their new profiles in order to create a neandidate contained in all flows, and average packet size. Thus, a
cluster that is greatly separated from the existing clustersser profile was defined by a vectpr = {fi, f2, ..., f7}
of behavior. Such a cluster would alter the access contwhere f; represents the average value for each individual
by allowing easier access to anomalous profiles. Figurefeéature modeled over the training period. For example
illustrates this type of attack that we refer to esllusion p, = {529.4,1.8,50.5,105.7,9.4,973.1,11803.2} and p, =
attack In order for an attack of this type to be successful, thgl85466.5, 24.9, 159.8,3954.2, 3473.0, 12000000, 5585.9}
attacker would need to compromise at least as many devicepresent two of the profiles obtained from our sample. Here
as the average number of members among the clusterswef can directly see the contrast in behavior profiles between
behavior to be considered ascandidate clusterMoreover, a very active usep, (with a large total number of flows, a
this candidate clustemust lie at a distancé,,.,, from the large number of unique IPs and large total number of packets)
global centroidC that is smaller thand,,,, (see Section and a less active user,. The variation of the features among
[ll). These requirements are not easy to achieve and demahd sample allows us to capture the diversity of behaviors in
internal knowledge of the cluster distribution. In Sectidn a network.
we show that even with full disclosure of the clusters of Using the sensor, we built daily profiles for each of the 300
behavior, an attacker is tightly limited in the new clustdrat users in the sample for two separate periods with a duration

can potentially be created. of one week each. This resulted in a total of 600 behavior
profiles: 300 profiles foweek-1and 300 profiles fromveek-2
B. Threshold Attack Daily profiles computed average daily values for each featur

during the training period of the profiles (one week). In our

One or mullt|ple users within a cluster of behaV|0( may try tBomputations, each user profile contained 10-13498 flows per
decrease or increase the thresholds computed during tmntsRNeek with 2-128 packets per flow. The average duration of

Wg call these' attack!gresho!d attackglven that the attacker'ls each flow was approximately 46.2 secs.
trying to moqllfy the_d|men5|ons of |t_s own cluster. We Co"‘?"d Armed with the behavior profiles, we proceeded to set
two alternatives. First, one or multiple attackers modkigit up a simulated NAC environment in which a fraction of

own profiles in an attempt t(.) dispersg the.clustlgr n d|ff9re{he profiles constituted the initial members of the network,
directions. We will refer to this alternative déversified attack while the remaining profiles simulated users trying to gain
(see Figure 4(a)). In th? second”scenarp, one or mumpi%cess into the network. Specifically, the 600 behavior leofi
attacke_rs agree on a unique modlfled_proﬁle to sf[retch_ th’\?\}ére divided into three sets of randomly selected profiles: t
cluster in a single direction. Figure 4(b) illustrates thignario training set(300 profiles fromweek-1 to be used to compute

that we refer to as:mfulad.attac-k In Section V, we show that lusters of behavior, theross-validation se€75 profiles from
the bootstrap phase limits this type of attack as long as t&@ek—a to determine the appropriate number of clusters

number of normal users in the cluster outnumbers the numier thetesting set(remaining 225 profiles fromveek-2 to
of attackers.

perform access control experiments. We further assumed tha
the profiles in thetraining set the cross-validation setand
V. VALIDATION EXPERIMENTS the testing setrepresentnormal behavior profiles and thus
To evaluate the mechanism, we present experiments thahstituteground truth It is important to note that although
aim to simulate a NAC environment and test the performantdge experiments presented here are specific to one dataset,
of each of the phases as well as the incremental-learnitige results can be generalized to other network envirorsnent
algorithm. In order to simulate the NAC environment, wegiven the sheer number of profiles and diversity of our datase
need real network traffic for a large amount of users with ext, we present experimental evaluation of each phaseeof th



[ o From Individual Clusters [[ True Rejection Ratg

mechanism and the incremental-learning algorithm usiegeh

. lo 95%
three sets of profiles. 20 98%
30 100%

A. Clustering and Cross-Validation TABLE |

: PERFORMANCE OF THEACCESSCONTROL PHASE. ANOMALOUS
In order to show how thelustering phasevould proceed, PROFILES WERE GENERATED AT ONETWO, AND THREE o AWAY FROM

we used th&k-means++clustering method (see Section II-A) THE INDIVIDUAL CLUSTER CENTROIDS. THE MORE ANOMALOUS THE
to f|nd C|usters of behavior in the thH‘a"‘“ng set (300 PROFILES ARE THE EASIER IT IS FOR THE CLUSTER DISTRIBUTION TO
normal profiles fromweek-). We tested values df ranging DETECT THEM

from 1% to 20% of the total number of profiles, since these

produced the best clustering results. For elctve repeated

the clustering method several times to account for the NQfste that these values are only valid for the set of profiles
deterministic nature oK-means++ This resulted in multiple presented in this paper and it will obviously vary according

cluster distributions for each value kf _ to the particular network environment.
We then ran cross-validation tests to determine the best

cluster distribution i.e., the best value &f Each value of
k was ranked based on its access control performance. FheBootstrap and Access Control

performance of the access control was measured using tw@nce clusters of behavior had been generated and a value of
indicators: the false rejection rate (FR) and the true t&Jac k=40, together with non-weighted voting, chosen as the best
rate (TR). TR measures the number of anomalous usefgster distribution, the bootstrap phase computed tiotesh
that were detected as such by the access control, and fgR each cluster member (Section 1I-B). At this point, we
measures the number of normal users deemed as suchpRteeded to measure the performance ofdbeess control
the access control. The final ranking index was computed @$aseby testing whether or not normal and anomalous profiles
r=(1—FR)+TR, and the clustering distribution with thecould gain access into the network. For this purpose, we used
best index was selected. the testing setcontaining 225normal profiles from week-2

In order to compute the FR rate for each cluster distribytioand the set of anomalous profiles generated by modyfing one
we measured its access control performance using the grofie multiple features by one, two and three standard devistio
from the cross-validation setAs stated earlier, theross- away from the centroid of each individual cluster in the téus
validation setconsisted of 7:ormalprofiles randomly chosen distribution with k=40. These profiles were assumed to be
from week-2 To compute the TR of each cluster distributionpew users trying to gain access into the network. Therefore,
anomalous profiles were created by modifying one or multipiach profile was paired with its closest cluster in the cluste
features by one, two and three standard deviations awgi¥tribution which then conducted a vote among its members
from the centroid of each individual cluster in the clustei decide on the access of the profile (see Section II-C).
distribution. These profiles were used to simulate useisgry The performance of theaccess control phasq'n terms
to maliciously stretch the dimensions of the clusters in th§f TR is shown in Table I. Our experiments demonstrated
cluster distribution. that 95% or more of anomalous profiles can be detected

Figure 5(a) and Figure 5(b) show the best TR and FRiccessfully with a FR rate of 10%. The reason a 5% of
rates for different values ok assuming weighted and non-the anomalous profiles went undetected lies in the method
weighted voting respectively. We discovered that a value géed to generate them. Anomalous profiles were generated
k=40 and non-weighted voting produced the highest rankinghe or more standard deviations away from the centroid of
index r = (1 —0.1) + 0.97. Smaller values ok tended to each individual cluster. This did not necessarily creatdiles
produce small TR rates due to the fact that outlier profileg distances larger than the access control thresholir
in each cluster created a larger spread among the clug@rcluster members. In fact, 5% of the anomalous profiles
members. On the other hand, larger valueskothowed were at distances smaller than for at least 50% of the
very poor FR rates because the cluster distribution becaggster members. As a result, these anomalous profiles were
excessively fine-grained. Non-weighted voting outperf@dm accepted into the network. The TR increased up to 100% for
weighted voting possibly indicating that behavior profileat anomalous profiles that were three standard deviations away
are outliers within their own cluster tend to dominate thgom individual clusters. These results demonstrate that t
voting process over the rest of the profiles. In order to tegécess control phasés able to detect a large fraction of
whether the granularity of the training period affects theults anomalous profiles while still allowingormal profiles to gain
directly, we repeated similar experiments using hourlyfi@®. access into the network. Moreover, these experiments show
We find that the results obtained with profiles trained ofhat an access control mechanism based on behavior profiles
an hourly basis do not differ significantly from their da"ycan be Successfu”y imp|emented in a real network.
counterparts.

For our particular dataset, the cluster distribution vkit0
and non-weighted voting was the best representative of fHe
trade-off between FR and TR. Therefore, it was selected forThus far we have presented a validation of the mechanism
the validation of the subsequent phases. It is important wethout considering temporal evolution. Next, we evaluate

Incremental-Learning Algorithm
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Fig. 5. Cross-validation Tests.

the ability of the mechanism to dynamically adjust to new L2 7om Global Centroid]| Candidate Clusters Rejected

0,
behaviors ¢oncept drify as well as its response #itacks %Z 3242
1) Concept Drift and Collusion Attacksin order to eval- 8¢ 96%

uate the performance of the incremental-learning algorith TABLE I

described in Section Ill, we started with the cluster distri  pgrcentace orFcandidate clusterseemeD As collusion attacks

bution with k=40 and non-weighted voting selected during PROFILES WERE GENERATED AT ONETWO, AND THREE o AWAY FROM

the clustering phaseWe calculated the global centroi THE GLOBAL CENTROID. Candidate clustersLOSER TO THEdecision
. . boundaryARE MORE LIKELY TO BE DEEMED concept drift

as the average of the centroids of all clusters in the

cluster distribution (see Figure 3). We then proceededdater

profiles that were one, two and three standard deviationg awa

from the global centroidC'. The basic idea was to createy o s of users start using a new application that generates
outlier profiles located at the edges of the cluster distidou o 4vior profiles substantially different from previousesn

in order to determine the boundary betweeancept drift i j5 yery |ikely that such profiles will raise attack alerts i
and collusion attacks(decision boundafy A total of 378 hq incremental-learning algorithm. If this is the casee th

profiles were created by modifying one or multiple feature§,siering and bootstrap phases will have to be re-executed
by one, two and three standard deviations from the averggeinc|ude these new profiles as initial network members so
values stored in the global centroid. One by one, each of they the access control policies are modified accordingly.
newly generated profiles was assigned to a member of they) rpeshold Attacks:One or multiple attackers within a
cluster distribution as if it were its newly computed prof|IeC|uster of behavior may try to modify the thresholds and
Each_lnd|V|du§I assignment triggered the incrementalled  5yer the dimensions of their own cluster. We only considere
algorithm which allowed us to quantify the percentage Qi ks where fewer than 50% of the cluster members are com-
candidate clustershat would be accepted asncept drift promised. Otherwise, the attackers hold control over thimgo
Table Il summarizes our results. As can be seen, 85% gfocess. We concentrated on studying the effects of twastype
candidate clusterformed with profiles located one standargf attacks:diversified attacksvhere attackers modified their
deviation away from the global centroid were deemed own profiles to disperse their cluster in multiple directipand

collusion attacksLeaving only 15% of theandidate clusters ynified attackswhere attackers agreed on a unique modified
asconcept drift On the other hand, 92% and 96%aafndidate profile to stretch their cluster on a single direction (segufé
clusterswere detected asollusion attackdor profiles two and  4).
three standard deviations away respectively. The relevafic e started with the cluster distribution wik¥30 selected
this result is that the creation of new clusters of behawor Huring thec]ustering phaseFrom the distribution’ we p|Cked
largely limited to a distance one standard deviation or leggo clustersclusterlandcluster2 which featured respectively
from the glObal centroid of the cluster distribution. Hencqhe h|ghest and the lowest Spread measured in terms of the
the damage that an attacker can infringe on the mechanigitance between the behavior profiles of their members. The
is limited as well. AlthOUgh this may be seen as a "mitatiorbasoning behind this selection was to Study any possib|e
to the incorporation of new clusters of behavior, it proseckorrelation between the effects of the attacks and the dprea
the mechanism from attacks while still leaving some room fefcross the members of a cluster. For each cluster, we prdduce
growth. a range of attacks by varying the number of attackers from 1%
On certain occasions there might be a need to forcet@50% of the total size of the cluster. For tiigersified attack
new cluster of behavior that is very distant from the globaach attacker generated a different attack profile by itelgt
centroid into the cluster distribution. For example, when iacreasing each of its normal profile features by 10%. In the



Our approach is novel in the sense that we apply clustering

o e e e to behavior profiles computed from single samples rather tha
= @ = ClusterZ,aiversiiie: . . .

clusterl,unified clustering the samples directlZooperative Anomaly Detec-
23] =0~ cluster2,unified 1 tion Sensorshave been explored in systems like COSSACK

[11] and CATS [12] where a distributed environment shares
alerts to strengthen each individual local security cdjiss.

We implement the concept of cooperation by allowing each
network member to participate in the access control detisio

Dispersion Factor
N

13 IS Sl rather than just sharing alerts.
#.,__\:.:3‘-‘-‘-‘-0 ————— A 'T A number of NAC technologies are currently available in
== ‘ : : the market.Cisco Network Module for Integrated Services
0 10 20 30 40 50 . . . ..
Percentage of Attackers Routersoffers an agentless solution authenticating, authorizing

and remediating devices connected wired or wirelessly ¢o th
Fig. 6. Dispersion factor as a function of the percentagetaickers in a network. TheCisco Profiler executes an in-depth control of
cluster. the endpoint devices of the network by passively monitoring
their traffic. TheNetwork Access ProtectiofNAP) platform
. . from Windows provides a client and server-side platform to
case of theunified attack all attackers started with the SaM§mplement policy validation, network access limitationdan

initial normal profile and iteratively increased each of thSngoing compliance. Compared to all other previous NAC
profile features by 10%. A factor of 10% was chosen arbiyyarilechnologies, our mechanism uses automatically computed
to demonstrate the effect of attacks. A different percemtaggcess control policies based on behavior profiles instéad o

selection would result on shorter or longer time scalesHer tf,oq policies as a security feature for thee-conneciphase.
attacks. However, the end effects would be similar.

In order to evaluate the performance of the mechanism when
faced with such attacks, we definedliapersion factord that
represents the ratio between the initial average thresifahe VII. CONCLUSIONS AND FUTURE WORK
cluster, and the final average threshold of the cluster dmee t
attack had been detected. The average threshold correspond We have presented a network access control mechanism
to the mean value of the thresholds for all the members oftleat enhance88B-NAC by improving its access control ca-
cluster and as such it constituted a reasonable measurememabilities as well as incorporating the automatic update of
the effects of an attack on the bootstrap phase. behavior-based access control policies. Behavior proétes

Figure 6 shows the dispersion factors for different percerdlustered automatically into clusters that define the acces
ages of attackers. First, it is important to note thatualified control policies. Newcomers are admitted into the network
anddiversifiedattacks were eventually detected by the meclonly if their profiles are deemed normal by their closesttelus
anism. In addition, we see that the dispersion factor irseéa of behavior. We validate the mechanism using real user pgofil
as a function of the percentage of attackers. Nonetheless, ¢computed from Cisco Netflow logs from a router at our host
dispersion factor seemed to be limited to a factor of threalin institution. In particular, we achieve true rejection satd 95%
cases. The results also showed that the cluster with thedtairgor anomalous profiles with 10% false rejection rates. Weshav
spread ¢luster?), displayed larger dispersion factors than thelso introduced an incremental-learning algorithm thhoved
one with the smallest spreadlster). Moreover,diversified for an automatic update of the behavior-based access tontro
attacks appeared to be more effective thamified attacks policies while making the mechanism robust agamisacks
in terms of dispersion factors. Overall, these experimerExperiments show that the mechanism is effective in detgcti
demonstrate that the mechanism is effective against thieéshcollusion attacksvhile leaving room for temporal evolution of
attacks involving 50% or less of attackers within a cluster. clusters of behaviorcponcept driff. Moreover, the mechanism

is robust tothreshold attackdnvolving fewer than 50% of
VI. RELATED WORK attackers.

Clustering methods for anomaly detection have been used ta'he results presented here constitute the first full imple-
model a normal class from a set of normal samples. Samptaentation of an automatic network access control mechanism
are then compared against the normal class and deemed eitfzesed on behavior profiles. A more complete treatment ex-
normal or anomalous. Portnoy [7] was perhaps the first pdoring content- and non-content-based behavior profites f
use a hierarchical clustering algorithm to obtain a normatultiple ports as well an evaluation of the practical limits
model and successfully detected different types of intmsi of this approach need to be examined. By combining content-
from the KDD CUP 1999 dataset. Later work by Leon eind non-content-based behavior profiles, we hope to achieve
al. [10] proposed a fully unsupervised clustering methad fonore robust access control. Ultimately, behavior-baseeéss
anomaly detection where each cluster was characterized dontrol may also support role-based access control [13] by
a fuzzy membership function so that a certain sample woybdoviding an automated means of assisting in the manual
be a member of different clusters with different degrees specification of the data and services a role may legitimatel
membership. access.
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