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Abstract—Current Network Access Control (NAC) technolo-
gies manage the access of new devices into a network to prevent
rogue devices from attacking network hosts or services. Typically,
new devices are checked against a set of manually defined
policies (rules) before being granted access by the NAC enforcer.
The main difficulty with this approach lies in the generation
and update of new policies manually as time elapses and all
devices have to reestablish their access rights. TheBB-NAC
mechanism was the first to introduce a novel Behavior-Based
Network Access Control architecture based onbehavior profiles
and not rules, where behavior-based access control policies were
automatically generated. As originally presented,BB-NAC relied
on manually pre-determined clusters of behaviorwhich required
human intervention and prevented the fully automation of the
mechanism. In this paper, we present an enhancedBB-NAC
mechanism that fully automatizes the creation of clusters of
behavior. The access control is enhanced with the incorporation
of automatic behavior clustering, which improves the intrusion
detection capabilities by allowing for a more fine-grained def-
inition of normal behavior. Apart from the lack of automatic
clustering, the original BB-NAC overlooked the evolution of the
mechanism as new behavior profiles were computed over time.
As part of our enhancements, we also present an incremental-
learning algorithm that automatically updates the behavior-based
access control policies. We show that the algorithm is resilient
to compromised or fabricated profiles trying to manipulate the
policies. We provide extensive experiments with real user profiles
computed with their network flows processed from Cisco NetFlow
logs captured at our host institution. Our results show that
behavior-based access control policies enhance conventional NAC
technologies. Specifically, we achieve true rejection rates of 95%
for anomalous user profiles separated by one standard deviation
from the normal user network behavior. In addition, we also show
that the enhanced mechanism can differentiate between normal
changes in the behavior profiles (concept drift) and attacks.

I. I NTRODUCTION

Network Access Control (NAC) technologies are responsi-
ble for regulating the access of devices to a network. Their
main aim is to prevent the intrusion of rogue devices that
could potentially attack other devices and services in the
network. In most NAC architectures, a NAC enforcer located
at the edge of the network evaluates devices trying to enter
the network (wired, wirelessly or VPN) before access is
granted. This preventive phase, called thepre-connect phase,
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typically checks the status of the antivirus software (AV) of
the new device, determines whether software patches are up-
to-date, or it inspects the types of applications executed by
the device. Access is granted only if the device complies with
all the manually pre-determined policies (rules). Otherwise,
the device is quarantined or expelled.ConSentry’s agentless
LANShield, Nevis LANenforcer, and Cisco’s NAC Appliance
are examples of such technologies. Unfortunately, defining
and updating new policies manually becomes very demanding
and highly inefficient as time elapses and all devices have to
reestablish their access rights.

Previous work introduced a network access control archi-
tecture,BB-NAC, in which behavior profiles of network hosts,
modeled by an Anomaly Detection Sensor (AD), were used to
automatically compute behavior-based access control policies
[1]. These behavior profiles characterized the typical commu-
nications of network devicesi.e., the traffic payload observed
or specific volumetric measurements of the traffic such as
average number of packets. InBB-NAC, the behavior profiles
of the network members were grouped into two manually pre-
determinedclusters of behavior: clients and servers. A device
attempting to access the network (newcomer) was required to
present its behavior profile and a self declaration of its nature
(client or server) to the NAC enforcer. To reach an access
control decision, the NAC enforcer then proceeded to conduct
a voting process among behavior profiles within the cluster of
behavior of the same nature (client or server). If a majority
agreed that the behavior profile of the newcomer was normal,
the device was granted access into the network. Otherwise, the
device was deemedanomalousand rejected from entering the
network. Once a device had been accepted into the network,
its real-time behavior was continuously checked against the
behavior profiles within its respective cluster of behavior.
Devices that drifted in behavior were considered compromised
and placed in quarantine [2].

While the original BB-NAC mechanism offered a first
approximation to the automatic creation of access control
policies, it suffered from two significant drawbacks. First,
the clusters of behaviorhad to be manually specified, which
required human intervention in the mechanism. Second,BB-
NAC focused mainly on the initial creation of access con-
trol policies disregarding the evolution of the mechanism as



new behavior profiles were computed over time. This paper
presents novel solutions to these problems. In our enhanced
mechanism, the NAC enforcer uses an automatic clustering
method to group similar behavior profiles intoclusters of
behavior. These clusters of behaviordefine the behavior-
based access control policies. Automatic clustering enables
the identification of common behaviors among hosts (and
their users) as well as the generation of behavior-based access
control policies without human intervention. Moreover, the
inclusion of clustering in the access control improves on the
intrusion detection capabilities ofBB-NACby allowing for a
more fine-grained definition of normal behavior.

Additionally, we incorporate an automatic update of
behavior-based access control policies to account for network
members that may recompute their behavior profiles over time.
To accomplish this, it is imperative to understand the nature
of the changes in the behavior profiles prior to the update.
Therefore, we have designed and implemented an incremental-
learning algorithm that differentiates between new behavior
profiles that derive from existing clusters of behavior (concept
drift) and fabricated profiles attempting to maliciously modify
the access control policies (attacks). Finally, we evaluate
the enhancements to the originalBB-NAC mechanism using
extensive real network flows generated from Cisco NetFlow
logs with a large amount of users and a wide diversity of
behaviors.

In terms of deployment, the mechanism presented here is
to be installed and executed at the NAC enforcer to guarantee
appropriate access control. We further assume anagent-based
NAC architecturewhere each of the members of the network
has an AD sensor (similar to a COTS AV scanner) that
computes its local behavior profile. Every time a new profile is
computed by a host or device, it is communicated to the NAC
enforcer. A fully distributed version of our mechanism for
Mobile Ad-hoc Networks (MANETs) is presented in [3]. The
latter provides a light-weight adaptation that fully distributes
the access control decisions among the MANET devices using
a threshold cryptographic layer.

The main contributions of the enhanced behavior-based
network access control mechanism are the following:

• The application of a clustering method to identify com-
mon behaviors among network members as well as
to automatically generate behavior-based access control
policies without human intervention. Clustering enhances
the access control by providing robust intrusion detection
capabilities.

• The incorporation of an incremental-learning algorithm
that manages the automatic update of behavior-based
access control policies by differentiating between new
profiles that derive from existing clusters of behavior
(concept drift) and malicious profiles (attacks). This
makes the mechanism resilient to attackers attempting to
modify the behavior-based access control policies.

• Efficient scalability to a large amount of users and a wide
diversity of behaviors.

The organization of the rest of the paper is as follows.
Section II presents the behavior-based mechanism in greater
detail and describes each of its phases: clustering, boot-

strap and access control. Section III details the incremental-
learning algorithm. Possible attack scenarios and responses are
discussed in Section IV. Section V presents our validation
experiments while section VI describes related work. Section
VII presents the conclusions and future work.

II. D ESCRIPTION OF THENETWORK ACCESSCONTROL

MECHANISM BASED ONBEHAVIOR PROFILES

The network access control mechanism consists of three
phases:clustering, bootstrapandaccess control. Initially, each
network member communicates its behavior profile to the
NAC enforcer. We assume that all network members have
normal behavior profiles and that communications between
the members and the NAC enforcer are secured in such a
way that profiles cannot be manipulated during the exchange.
Throughout, we refer to profiles that have been modeled with
clean datasets that do not contain any type of attack asnormal
behavior profiles. Once the NAC enforcer has received all
the initial profiles, it performs aclustering phasethat builds
clusters of common behavior among its members. Clusters are
computed on aper-port basise.g.,port 22 for service SSH or
port 80 for service HTTP. As a result, the NAC enforcer keeps
independent clusters of behavior for each port whose security
needs to be enforced.

Next, the bootstrap phaseis responsible for the determi-
nation of thresholds for each cluster member. Each threshold
measures the largest distance between a host and each of the
other cluster members. These thresholds are then used in the
access control phase as a measure of similarity between pro-
files. The bootstrap phase is performed whenever the behavior
profile of a member changes.

Finally, every time a new device attempts to enter the
network, it presents its behavior profile to the NAC enforcer
that performs theaccess control phase. During access control,
the NAC enforcer conducts a voting process in the cluster that
is closest to the newcomer’s presented profile. Each profile
emits an acceptance or rejection individual vote based on its
threshold (derived from the bootstrap phase). A majority vote
determines the final decision. In the case where multiple ports
are being considered, this phase is performed separately for
each individual port. The device is accepted only when all
ports agree on a decision. Below we detail each phase of the
mechanism.

A. Phase I: Clustering

Devices on a network may span a range of different types
of behaviors. For port 80, for example, some webservers
may experience a large number of connections from different
IPs and a large number of flows, while others observe a
smaller number of connections from different IPs and a smaller
number of flows. The goal of clustering is to create clusters of
common behavior among the network members that will be
used to detect anomalous profiles during access control (Figure
1(a)). The clustering is performed at the NAC enforcer using
the behavior profiles communicated by the initial members
of the network. Although this phase may be computationally
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(c) Access Control: A newcomer attempts to access the net-
work. Members of the closest cluster vote to decide on accep-
tance.

Fig. 1. Schematics of the three Phases: Clustering, Bootstrap and Access Control.

expensive, it is executed only once to setup the network access
control.

To create the clusters of behavior, we use a partitioning
clustering method,K-means++ [4]. The K-means[5] algo-
rithm is a non-deterministic method that iteratively distributes
the profiles intok clusters according to the euclidean distance
between them until a stable state is reached. Unlike its
plain versionK-means, K-means++ initially executes a smart
selection of seeds in such a way that non-outlier samples are
favored. AlthoughK-means++increases the complexity of the
execution, we find that the smart selection of seeds decreases
the number of times that the method needs to be executed due
to its non-deterministic nature.

A partitioning method was chosen over hierarchical tech-
niques such as Linkage based [6] to take advantage of the
a priori knowledge that the administrator may have about
the initial number of different behaviors (range of values
of k) in the network. While hierarchical techniques are less
computationally intense, these require knowledge of the cluster
width which is far more difficult to guess using behavior
profiles.

We assume that each device’s behavior profile is represented
by a vectorpi = {pi[0], pi[1], ...pi[n]} where eachpi[ℓ] is

the average measure of a featureℓ = 0..n. These features
may stand for the typical payload exchanged by a user or
for the volumetric characteristics of connections established
by a user. For instance, the profilepi = 485466.5, 12000000
would represent a very active user with a large number of
flows (485466.5) and a large number of total IPs contacted
(12000000). TheK-means++method distributes these profiles
into k clusters according to distance. The distance between two
profilespi andpj is calculated using the euclidean distance:

d(pi, pj) =
√

(
∑

ℓ=0..n

(pi[ℓ] − pj [ℓ])
2) (1)

wherepi andpj are profiles andn is the number of features
in the profile. Because the scaling across features might be
different, it may be the case that the distance calculation
is dominated by certain individual features. In order to deal
with this problem, we normalize the profiles as in [7]. Each
feature is modified according to a group averageµ and a group
standard deviationσ calculated as:
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µ[ℓ] =
1

m

∑

i=1..m

pi[ℓ] (2)

σ[ℓ] =
√

(
1

m − 1

∑

i=1..m

(pi[ℓ] − µ[ℓ])2) (3)

where m is the total number of profiles to be clustered.
Each featureℓ in the profilepi is then normalized as follows:

p′i[ℓ] =
pi[ℓ] − µ[ℓ]

σ[ℓ]
(4)

wherep′i corresponds to the normalized profile.
In order to select a suitable value fork, K-means++clus-

tering is repeated multiple times for each inputk to account
for its non-deterministic nature. For each clustering result, we
perform a cross-validation test that ranks the quality of the
cluster distribution. The highest ranked cluster distribution is
chosen. Details about cross-validation and cluster selection are
covered in Section V. In an actual application of the system,
the clustering method is performed on aper-port basis i.e.,
clusters of behavior are identified for each port (service) being
secured.

B. Phase II: Bootstrap

Once the clusters of behavior have been computed, the NAC
enforcer calculates the threshold for each profile. The threshold
measures the maximum distance between a profile and each
of the other profiles in its cluster as illustrated by Figure
1(b). These thresholds are later used to determine whether
a newcomer’s profile is deemed normal or anomalous during
the access control phase. For each profilepi, the thresholdt
is calculated as:

tpi
= maxj=1..q(d(pi, pj)) (5)

whereq is the number of profilespj in the cluster wherepi is
a member andd is the distance between the profiles computed
as in Equation 1.

C. Phase III: Access Control

After completingclusteringand bootstrap, the mechanism
is ready to perform the access control of new devices. Upon
arrival to the network, a newcomer presents its profile to the
NAC enforcer. The NAC enforcer first normalizes the profile
as defined in Equation 4. It then proceeds to calculate which
cluster of behavior is closest to the newcomer’s profilepnew

as follows:

closest cluster = mini=0..k(d(c[i], pnew)) (6)

wherek is the number of clusters andc[i] is the centroid of
each clusteri. The centroidc[i] for clusteri is calculated as,

c[i] = (c0, c1, ..., cn)

cn =
1

q

q
∑

i=1

pi[n]

wherecn represents then− th component of the centroid and
q is the total number of behavior profiles in clusteri.

The cluster chosen as the closest topnew is then responsible
for its rejection or acceptance to the network. The NAC
enforcer conducts a voting process among the profiles of the
members of the closest cluster, where members vote for or
against acceptance based on their thresholds calculated during
the bootstrap phase (Figure 1(c)). The outcome of the voting
process is decided either by a simple majority or a weighted
majority. In simple majority, all votes are weighted equally
and access is granted to the newcomer when at least 50% of
the members agree on a decision. In short,

v =
1

q

∑

i=1..q

vi (7)

vi = 0 if d(pi, pnew) > ti (8)

vi = 1 if d(pi, pnew) ≤ ti (9)

whereq is the number of members of the closest cluster and
ti is the threshold of profilepi as calculated during bootstrap.
If the final votev exceeds 50% i.e.,v ≥ 0.5, the newcomer
is accepted into the network. In weighted majority, the vote
of a profile is weighted based on its distance to the profile of
the newcomer. In other words, the weight of the vote of the
cluster member farthest away from the newcomer’s profile is
set to 0, whereas the weight of the vote of the closest profile
to the newcomer is set to 1. All other weights are linearly
distributed among the remaining members of the cluster. The
weighted votewi for devicei is computed as follows,

wi =
dmax − di

dmax − dmin

× vi

where dmin is the distance of the closest profile to the
newcomer,dmax is the distance of the farthest profile to the
newcomer anddi is the distance of profilei to the newcomer.
The final vote is computed asw = 1

q

∑

i=1..q wi.
Once a newcomer is accepted into the network, its profile

is saved as a member of its closest cluster. Newly accepted
devices are given access to resources but are banned from
participating in the access control mechanism. This prevents
temporal members of the network from modifying the access
control policies. As a result, only the initial members are
responsible for defining the network access control policies.
In order for a newcomer to be able to participate in the access
control mechanism, the clustering and bootstrap would have
to be recomputed with the newcomer as an initial member
of the network. If a newcomer is rejected during the access
control phase, it can retry to gain access up to three times.
After that, further requests are ignored in order to avoid brute
force attempts to gain access or DoS attacks attempting to
collapse the NAC enforcer with requests.

III. I NCREMENTAL-LEARNING ALGORITHM

Over time, the initial members of the network will com-
pute new behavior profiles. As a result, the access control
mechanism must be able to automatically update its policies
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Fig. 2. Basic Scheme of the Incremental-Learning Algorithm.

accordingly. To successfully adapt to profile changes, the
mechanism needs to differentiate betweennormal changes
in behavior (concept drift) and attacks launched by hosts
attempting to manipulate the access control by lying about
their new profiles.

In order to cope with attacks while allowing forconcept
drift, we present an incremental-learning algorithm (Figure 2)
that arises from an approach first introduced by Spinosa et al.
([8]). Every time an initial member computes a new profile, it
communicates it to the NAC enforcer. After receiving the new
profile, the NAC enforcer executes the incremental-learning
algorithm. The algorithm initially performs the access control
phase to determine whether the new profile is accepted by
one of the clusters of behavior within the network. In case of
acceptance, the initial member has simply changed from one
accepted behavior to another. As a result, the NAC enforcer
updates the cluster members and executes the bootstrap phase
to recompute the thresholds.

If the new profile fails to be accepted by one of the clusters
of behavior, the algorithm is faced with two alternatives. The
new profile might constitute a new behavior (concept drift) or
alternatively it may represent anattack coming from a host
that is lying about its own profile. In order to differentiate
between these alternatives, the algorithm keeps a buffer of
profiles that have failed to be classified into one of the clusters
of behavior. Once the number of different profiles in this buffer
reaches the average number of members among the clusters of
behavioravg, the algorithm attempts to identify the nature of
this candidate cluster. The need to have a critical number of
profiles in the buffer is justified because in our approach only
clusters (rather than single behavior profiles) define behaviors.
For completeness, we note that devices with profiles in the
buffer must wait until the nature of their new behavior profile
is determined.

In order to identify the nature of thecandidate clusterin
the buffer, we rely on the existing clusters of behavior. The
union of the boundaries of all clusters of behavior in the
distribution defines adecision boundarybetweenconcept drift

candidate cluster

cluster1

cluster2

cluster3

C

c1

c4

c3

c2

d_new < d_max?

decision boundary

Fig. 3. Identification of the nature of acandidate cluster.

and attack (see Figure 3). Newcandidate clustersthat are
within the decision boundaryare interpreted asconcept drift
from existing clusters of behavior whereascandidate clusters
outside thedecision boundaryare considered attacks.

In practical terms, the algorithm first computes the centroid
of each cluster of behaviorci (see Figure 3). Then, aglobal
centroid C is computed as the average of all centroidsci.
Next, the algorithm calculates the maximum distancedmax

from each cluster’s centroidci to the global centroidC.
This distance represents thedecision boundaryfor the cluster
distribution. The algorithm then computes the centroid of the
candidate clusterin the buffercnew, and estimates its distance
dnew to the global centroidC. If dnew is smaller thandmax,
thecandidate clusteris accepted as a new behavior orconcept
drift. Otherwise, ifdnew is larger thandmax, the candidate
cluster is deemed anomalous and anattack alert is raised.

In the case that a new profile is generated by a device that is
not an initial member of the network, the algorithm performs
the access control phase. If none of the clusters of behavior
accept the new profile, the device is placed in quarantine to
understand the origin of its anomalous behavior. In general,
devices that are not initial members of the network cannot
create new clusters of behavior to modify the access control
policies.

As presented, the algorithm may only handle the identifi-
cation of onecandidate clusterat a time. One can think of
a situation where initial members generate multiplecandidate
clusters. In such a case, the algorithm can be expanded by
first clustering the profiles in the buffer using theK-means++
clustering method and then proceeding to identify whether
eachcandidate clusterconstitutesconcept driftor anattack.

IV. T YPES OFATTACKS

In this section we discuss potentialattacks to a network
access control mechanism based on behavior profiles. We
envision that the main line of attacks will focus on modifying
the access control policies that determine which devices are
accepted into the network. Since the access control policies are
updated by an incremental-learning algorithm, attackers will
concentrate on crafting manipulated profiles with the intent to
alter the clusters of behavior that define the access control
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(a) Diversified Attack. (b) Unified Attack.

Fig. 4. Types of Threshold Attacks. Each dot represents an individual
behavior profile.

policies. Attacks that involve devices with granted access
sending anomalous traffic to compromise other devices are
discussed in [1]. A description of two types of attacks follows.

A. Collusion Attack

Compromised hosts may try to lie to the NAC enforcer
about their new profiles in order to create a newcandidate
cluster that is greatly separated from the existing clusters
of behavior. Such a cluster would alter the access control
by allowing easier access to anomalous profiles. Figure 3
illustrates this type of attack that we refer to ascollusion
attack. In order for an attack of this type to be successful, the
attacker would need to compromise at least as many devices
as the average number of members among the clusters of
behavior to be considered as acandidate cluster. Moreover,
this candidate clustermust lie at a distancednew from the
global centroidC that is smaller thandmax (see Section
III). These requirements are not easy to achieve and demand
internal knowledge of the cluster distribution. In SectionV,
we show that even with full disclosure of the clusters of
behavior, an attacker is tightly limited in the new clustersthat
can potentially be created.

B. Threshold Attack

One or multiple users within a cluster of behavior may try to
decrease or increase the thresholds computed during bootstrap.
We call these attacksthreshold attacksgiven that the attacker is
trying to modify the dimensions of its own cluster. We consider
two alternatives. First, one or multiple attackers modify their
own profiles in an attempt to disperse the cluster in different
directions. We will refer to this alternative asdiversified attack
(see Figure 4(a)). In the second scenario, one or multiple
attackers agree on a unique modified profile to stretch their
cluster in a single direction. Figure 4(b) illustrates thisscenario
that we refer to asunified attack. In Section V, we show that
the bootstrap phase limits this type of attack as long as the
number of normal users in the cluster outnumbers the number
of attackers.

V. VALIDATION EXPERIMENTS

To evaluate the mechanism, we present experiments that
aim to simulate a NAC environment and test the performance
of each of the phases as well as the incremental-learning
algorithm. In order to simulate the NAC environment, we
need real network traffic for a large amount of users with a

diversity of behaviors. For that purpose, we gathered Cisco
NetFlow logs from a router at out host institution for a
period of two weeks (around 95Gb containing millions of IPs).
From all the IPs collected during this period, we randomly
selected a sample of 300internal users (with IPs from our
host institution) and proceeded to process their network flows
from the logs. Throughout, we assume that each IP represents
a unique user. A flow corresponds to a unidirectional sequence
of packets between a given source and destination endpoints
[9]. We strictly focused on flows from port 80 where traffic
was more abundant than in other ports.

In order to compute behavior profiles, we designed an AD
sensor that models user behavior based on the network flows
each user generates. Each behavior profile was characterized
by a set of seven features that include the total number
of flows, average flow size, average flow duration, total
number of packets contained in all flows, average number
of packets per flow, total number of unique IP addresses
contained in all flows, and average packet size. Thus, a
user profile was defined by a vectorpi = {f1, f2, ..., f7}
where fi represents the average value for each individual
feature modeled over the training period. For example
px = {529.4, 1.8, 50.5, 105.7, 9.4, 973.1, 11803.2} and py =
{485466.5, 24.9, 159.8, 3954.2, 3473.0, 12000000, 5585.9}
represent two of the profiles obtained from our sample. Here
we can directly see the contrast in behavior profiles between
a very active userpy (with a large total number of flows, a
large number of unique IPs and large total number of packets)
and a less active userpx. The variation of the features among
the sample allows us to capture the diversity of behaviors in
a network.

Using the sensor, we built daily profiles for each of the 300
users in the sample for two separate periods with a duration
of one week each. This resulted in a total of 600 behavior
profiles: 300 profiles forweek-1and 300 profiles fromweek-2.
Daily profiles computed average daily values for each feature
during the training period of the profiles (one week). In our
computations, each user profile contained 10–13498 flows per
week with 2–128 packets per flow. The average duration of
each flow was approximately 46.2 secs.

Armed with the behavior profiles, we proceeded to set
up a simulated NAC environment in which a fraction of
the profiles constituted the initial members of the network,
while the remaining profiles simulated users trying to gain
access into the network. Specifically, the 600 behavior profiles
were divided into three sets of randomly selected profiles: the
training set(300 profiles fromweek-1) to be used to compute
clusters of behavior, thecross-validation set(75 profiles from
week-2) to determine the appropriate number of clustersk,
and thetesting set(remaining 225 profiles fromweek-2) to
perform access control experiments. We further assumed that
the profiles in thetraining set, the cross-validation setand
the testing setrepresentnormal behavior profiles and thus
constituteground truth. It is important to note that although
the experiments presented here are specific to one dataset,
the results can be generalized to other network environments
given the sheer number of profiles and diversity of our dataset.
Next, we present experimental evaluation of each phase of the
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mechanism and the incremental-learning algorithm using these
three sets of profiles.

A. Clustering and Cross-Validation

In order to show how theclustering phasewould proceed,
we used theK-means++clustering method (see Section II-A)
to find clusters of behavior in the thetraining set (300
normal profiles fromweek-1). We tested values ofk ranging
from 1% to 20% of the total number of profiles, since these
produced the best clustering results. For eachk, we repeated
the clustering method several times to account for the non-
deterministic nature ofK-means++. This resulted in multiple
cluster distributions for each value ofk.

We then ran cross-validation tests to determine the best
cluster distribution i.e., the best value ofk. Each value of
k was ranked based on its access control performance. The
performance of the access control was measured using two
indicators: the false rejection rate (FR) and the true rejection
rate (TR). TR measures the number of anomalous users
that were detected as such by the access control, and FR
measures the number of normal users deemed as such by
the access control. The final ranking index was computed as
r = (1 − FR) + TR, and the clustering distribution with the
best index was selected.

In order to compute the FR rate for each cluster distribution,
we measured its access control performance using the profiles
from the cross-validation set. As stated earlier, thecross-
validation setconsisted of 75normalprofiles randomly chosen
from week-2. To compute the TR of each cluster distribution,
anomalous profiles were created by modifying one or multiple
features by one, two and three standard deviations away
from the centroid of each individual cluster in the cluster
distribution. These profiles were used to simulate users trying
to maliciously stretch the dimensions of the clusters in the
cluster distribution.

Figure 5(a) and Figure 5(b) show the best TR and FR
rates for different values ofk assuming weighted and non-
weighted voting respectively. We discovered that a value of
k=40 and non-weighted voting produced the highest ranking
index r = (1 − 0.1) + 0.97. Smaller values ofk tended to
produce small TR rates due to the fact that outlier profiles
in each cluster created a larger spread among the cluster
members. On the other hand, larger values ofk showed
very poor FR rates because the cluster distribution became
excessively fine-grained. Non-weighted voting outperformed
weighted voting possibly indicating that behavior profilesthat
are outliers within their own cluster tend to dominate the
voting process over the rest of the profiles. In order to test
whether the granularity of the training period affects the results
directly, we repeated similar experiments using hourly profiles.
We find that the results obtained with profiles trained on
an hourly basis do not differ significantly from their daily
counterparts.

For our particular dataset, the cluster distribution withk=40
and non-weighted voting was the best representative of the
trade-off between FR and TR. Therefore, it was selected for
the validation of the subsequent phases. It is important to

σ From Individual Clusters True Rejection Rate

1 σ 95%
2 σ 98%
3 σ 100%

TABLE I
PERFORMANCE OF THEACCESSCONTROL PHASE. ANOMALOUS

PROFILES WERE GENERATED AT ONE, TWO, AND THREE σ AWAY FROM

THE INDIVIDUAL CLUSTER CENTROIDS. THE MORE ANOMALOUS THE

PROFILES ARE, THE EASIER IT IS FOR THE CLUSTER DISTRIBUTION TO

DETECT THEM.

note that these values are only valid for the set of profiles
presented in this paper and it will obviously vary according
to the particular network environment.

B. Bootstrap and Access Control

Once clusters of behavior had been generated and a value of
k=40, together with non-weighted voting, chosen as the best
cluster distribution, the bootstrap phase computed thresholds
for each cluster member (Section II-B). At this point, we
proceeded to measure the performance of theaccess control
phaseby testing whether or not normal and anomalous profiles
could gain access into the network. For this purpose, we used
the testing setcontaining 225normal profiles from week-2
and the set of anomalous profiles generated by modyfing one
or multiple features by one, two and three standard deviations
away from the centroid of each individual cluster in the cluster
distribution with k=40. These profiles were assumed to be
new users trying to gain access into the network. Therefore,
each profile was paired with its closest cluster in the cluster
distribution which then conducted a vote among its members
to decide on the access of the profile (see Section II-C).

The performance of theaccess control phasein terms
of TR is shown in Table I. Our experiments demonstrated
that 95% or more of anomalous profiles can be detected
successfully with a FR rate of 10%. The reason a 5% of
the anomalous profiles went undetected lies in the method
used to generate them. Anomalous profiles were generated
one or more standard deviations away from the centroid of
each individual cluster. This did not necessarily create profiles
at distances larger than the access control thresholdti for
all cluster members. In fact, 5% of the anomalous profiles
were at distances smaller thanti for at least 50% of the
cluster members. As a result, these anomalous profiles were
accepted into the network. The TR increased up to 100% for
anomalous profiles that were three standard deviations away
from individual clusters. These results demonstrate that the
access control phaseis able to detect a large fraction of
anomalous profiles while still allowingnormalprofiles to gain
access into the network. Moreover, these experiments show
that an access control mechanism based on behavior profiles
can be successfully implemented in a real network.

C. Incremental-Learning Algorithm

Thus far we have presented a validation of the mechanism
without considering temporal evolution. Next, we evaluate
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Fig. 5. Cross-validation Tests.

the ability of the mechanism to dynamically adjust to new
behaviors (concept drift) as well as its response toattacks.

1) Concept Drift and Collusion Attacks:In order to eval-
uate the performance of the incremental-learning algorithm
described in Section III, we started with the cluster distri-
bution with k=40 and non-weighted voting selected during
the clustering phase. We calculated the global centroidC
as the average of the centroidsci of all clusters in the
cluster distribution (see Figure 3). We then proceeded to create
profiles that were one, two and three standard deviations away
from the global centroidC. The basic idea was to create
outlier profiles located at the edges of the cluster distribution
in order to determine the boundary betweenconcept drift
and collusion attacks(decision boundary). A total of 378
profiles were created by modifying one or multiple features
by one, two and three standard deviations from the average
values stored in the global centroid. One by one, each of the
newly generated profiles was assigned to a member of the
cluster distribution as if it were its newly computed profile.
Each individual assignment triggered the incremental-learning
algorithm which allowed us to quantify the percentage of
candidate clustersthat would be accepted asconcept drift.

Table II summarizes our results. As can be seen, 85% of
candidate clustersformed with profiles located one standard
deviation away from the global centroidC were deemed
collusion attacks. Leaving only 15% of thecandidate clusters
asconcept drift. On the other hand, 92% and 96% ofcandidate
clusterswere detected ascollusion attacksfor profiles two and
three standard deviations away respectively. The relevance of
this result is that the creation of new clusters of behavior is
largely limited to a distance one standard deviation or less
from the global centroid of the cluster distribution. Hence,
the damage that an attacker can infringe on the mechanism
is limited as well. Although this may be seen as a limitation
to the incorporation of new clusters of behavior, it protects
the mechanism from attacks while still leaving some room for
growth.

On certain occasions there might be a need to force a
new cluster of behavior that is very distant from the global
centroid into the cluster distribution. For example, when a

σ From Global Centroid Candidate Clusters Rejected

1 σ 85%
2 σ 92%
3 σ 96%

TABLE II
PERCENTAGE OFcandidate clustersDEEMED AS collusion attacks.

PROFILES WERE GENERATED AT ONE, TWO, AND THREE σ AWAY FROM

THE GLOBAL CENTROID. Candidate clustersCLOSER TO THEdecision
boundaryARE MORE LIKELY TO BE DEEMED concept drift.

group of users start using a new application that generates
behavior profiles substantially different from previous ones,
it is very likely that such profiles will raise attack alerts in
the incremental-learning algorithm. If this is the case, the
clustering and bootstrap phases will have to be re-executed
to include these new profiles as initial network members so
that the access control policies are modified accordingly.

2) Threshold Attacks:One or multiple attackers within a
cluster of behavior may try to modify the thresholds and
alter the dimensions of their own cluster. We only considered
attacks where fewer than 50% of the cluster members are com-
promised. Otherwise, the attackers hold control over the voting
process. We concentrated on studying the effects of two types
of attacks:diversified attackswhere attackers modified their
own profiles to disperse their cluster in multiple directions, and
unified attackswhere attackers agreed on a unique modified
profile to stretch their cluster on a single direction (see Figure
4).

We started with the cluster distribution withk=30 selected
during theclustering phase. From the distribution, we picked
two clusters:cluster1andcluster2, which featured respectively
the highest and the lowest spread measured in terms of the
distance between the behavior profiles of their members. The
reasoning behind this selection was to study any possible
correlation between the effects of the attacks and the spread
across the members of a cluster. For each cluster, we produced
a range of attacks by varying the number of attackers from 1%
to 50% of the total size of the cluster. For thediversified attack,
each attacker generated a different attack profile by iteratively
increasing each of its normal profile features by 10%. In the
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case of theunified attack, all attackers started with the same
initial normal profile and iteratively increased each of the
profile features by 10%. A factor of 10% was chosen arbitrarily
to demonstrate the effect of attacks. A different percentage
selection would result on shorter or longer time scales for the
attacks. However, the end effects would be similar.

In order to evaluate the performance of the mechanism when
faced with such attacks, we defined adispersion factord that
represents the ratio between the initial average thresholdof the
cluster, and the final average threshold of the cluster once the
attack had been detected. The average threshold corresponded
to the mean value of the thresholds for all the members of a
cluster and as such it constituted a reasonable measurementof
the effects of an attack on the bootstrap phase.

Figure 6 shows the dispersion factors for different percent-
ages of attackers. First, it is important to note that allunified
anddiversifiedattacks were eventually detected by the mech-
anism. In addition, we see that the dispersion factor increased
as a function of the percentage of attackers. Nonetheless, the
dispersion factor seemed to be limited to a factor of three inall
cases. The results also showed that the cluster with the largest
spread (cluster1), displayed larger dispersion factors than the
one with the smallest spread (cluster2). Moreover,diversified
attacks appeared to be more effective thanunified attacks
in terms of dispersion factors. Overall, these experiments
demonstrate that the mechanism is effective against threshold
attacks involving 50% or less of attackers within a cluster.

VI. RELATED WORK

Clustering methods for anomaly detection have been used to
model a normal class from a set of normal samples. Samples
are then compared against the normal class and deemed either
normal or anomalous. Portnoy [7] was perhaps the first to
use a hierarchical clustering algorithm to obtain a normal
model and successfully detected different types of intrusions
from the KDD CUP 1999 dataset. Later work by Leon et
al. [10] proposed a fully unsupervised clustering method for
anomaly detection where each cluster was characterized by
a fuzzy membership function so that a certain sample would
be a member of different clusters with different degrees of
membership.

Our approach is novel in the sense that we apply clustering
to behavior profiles computed from single samples rather than
clustering the samples directly.Cooperative Anomaly Detec-
tion Sensorshave been explored in systems like COSSACK
[11] and CATS [12] where a distributed environment shares
alerts to strengthen each individual local security capabilities.
We implement the concept of cooperation by allowing each
network member to participate in the access control decision
rather than just sharing alerts.

A number of NAC technologies are currently available in
the market.Cisco Network Module for Integrated Services
Routersoffers an agentless solution authenticating, authorizing
and remediating devices connected wired or wirelessly to the
network. TheCisco Profiler executes an in-depth control of
the endpoint devices of the network by passively monitoring
their traffic. TheNetwork Access Protection(NAP) platform
from Windows, provides a client and server-side platform to
implement policy validation, network access limitation and
ongoing compliance. Compared to all other previous NAC
technologies, our mechanism uses automatically computed
access control policies based on behavior profiles instead of
fixed policies as a security feature for thepre-connectphase.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented a network access control mechanism
that enhancesBB-NAC by improving its access control ca-
pabilities as well as incorporating the automatic update of
behavior-based access control policies. Behavior profilesare
clustered automatically into clusters that define the access
control policies. Newcomers are admitted into the network
only if their profiles are deemed normal by their closest cluster
of behavior. We validate the mechanism using real user profiles
computed from Cisco Netflow logs from a router at our host
institution. In particular, we achieve true rejection rates of 95%
for anomalous profiles with 10% false rejection rates. We have
also introduced an incremental-learning algorithm that allows
for an automatic update of the behavior-based access control
policies while making the mechanism robust againstattacks.
Experiments show that the mechanism is effective in detecting
collusion attackswhile leaving room for temporal evolution of
clusters of behavior (concept drift). Moreover, the mechanism
is robust to threshold attacksinvolving fewer than 50% of
attackers.

The results presented here constitute the first full imple-
mentation of an automatic network access control mechanism
based on behavior profiles. A more complete treatment ex-
ploring content- and non-content-based behavior profiles for
multiple ports as well an evaluation of the practical limits
of this approach need to be examined. By combining content-
and non-content-based behavior profiles, we hope to achievea
more robust access control. Ultimately, behavior-based access
control may also support role-based access control [13] by
providing an automated means of assisting in the manual
specification of the data and services a role may legitimately
access.
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