
A2M: Access-Assured Mobile Desktop Computing

Angelos Stavrou1, Ricardo A. Barrato2, Angelos D. Keromytis2, and Jason Nieh2

1 Computer Science Department, George Mason University
2 Computer Science Department, Columbia University

Abstract. Continued improvements in network bandwidth, cost, and ubiquitous
access are enabling service providers to host desktop computing environments to
address the complexity, cost, and mobility limitations of today’s personal com-
puting infrastructure. However, distributed denial of service attacks can deny use
of such services to users. We present A2M, a secure and attack-resilient desktop
computing hosting infrastructure. A2M combines a stateless and secure commu-
nication protocol, a single-hop Indirection-based network (IBN) and a remote
display architecture to provide mobile users with continuous access to their desk-
top computing sessions. Our architecture protects both the hosting infrastructure
and the client’s connections against a wide range of service disruption attacks.
Unlike any other DoS protection system, A2M takes advantage of its low-latency
remote display mechanisms and asymmetric traffic characteristics by using multi-
path routing to send a small number of replicas of each packet transmitted from
client to server. This packet replication through different paths, diversifies the
client-server communication, boosting system resiliency and reducing end-to-
end latency. Our analysis and experimental results on PlanetLab demonstrate that
A2M significantly increases the hosting infrastructure’s attack resilience even for
wireless scenarios. Using conservative ISP bandwidth data, we show that we can
protect against attacks involving thousands (150, 000) attackers, while providing
good performance for multimedia and web applications and basic GUI interac-
tions even when up to 30% and 50%, respectively, of indirection nodes become
unresponsive.

1 Introduction

In today’s world of commodity computers and increasing broadband network connec-
tivity, the existing computing infrastructure imposes severe limitations on increasingly
mobile users. Such users lack a common computing environment as they move be-
tween home, office, and while on the road. Mobile users have been forced to adapt by
carrying around bulky laptop computers and other stateful devices with battery drain-
ing power needs. This approach is increasingly unsustainable as the management and
security costs of owning and maintaining these devices grow, especially for large orga-
nizations with many users. Maintenance is particularly difficult with devices that may
be roaming anywhere, on any network. Furthermore, these portable devices are inher-
ently physically insecure and it is not uncommon for these machines to be damaged or
stolen, resulting in the loss of any important data stored on them. This is a critical prob-
lem especially in health care computing, where HIPAA compliance is a requirement in
supporting the clinical information access of highly mobile medical professionals. Even

when such data can be recovered from backup, the time-consuming process of recon-
stituting the state of the lost machine on another device results in a huge disruption in
critical computing service for the user.

Outsourced IT systems often utilize a thin-client computing model to decouple a
user’s applications and desktop computing session from any particular end-user device
by moving all application logic to hosting providers. Graphical displays are virtualized
and served across a network to a client device using a remote-display protocol, with
application logic executed on the server. Clients transmit user input to the server, and the
server returns screen updates. Examples of popular thin-client platforms include Citrix
MetaFrame [8], Microsoft Terminal Services [9], AT&T Virtual Network Computing
(VNC) [25]. Because all application processing is done on the server, the client only
needs to be able to display and manipulate the user interface, enabling clients to be
simple and stateless.

A key issue that must be addressed to ensure that users obtain reliable and secure
access to hosted computing services is protection of the server infrastructure and the
client’s connection against denial of service attacks, particularly of the distributed kind
(DDoS). DDoS attacks are an increasing occurrence in today’s Internet, aiming to deny
use of a service to legitimate users [33]. The same ubiquitous network connectivity that
improves access to a service provider for legitimate mobile users, also increases an at-
tacker’s ability to launch a DDoS against a service provider, sometimes as part of an
extortion scheme [12]. One type of DoS attack that is difficult to identify and isolate in-
volves sending enough attack traffic which will cause the links close to the servers to be
congested and eventually drop all useful traffic. The potential of such attacks to disrupt
user access to applications and data is an important challenge that must be addressed
before ASPs can achieve mass acceptance. Unfortunately, existing DDoS protection
mechanisms either require large-scale deployment, or offer unacceptably high latency
and latency variance [1, 15], especially when under attack. To be of any practical use,
interactive and real-time applications such as GUI operations and multimedia streaming
demand a low-latency pipe at all times.

In this context, we introduce Access-Assured Mobile (A2M) desktop computing,
a hosted computing infrastructure that combines a remote-display architecture with a
stateless indirection-based network (IBN) composed of dedicated nodes. A2M provides
both protected and efficient access to hosted desktop computing environments, even in
the presence of denial of service attacks. Nodes participating in the IBN communicate
only to exchange control messages, but not to route the client’s data, unlike previous
overlay-based approaches [1, 15]. A2M clients exploit the path diversity naturally ex-
hibited by a distributed IBN to “spread” their traffic such that directed attacks do not
cause service disruptions. To further alleviate any potential delays introduced by the
IBN and reduce the latency in the end-to-end communication, A2M uses a number of
other optimizations at the remote display level to minimize the impact these delays
may have on the user’s experience. A2M combines a simple low-level display proto-
col and a server-push model to minimize client-server synchronization and network
round-trips. Atop this basic model, A2M implements higher-lever mechanisms, such
as client-managed cursor display, shortest-job-first display command scheduling, and

a non-blocking drawing pipeline, further increasing the overall interactive response of
the system. The contributions of our work are:
• We implement and evaluate A2M in the real Internet using PlanetLab. Our experi-
ments show that A2M introduces very little latency in most scenarios.
• We are the first to conduct realistic (non-simulation) experiments to evaluate the
resilience of our system against DDoS attacks using wireless nodes, and its performance
under attack. Our results validate the design of A2M, showing good performance for
multimedia and interactive applications even with 30%–50% of the IBN nodes under
attack.

Fig. 1. A2M Architecture. The two directions of the client-server connection take differ-
ent paths: the client-to-server direction goes over the indirection-based network, while the
server-to-client direction goes directly to the client (not through the infrastructure).

2 A2M Architecture

As shown in Figure 1, A2M’s architecture is divided in two major components: the host-
ing infrastructure and the access infrastructure. The hosting infrastructure provides an
environment for desktop sessions where a user’s session is decoupled from any particu-
lar end-user access device, by moving all application state to hosting servers. Applica-
tions run within these servers, and their display output is redirected over the network to
the access device. Redirection is performed by a per-session virtual display driver that
translates from application display-draw commands to A2M’s display protocol com-
mands. The protocol commands are then forwarded to the client device for display.
A2M extends previous work on desktop hosting infrastructures such as MobiDesk [4]
by providing mechanisms that provide continuous access to hosted desktop sessions,
even in the presence of distributed denial of service attacks on the hosting servers.

A2M’s access infrastructure provides the connection between users on the network
and the applications running on the hosting servers. Users make use of a simple client
application that merely forwards input events to the applications running on the server,
and processes display updates generated in response to these events. This application
model results in a highly asymmetric network traffic pattern. On one side, input events
(headed uplink, or upstream toward the server) are very small pieces of information that
are generated at a relatively slow, human-dependent rate. On the other hand, display
updates (headed downlink, or downstream toward the client) are orders of magnitude
larger and are generated as fast bursts of activity. For example, during web browsing, a
single user input event (a mouse click on a link) results in a full-screen update having
to be displayed (the destination web page).

The traffic asymmetry is made more pronounced when we consider the different
roles and importance of input events and display updates. In an interactive system user
experience is dictated by the response time, which in turn is determined by how quickly
input events are processed and display updates are made visible to the user. If response
time is too high, the user will become exasperated and frustrated with the system. Since
a single input event triggers the generation of display updates, guaranteed delivery of
each event becomes crucial for the performance of the system. On the other hand, hu-
mans are known to be more tolerant to partial updates than to longer response times,
because partial updates provide feedback to their actions. Delivery of updates should
then be made such that updates can begin to be displayed as soon as possible, even if
the complete update takes longer to appear.

The resource centralization around the hosting infrastructure results in a threat
model where denial of service attacks on the system will only affect the uplink direc-
tion, i.e., the traffic to the hosting servers, by saturating the network links and queuing
buffers close to the servers or by directly attacking the hosting infrastructure servers.
Therefore, it is crucial for A2M to protect this communications channel from inter-
ference, blocking unwanted traffic close to the attacker before it can reach the service
providing machines. On the other hand, the downlink direction will for the most part be
relatively free of noise, and without any need to be protected. Note that denial of service
attacks typically affect the uplink direction, i.e., the traffic to the server, by saturating
the network links and queuing buffer close to the server. The downlink direction is rel-
atively free of noise. Thus, we are primarily interested in protecting the client-to-server
traffic from interference; the opposite direction does need typically any such protection.

Taking advantage of both the traffic asymmetry and the threat model, A2M partitions
bi-directional connections between the client and the server into an indirected client-to-
server multi-path and a direct server-to-client path. The IBN takes care of routing input
events and other client-to-server traffic and protects the hosting infrastructure. Protec-
tion is performed by acting as a distributed firewall that conceptually distinguishes be-
tween authorized client-generated traffic, and unauthorized and possibly malicious traf-
fic. Traffic permitted to traverse through the IBN is directed to a filtering router close
to the hosting servers, whereas all other traffic is dropped or rate-limited providing a
distributed “shield” against both network congestion and host directed attacks. In Sec-
tion 2.2, we provide an estimation of the resistance of the system, using this filtering

mechanism, to denial of service attacks, in terms of the average number of machines
that must participate in the attack.

The direct server-client path in turn ensures that large and bursty display updates
are delivered to the client as quickly as possible, even if parts of them are lost or de-
layed and need to be retransmitted. A2M’s approach represents a sharp departure from
traditional interactive client-server architectures, where a vulnerable bi-directional di-
rect connection provides the only means of communication between the client and the
server. We should note that A2M does not preclude routing both traffic directions over
the IBN, albeit at a possible increase in the end-to-end latency when no replication of
packets is present. Since this mode is not necessary for our usage scenario, we do not
further consider it in this paper.

2.1 System Operation

To provide seamless and ubiquitous connectivity, A2M encapsulates all functionality
within a self-contained client application that manages communication with the indirec-
tion infrastructure, forwards user events to hosted applications, and displays application
output on the local device. To access a desktop session, users must first obtain access to
the IBN, which in turn allows them to authenticate with the hosting infrastructure, and
then gain access to their session. Users need to be recognized as legitimate in order for
the IBN to distinguish their traffic from other unauthorized, possibly malicious traffic.
In contrast to traditional service providing infrastructures such as web-content distrib-
utors, A2M requires users to be authenticated and does not allow anonymous users,
because only authorized users should be able to connect to the hosting infrastructure.
A2M ties the authentication requirements of the IBN and the hosting infrastructure into
a single, seamless process.
Client Authentication: Before a client is allowed to send traffic through the IBN, it
must obtain a ticket, which is then included in all subsequent packets sent to the IBN,
until it expires. The ticket is used by the IBN nodes to authenticate the user, validate the
routing decisions, and prevent malicious (or subverted) clients from utilizing a dispro-
portionate amount of bandwidth. To obtain a ticket, the client contacts an indirection
node at random using a ticket establishment protocol described in detail in previous
work [30]. This protocol is fully distributed and resilient to CPU exhaustion attacks.
Furthermore, the ticket issuing process is protected against replay and IP spoofing at-
tacks. At the end of the protocol, the client and the IBN have authenticated each other,
and the client is in possession of a ticket. The ticket contains a session key Ku, a range
of sequence numbers for which it is valid (more on this later), and the IP address of
the client, all encrypted under KM , a secret key negotiated periodically (e.g., every few
hours) among all indirection nodes. Note that only the indirection nodes can decrypt
the ticket; clients treat the ticket as an opaque value that they must provide to the AAN
with each packet they need to forward. A second copy of Ku is independently encrypted
under the client’s public key. This ticket can only be used by the client to continue the
authentication protocol (i.e., prove liveness for both the IBN nodes and the client. Once
the full two-party authentication is completed, the last indirection node provides the
client with a ticket that is not “restricted,” i.e., the corresponding flag inside the ticket is
cleared. As we discussed in the previous section, the tickets are periodically refreshed,

to avoid situations where a malicious user distributes a valid session key and ticket to a
large number of zombies that then simultaneously send attack traffic through the IBN.

The connections to the hosting infrastructure are asymmetric: the client-to-server
traffic will travel through the IBN, while the server-to-client traffic will use regular
Internet routing. In the case where a session does not already exist, a new session is
created and populated, before the client is allowed to connect to it. The authentication
and connection setup process is done transparently by the client application, and it does
not require special support from the underlying devices. This simplicity allows A2M
users to access their sessions from almost any number of Internet-enabled devices.

Once the connection to the hosting server is established, the client will be recog-
nized as a legitimate user, and user input events will be allowed to traverse the indirec-
tion nodes and be routed to the hosted applications. This process continues until the user
disconnects from the session, at which point the client’s ticket is revoked and the con-
nections are closed. Since a disconnected client is no longer allowed to use the system,
previously legitimate devices cannot be reused as attack tools on the infrastructure.

2.2 Assured Access Indirection Network

We have implemented the Assured Access Network (AAN), which significantly extends
the ideas of SOS [15] and Mayday [1]. Our approach, shown in Figure 1, is to spread the
packets from the client across all indirection nodes in a pseudo-random manner. This
new communication mechanism protects the client-server connection establishment and
provides uninterrupted connectivity to the target server throughout the client’s session.
The admitted packets are internally forwarded to a secret forwarder (selected at ran-
dom, and changing over time), which is allowed to forward traffic to the utility server.
Only authorized clients are allowed to use the IBN and contact the hosting servers and
these clients are provisioned in advance (e.g., at registration time) with the appropri-
ate authentication material, such as an RSA public/private key pair and a public-key
certificate [6, 7]. AAN works in conjunction with filtering routers close to the hosting
infrastructure, to allow only traffic from the IBN’s secret forwarders to reach A2M’s
hosting servers. All other traffic is considered unauthorized and possibly malicious, and
therefore filtered out.

Contrary to previous overlay architectures, our system achieves this filtering without
the use of overlay routing to transfer the client’s request to the server. In our system,
legitimate packets are reflected to the secret servlet(s) generating a one-hop indirection
network. As shown in Figure 1 there is no single path between the client and the server -
instead packets are spread from the client to the indirection nodes creating a single-hop
multi-path effect. Both the use of the single-hop indirection and the multi-path routing
permit our system to scale well in terms of latency, as we shall see in Section 3. For
more details on the overlay architecture itself, see [30].

2.3 AAN Encapsulation

When using AAN, every packet sent by a client to an indirection node contains four
fields: a client identifier, the ticket, an authenticator, and a monotonically increasing
sequence number. Recall that the ticket contains the session key and the maximum

sequence number for which the ticket is valid, and is encrypted and authenticated under
a secret key known only to the indirection nodes. Note that these indirection nodes are
not user machines, but are hosts dedicated to offering a DoS protection service.

The sequence number is a 32-bit value that is incremented by the client for each
packet transmitted through the IBN with a given session key. The client identifier is a
random 32-bit value that is selected by the indirection node that authenticated the client,
and is used as an index in the table of last-seen sequence number, maintained by each
indirection node for each active client. The authenticator is a fast hash function, such as
UMAC [5], computed over the session key and the whole packet (including the ticket,
sequence number, and client identifier). Thus, the only amount of state each indirection
node needs to maintain per active client are the client’s identifier and the last sequence
number seen from that particular client. Assuming that both the client identifier and the
sequence number are 32-bit values, each indirection node needs to maintain only 64
bits of state for each client; thus, if the system has 1 million active clients, we will only
need 8 MB of state — easily manageable even if it is stored in main memory, given
current prices of RAM.

2.4 AAN Operation

A client transmitting a packet through the IBN uses the session key and the sequence
number as inputs to a pseudo-random function (PRF). The output is treated as an in-
dex to a publicly available list of indirection nodes, through which the packet will be
routed. The list of available indirection nodes does not need to change frequently, even
if nodes become unavailable (e.g., for maintenance purposes), and can be downloaded
by clients independently of the protected communication. For the purposes of this pa-
per, we assume that clients trust the IBN’s entry points. Discussion and analysis of an
environment where access points cannot be safely trusted can be found in [34].

The client encapsulates the original packet (addressed to the final destination) inside
a packet for the indirection node, along with the information identified above (client
identifier, ticket, sequence number, authenticator). The packet is then forwarded through
the IBN to the secret forwarder for that particular destination, and from there to the final
destination.

An indirection node that receives such a packet first verifies that the sequence num-
ber on the packet is larger than the last sequence number seen from that client, by using
the client identifier to index the internal table. It then decrypts the ticket, obtaining the
session key for that client, with which it verifies the authenticator. The indirection node
also verifies that the sequence number is within the acceptable range of sequence num-
bers for this ticket. Finally, it uses the key and the sequence number along with the PRF
to determine whether the client correctly routed the traffic. If all steps are successful, the
indirection node updates the sequence number table and forwards the packet to the se-
cret forwarder. Packets with lower or equal sequence numbers are considered duplicates
(either accidental artifacts of the underlying network, or malicious replays by attackers)
and are quietly dropped.

2.5 Attack Resistance

Here we attempt to give a simple analysis on the expected resiliency of our system.
Additional work is needed to further refine the model and validate our assumptions.
However, this analysis should serve as a good first-order approximation on the effec-
tiveness of the approach.

Since the Internet (and ISPs’) backbones are well provisioned, the limiting factors
are going to be the links close to the target of the attack. The aggregate bandwidth
for most major ISP POPs is on the order of 10 to 20 Gbps, according to an informal
poll of several providers. If the aggregate bandwidth of the attack plus the legitimate
traffic is less than or equal to the POP capacity, legitimate traffic will not be affected,
and the POP routers can drop the attack traffic (by virtue of dropping any traffic that
did not arrive through the IBN). Unfortunately, there do not exist good data on DDoS
attack volumes; network telescopes [19] tend to underestimate their volume, since they
only detect response packets to spoofed attack packets. However, we can attempt a
simple, back of the envelope calculation of the effective attack bandwidth available
to an attacker that controls X hosts that are (on average) connected to an aDSL or
cable network, each with 256Kbps uplink capacity. Assuming an effective yield (after
packet drops, self-interference, and lower capacity than the nominal link speed) of 50%,
the attacker controls 128 × X Kbps of attack traffic. If the POP has an OC-192 (10
Gbps) connection to the rest of the ISP, an attacker needs 78, 000 hosts to saturate
the POP’s links. If the POP has a capacity of 20 Gbps, the attacker needs 156, 000
hosts. Although we have seen attack clouds of that magnitude (or larger), the ones used
in actual attacks are much smaller in practice. Thus, an IBN-protected system should
be able to withstand the majority of DDoS attacks. If attacks of that magnitude are a
concern, we can expand the scope of the filtering region to neighboring POPs of the
same ISP (and their routers); this would increase the link capacity of the filtered region
significantly, since each of the neighboring POPs see only a fraction of the attack traffic.
Additional work is needed to determine the practical limits of the system. In Section 3
we give some experimental results on the resilience of our system against attacks that
target the IBN itself.

3 Implementation and Experimental Results

To demonstrate the feasibility of the proposed architecture, we have implemented an
A2M prototype which hosts and protects Linux-based desktop sessions. We deployed
the indirection nodes of our prototype in 80 PlanetLab nodes, while having the client
and server reside in our local network. Our architecture spreads the packets across all
indirection nodes. Perhaps the most surprising aspect of our implementation is its size:
excluding cryptographic libraries and the JFK protocol, the code implementing the com-
plete functionality of the system consists of 1,600 lines of well commented C code. The
JFK implementation itself adds another 2,500 lines of code. Although this is a prototype
implementation and does not include management code and other facilities that would
be required in a production system, we feel that the system is surprisingly lightweight
and easy to comprehend.

The implementation consists of the code for the indirection nodes, as well as code
running on each client that does the encapsulation and initial routing. A detailed de-
scription of MobiDesk may be found in [4]. On the client, a routing-table entry redirects
all IP packets destined for the protected servers to a virtual interface, implemented using
the tun pseudo-device driver. This device consists of a linked pairs of virtual network
interfaces and character devices that a user-level process can read and write. IP pack-
ets sent to the tun0 network interface can be read by a user process reading the device
/dev/tun0. Similarly, if the process writes 1a complete IP packet to /dev/tun0 this will ap-
pear in the kernel’s IP input queue as if it were coming from the network interface tun0.
Thus, whenever an application on the client tries to access a protected server, all out-
going traffic is intercepted by the virtual interface. A user-level proxy daemon process
reading from the corresponding device captures each outgoing IP packet, encapsulates
it in a UDP packet along with authentication information, and sends it to one of the indi-
rection nodes according to the protocol. The code running on indirection nodes receives
these UDP packets, authenticates and forwards them to the secret forwarder, which for-
wards them to the final destination. There, the packets are decapsulated and delivered
to the original intended recipient (e.g., web server). The decapsulation can be done by
a separate box or by the end-server itself. In addition to the decapsulation code on the
indirection nodes, there is also a daemon listening for connection establishment packets
from the clients.

In evaluating A2M, we focused on two metrics: the quality of service in terms of
latency, as this is perceived by the end user, and the system’s resilience when under
attack i.e., node failures. PlanetLab provides a realistic network environment for our
experiments that stresses the performance of our system because the packets follow
different, highly variant paths to reach the protected server. In our experiments, we
protected the uplink traffic from the client to the server routing it through the IBN,
while the return path followed normal Internet routing (outside the IBN).

Our testbed consisted of a client PC simulating a typical remote-display access de-
vice, a server where the benchmark applications executed, and 80 indirection hosts de-
ployed across various PlanetLab locations in the US and Canada. The client computer
had a 450Mhz Intel Pentium-II CPU and 128MB RAM running Debian with Linux
2.4.27. Our client PC was chosen to reflect the type of low-power, thin-client devices
which we expect to become A2M’s access devices. The laptop PC had a 1.5Ghz Intel
Pentium M and 1GB RAM running Debian with Linux 2.6.10. The server was an Intel
dual-Xeon 2.80GHz with 1GB of RAM running RedHat 9 with Linux 2.4.20.

We measured the performance of A2M in web, video, and basic interactive tasks as
representative applications of typical desktop usage. Our web measurements used the
Mozilla 1.6 browser to run a benchmark based on the Web Page Load test from the
Ziff-Davis i-Bench benchmark suite. The benchmark consists of a sequence of 54 web
pages containing a mix of text and graphics. The browser window was set to full-screen
resolution for all platforms measured. Video playback performance was measured using
Mplayer 1.0pre3 to play a 34.75 second video clip of original size 352x240 pixels dis-
played at full-screen resolution. For our interactive tests we recorded a number of ses-
sions where simple interactive tasks were performed. Recording the sessions allowed us
to reliably play back the exact same tasks under different network conditions. The mea-

sure of performance for these tests was the latency experienced by a user performing
the specific task. The primary measure of web browsing performance was the average
page-download latency in response to a mouse-click on a web page link. To minimize
any additional overhead from the retrieval of web pages, we used a conservative setup
where the web server was directly connected to the hosting server through a LAN con-
nection. The primary measure of video playback performance was video quality [21],
which accounts for both playback delays and frame drops that degrade playback qual-
ity. For example, 100% video quality means that all video frames were displayed at
real-time speed. On the other hand, 50% video quality means either that half the video
frames were dropped when displayed at real-time speed or that the clip took twice as
long to play even though all of the video frames were displayed.

We first examined the effects that the basic indirection network and various levels
of packet replication had on the overall performance of the system. The levels of repli-
cation tested were no replication, 50% (meaning one extra copy of each packet with
probability 0.5), 100% replication (one extra copy of each packet) and 200% replica-
tion (two extra copies of each packet). We also measured the impact of the IBN size by
running our experiments on 8 and 80 nodes participating in the IBN. We ran a baseline
test where we used a direct LAN connection between the client and the server. Since
the indirection nodes were deployed over a wide area with varying network latency, this
test provided us with a very conservative measurement of the indirection overhead. In a
realistic A2M deployment, the client and server will typically reside at different, topo-
logically distant locations. In that case, it is entirely possible for the indirection path to
provide better connectivity characteristics than a direct connection due to the multi-path
effect, which allows the packets originating from the client to follow a route with lower
latency towards the end server [2,11,14,32]. Although not shown in our results for ease
of viewing, we also compared the performance of A2M to that of MobiDesk and found
it to be the same on the direct connection case.

0.00

0.10

0.20

0.30

0.40

0.50

200%100%50%0%Direct

La
te

nc
y

(s
)

Replication

0.00

0.10

0.20

0.30

0.40

0.50

200%100%50%0%Direct

La
te

nc
y

(s
)

Replication

80 hosts
8 hosts

Fig. 2. Web latency vs. packet replication.
The leftmost bar shows the latency when
connected directly to the server using a
LAN and no protection.

0%

20%

40%

60%

80%

100%

200%100%50%0%Direct

V
id

eo
 Q

ua
lit

y

Replication

0%

20%

40%

60%

80%

100%

200%100%50%0%Direct

V
id

eo
 Q

ua
lit

y

Replication

80 hosts
8 hosts

Fig. 3. Video quality vs. packet replication
— video quality remains 100% under all
test scenarios even for a 80-node IBN with
no packet replication.

Figure 2 illustrates the end-to-end average web latency results as perceived by the
client. We can see that even for the worst-case scenario, an 80-node IBN without packet
replication, the overhead from the indirection results in a latency increase of only 2
(i.e., twice the latency of the baseline direct connection). When 50% packet replication
is used (i.e., replicating a packet with probability 0.5), the overhead drops significantly
to 40% for the 80-node IBN. The drop in the overhead is due to the variant path latency
of nodes participating in the IBN. TCP does not behave optimally when packets ap-
pear to have high variance when arriving at the end server out of order. Adding packet
replication decreases this variance, as the same packet follows more than one paths
with different latency and the end server uses the one that arrives first. Boosting the
replication beyond 50% follows the law of diminishing returns, as each additional in-
crease in replication gives us less latency improvements. Care must be taken however,
as too much packet replication can cause performance degradation, since bandwidth
is “wasted” on duplicate packets. This is better exemplified by the results on the 8-
node network using 200% replication. The 80-node network does not exhibit the same
adverse affect because its average path latency is higher, allowing the secret gateway
enough time to process the encapsulated packets received by the IBN.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

 0 10 20 30 40 50

L
a
te

n
c
y
 (

s
)

% Node Failures

 0%
 50%

 100%
 200%

Fig. 4. Web latency under DDoS attack.
Latency increases in response to increased
nodes failure.

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50

V
id

e
o

 Q
u

a
li
ty

% Node Failures

 0%
 50%

 100%
 200%

Fig. 5. Video quality under DDoS attack.
Video quality drops only after a substantial
percentage of nodes become unresponsive.

To measure our system with an application that could generate more upstream traffic
and required the system to maintain its quality of service above a threshold for latency,
we used video playback. Figure 3 shows the results for video quality as measured at the
client side. We can clearly see that A2M performs optimally under all test scenarios,
providing the same perfect video quality as the direct LAN connection scenario, even
for the worst-case scenario of the 80-node IBN deployed over a WAN with no packet
replication.

The behavior of the overall system under attack was measured using a simulated
denial of service attack that targeted the IBN itself. Our threat model assumes that the
attacker can render a fraction of the nodes participating in the IBN unresponsive, thus
inducing packet loss in the TCP connection of a user connected to the hosting server.

All resilience tests were run on the 80-node IBN network. When attacked, a node stops
forwarding packets from the client to the end host, acting as a mute node. Since there
is no immediate feedback, clients do not know which A2M nodes are operating and
which are suppressed by the attacker. Figure 4 illustrates the effects on the average web
page latency as we increase the percentage of node failure, and demonstrates both the
resilience of A2M and the advantages of packet replication. Without packet replication,
latency quickly degrades to twice that of the direct connection when we have 15%
of node failures, and reaches three times for 20% node failure. On the other hand,
employing packet replication allows A2M to maintain an almost constant latency that
is very close to the direct connection, even under 50% A2M node failure, in the case of
200% replication.

Interactive Applications Although video streaming and web browsing are both repre-
sentative and demanding applications, we felt that we needed to include another set of
experiments that require a high level of synchronization between the upstream and the
downstream channel. We performed four different tests, each representing typical inter-
active operations on a desktop environment. The tests were performed by first recording
a session of a user performing the appropriate operation, and then playing back the ses-
sion in a number of different experimental scenarios. Our measure of performance was
the user-perceived latency in response to the interactive operations. The four tests per-
formed were: echo, minimize/maximize window, scroll, and move window. The echo
test measured the time it takes for a line of text to appear on the screen after the user has
pressed and depressed a key. The minimize/maximize window tests measures the time
it takes to maximize a window after the user has pressed the maximize button, and then
(after the window has been maximized) to minimize it after the user has pressed the
minimize button. The scroll test measures the time it takes to scroll down a full-screen
web page in response to a single Page Down key-press, and then the time it takes to
scroll back to the top by leaving the Arrow Up key pressed. Finally, the move window
test measures the time it takes to move a window across the screen. The window’s size
is about one fifth of the screen’s size, and it is moved by dragging the window while the
left-mouse button is pressed. The window operation is opaque, i.e., the contents of the
window are continuously redrawn as the user performs the move operation.

The end-to-end latency the end users experience for these operations is shown in
Figures 6, 7. These measurements show that without using packet replication, and for
attacks up to 20% of the indirection nodes, the client’s end-to-end latency increases
only by a factor of 2.5 when compared to the direct, non-protected case. On the other
hand, if we permit packet replication, we notice an increase in latency only after 50%
of the indirection nodes become unresponsive. In some cases, for attack intensities that
exceeded 20% of the indirection nodes and without replication the network conditions
were too adverse for the test to complete.

4 Related Work

The need to protect against or mitigate the effects of DoS attacks has been recognized
by both the commercial and research world, given the ease with which such attacks

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

200%0%

T
im

e
(s

)

Replication

Direct
 0% DDoS
 5% DDoS

 20% DDoS
 50% DDoS

Fig. 6. Interactive performance for the
echo test. Even without replication and
with attacks affecting up to 20% of the IBN
nodes, the client’s end-to-end latency in-
creases only by a factor of 2.5 when com-
pared to the direct, non-protected case.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Minimize
200% Replication

Minimize
0% Replication

Maximize
200% Replication

Maximize
0% Replication

T
im

e
(s

)

Direct
 0% DDoS
 5% DDoS

 20% DDoS
 50% DDoS

Fig. 7. Interactive performance for mini-
mize/maximize window test. Without repli-
cation and for attacks affecting up to 20%
of the IBN nodes, the client’s end-to-end la-
tency increases only by a factor of 2.

can be launched and their frequency [19]. A2M provides an attack-resilient utility in-
frastructure for mobile desktop computing. Due to space limitations, we do not dis-
cuss here the extensive work on DDoS prevention or mitigation that requires wide-
spread deployment inside the network or the use of new protocols and end-applications
[10, 13, 18, 22–24, 26, 29, 35].

A2M builds on the ideas proposed by the MobiDesk [4] desktop hosting infrastruc-
ture, and its remote display architecture, THINC [3]. In contrast to A2M, MobiDesk
and THINC do not address the problem of potential attacks on their infrastructure and
use a direct connection to communicate between user devices and hosting servers. This
makes the system defenseless and vulnerable to simple denial of service attacks that
may cause hosted desktop sessions to become unavailable to users. Attacks may either
target the hosting infrastructure or the communication channels providing the service,
and render the MobiDesk infrastructure useless.

SOS [15] first suggested the concept of using an overlay network to preferentially
route traffic, using multi-hop overlay routing, from legitimate users to a secret node
that is allowed to reach the protected server. All other traffic is restricted at the Internet
Service Provider’s Point-of-Presence (POP), which in most cases has enough capac-
ity to handle all attack and legitimate traffic. The same idea is used in MayDay [1].
WebSOS [20] relaxes the requirement for a priori knowledge of the legitimate users,
by adding a Graphic Turing Test to the overlay, allowing the system to differentiate
between human users and attack zombies. MOVE [31] eliminates the dependency on
network filtering at the ISP POP routers by keeping the current location of the server
secret and using process migration to move away from targeted locations. A system
similar to MOVE is described in [16]. There, it is observed that in some cases the var-
ious security properties offered by SOS can still be maintained using mechanisms that
are simpler and more predictable. However, some second-order properties, such as the
ability to rapidly reconfigure the architecture in anticipation of or in reaction to a breach
of the filtering identity (e.g., identifying the secret forwarder) are compromised.

All of these overlay-based systems impose a high latency overhead, making them
unfit for time-critical applications. To route the client traffic, these systems create an
overlay route whose length increases with the number of overlay nodes (usually with
O(log(n)), where n is the size of the overlay). Such an increase in the path length leads
to higher (and highly varying) end-to-end latency. Moreover, these systems are vul-
nerable to attacks that target the connection state that is kept by each of their overlay
nodes: by attacking a specific node, the attacker forces the users connected to it to de-
tect this attack and re-establish both their connectivity and authentication credentials to
another, potentially healthy, overlay node. An attacker can force the users to reset their
connections repeatedly, making the system impractical.

Several remote display and thin-client architectures are widely used today, including
the X-Window System [27], Citrix MetaFrame (ICA) [8], Microsoft Terminal Services
(RDP) [9], VNC [25], and SunRay [28]. However, none of these systems provide re-
siliency against DoS attacks as A2M does. None of these systems take advantage of
the asymmetry in remote-display traffic to improve performance in environments with
high variability of network latency. As shown on previous studies [17, 21], all of these
systems suffer major performance degradations in high-latency network environments.
X, ICA, and RDP use high-level display protocol primitives that can result in worse
performance due to the additional synchronization required.

5 Conclusions

We presented A2M, an attack-resilient and latency efficient desktop hosting infrastruc-
ture based on a single-hop indirection network. A2M exploits multi-path routing, packet
replication, and the high asymmetry inherent to interactive display traffic, to assure ac-
cess to remote desktop sessions, even in the presence of high-volume DoS attacks. Con-
trary to the current DoS protection mechanisms, our system guarantess both availabil-
ity and uninterrupted connectivity to the end server providing a truly secure end-to-end
connectivity model. Furthermore, in a departure from traditional client-server systems,
A2M provides an asymmetric client-server connection consisting of an indirected client-
to-server multi-path, and a direct server-to-client connection. A2M’s indirection-based
overlay acts both as a first-level distributed firewall and as a redirection mechanism
for performance-critical user input-events going from the client device to the hosting
servers. In turn, the direct server-to-client connection provides quick delivery of dis-
play updates, to provide quick response time and good user experience.

A prototype of A2M was implemented in Linux and we evaluated its performance
on PlanetLab. Our experimental results show that, as opposed to existing DDoS protec-
tion mechanisms, A2M has minimum latency overhead and can provide good interac-
tive performance for web, video, and general interactive applications. Furthermore, we
demonstrate that A2M significantly increases the attack resilience of the hosting infras-
tructure, being able to provide perfect video playback and low-latency web browsing
and GUI interactions even in the presence of large attacks on the infrastructure. A2M
maintains 100% video quality in a number of remote video display scenarios, despite
the use of overlay routing. Furthermore, end-to-end latency increases by less than 5%
even when 40% of nodes have been rendered unusable by an attacker. Given its per-

formance and resilience to DoS attacks, A2M represents a step forward towards realiz-
ing the vision of computer utilities that provide ubiquitous, secure, and assured-access
desktop computing.

6 Acknowledgements

This work was supported by NSF Grants CNS-07-14277, CNS-04-26623, and Google
Inc.

References

1. D. G. Andersen. Mayday: Distributed Filtering for Internet Services. In Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems (USITS), March 2003.

2. D. G. Andersen, A. C. Snoeren, and H. Balakrishnan. Best-Path vs. Multi-Path Overlay
Routing. In Proceedings of the Internet Measurement Conferencee, October 2003.

3. R. Baratto, L. Kim, and J. Nieh. THINC: A Virtual Display Architecture for Thin-Client
Computing. In Proceedings of the 20th ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2005.

4. R. Baratto, S. Potter, G. Su, and J. Nieh. MobiDesk: Mobile Virtual Desktop Computing.
In Proceedings of the 10th Annual ACM International Conference on Mobile Computing and
Networking (MobiCom), September 2004.

5. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and Secure
Message Authentication. Lecture Notes in Computer Science, 1666:216–233, 1999.

6. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote Trust Manage-
ment System Version 2. RFC 2704, September 1999.

7. CCITT. X.509: The Directory Authentication Framework. International Telecommunications
Union, Geneva, 1989.

8. Citrix ICA Technology Brief. Technical White Paper, Boca Research, 1999.
9. B. Cumberland, G. Carius, and A. Muir. Microsoft Windows NT Server 4.0, Terminal Server

Edition: Technical Reference. Microsoft Press, August 1999.
10. D. Dean, M. Franklin, and A. Stubblefield. An Algebraic Approach to IP Traceback. In

Proceedings of the ISOC Symposium on Network and Distributed System Security (SNDSS),
pages 3–12, February 2001.

11. K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and D. Wetherall. Improving
the Reliability of Internet Paths with One-hop Source Routing. In Proceedings of the 6th

Symposium on Operating Systems Design & Implementation (OSDI), December 2004.
12. G. Hulme. Extortion online. Information Week, September 13, 2004.
13. J. Ioannidis and S. M. Bellovin. Implementing Pushback: Router-Based Defense Against

DDoS Attacks. In Proceedings of the ISOC Symposium on Network and Distributed System
Security (SNDSS), February 2002.

14. A. Kaella, J. Pang, and A. Shaikh. A Comparison of Overlay Routing and Multihoming
Route Control. In Proceedings of ACM SIGCOMM, pages 93–106, August/September 2004.

15. A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Services. In Proceed-
ings of ACM SIGCOMM, pages 61–72, August 2002.

16. S. M. Khattab, C. Sangpachatanaruk, D. Moss, R. Melhem, and T. Znati. Roaming Honey-
pots for Mitigating Service-Level Denial-of-Service Attacks. In Proceedings of the 24th In-
ternational Conference on Distributed Computing Systems (ICDCS), pages 238–337, March
2004.

17. A. Lai and J. Nieh. Limits of Wide-Area Thin-Client Computing. In Proceedings of the
ACM International Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS), pages 228–239, June 2002.

18. J. Li, M. Sung, J. Xu, and L. Li. Large-Scale IP Traceback in High-Speed Internet: Practical
Techniques and Theoretical Foundation. In Proceedings of the IEEE Symposium on Security
and Privacy, May 2004.

19. D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial-of-Service Activity. In
Proceedings of the 10th USENIX Security Symposium, pages 9–22, August 2001.

20. W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis, V. Misra, and D. Rubenstein.
Using Graphic Turing Tests to Counter Automated DDoS Attacks Against Web Servers. In
Proceedings of the 10th ACM International Conference on Computer and Communications
Security (CCS), pages 8–19, October 2003.

21. J. Nieh, S. J. Yang, and N. Novik. Measuring Thin-Client Performance Using Slow-Motion
Benchmarking. ACM Transactions on Computer Systems (TOCS), 21(1):87–115, February
2003.

22. C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and R. Govindan. COSSACK: Co-
ordinated Suppression of Simultaneous Attacks. In Proceedings of DISCEX III, pages 2–13,
April 2003.

23. B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu. Portcullis: protecting
connection setup from denial-of-capability attacks. SIGCOMM Comput. Commun. Rev.,
37(4):289–300, 2007.

24. P. Reiher, J. Mirkovic, and G. Prier. Attacking DDoS at the source. In Proceedings of the
10th IEEE International Conference on Network Protocols, November 2002.

25. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual Network Computing.
IEEE Internet Computing, 2(1):33–38, January/February 1998.

26. S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network Support for IP
Traceback. In Proceedings of ACM SIGCOMM, pages 295–306, August 2000.

27. R. W. Scheifler and J. Gettys. X Window System. Digital Press, 3rd edition, 1992.
28. B. K. Schmidt, M. S. Lam, and J. D. Northcutt. The interactive performance of SLIM: a

stateless, thin-client architecture. In 17th ACM Symposium on Operating Systems Principles
(SOSP), volume 34, pages 32–47, December 1999.

29. A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio, S. Kent, and W. Strayer.
Hash-Based IP Traceback. In Proceedings of ACM SIGCOMM, August 2001.

30. A. Stavrou and A. Keromytis. Countering DoS Attacks With Stateless Multipath Overlays.
In Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS), pages 249–259, November 2005.

31. A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and D. Rubenstein. MOVE: An End-to-End
Solution To Network Denial of Service. In Proceedings of the ISOC Symposium on Network
and Distributed System Security (SNDSS), pages 81–96, February 2005.

32. A. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante. Drafting Behind Aka-
mai (Travelocity-Based Detouring). In Proceedings of ACM SIGCOMM, pages 435–446,
September 2006.

33. DoS-Resistant Internet Working Group Meetings. http://www.

communicationsresearch.net/dos-resistant, February 2005.
34. D. Xuan, S. Chellappan, and X. Wang. Analyzing the Secure Overlay Services Architecture

under Intelligent DDoS Attacks. In Proceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS), pages 408–417, March 2004.

35. A. Yaar, A. Perrig, and D. Song. An Endhost Capability Mechanism to Mitigate DDoS
Flooding Attacks. In Proceedings of the IEEE Symposium on Security and Privacy, May
2004.

