
Identifying Proxy Nodes in a Tor Anonymization Circuit

Sambuddho Chakravarty
Columbia University, NY
sc2516@cs.columbia.edu

Angelos Stavrou
George Mason University, VA

astavrou@gmu.edu

Angelos D. Keromytis
Columbia University, NY
angelos@cs.columbia.edu

Abstract

We present a novel, practical, and effective mechanism
that exposes the identity of Tor relays participating in a
given circuit. Such an attack can be used by malicious or
compromised nodes to identify the rest of the circuit, or as
the first step in a follow-on trace-back attack. Our intu-
ition is that by modulating the bandwidth of an anonymous
connection (e.g., when the destination server, its router, or
an entry point is under our control), we create observable
fluctuations that propagate through the Tor network and
the Internet to the end-user’s host. To that end, we em-
ploy LinkWidth, a novel bandwidth-estimation technique.
LinkWidth enables network edge-attached entities to esti-
mate the available bandwidth in an arbitrary Internet link
without a cooperating peer host, router, or ISP. Our ap-
proach also does not require compromise of any Tor nodes.
In a series of experiments against the Tor network, we show
that we can accurately identify the network location of most
participating Tor relays.

1 Introduction

Network anonymity systems were first introduced as
early as 1981 [7]. However, it was until much later that
a practical software system that enables its users to com-
municate anonymously on the Internet was introduced.
Tor [8] employs an application agnostic Onion Routing
scheme [11] to anonymize the traffic. The strength of the
scheme is the use of strong, layered cryptography combined
with a wide network of relay nodes located across different
administrative domains.

Although state-of-the-art, like all current low-latency
anonymity systems, Tor is vulnerable to traffic analysis at-
tacks. These attacks can expose the identity of a Tor client
or of the proxy nodes used in an anonymous Tor circuit
when an adversary can manipulate the traffic entering and
leaving that circuit [1, 3, 12, 17]. In order to be success-
ful, these attacks assume that one or more of the Tor relays
or active network components (e.g., routers) that participate

in the client’s relay are known and can be manipulated by
the adversary. Here, it is important to note that knowledge
of the Tor circuit would make water-marking and all such
attack techniques much more effective and practically de-
ployable. Indeed, if the Tor circuit is exposed, the adver-
sary would have the option to inject the watermark via any
device on any of the administrative domain the packet tra-
verses, including different ISPs and countries.

In this paper, we describe a technique for identifying the
Tor nodes participating in a circuit of interest. For doing
so, we introduce and use LinkWidth, a novel single-end con-
trolled available bandwidth estimation tool. LinkWidth uses
an edge-attached host to estimate the available bandwidth
on an arbitrary network link without direct access either to
that link itself or to an appropriately positioned cooperating
host. An adversary may use LinkWidth to detect induced
traffic fluctuations on the anonymous Tor circuit to a server
of interest. These fluctuations can be created by the server
itself (if it is cooperating with the attacker), by a router or
node close to the server (e.g., when collaborating with the
server’s ISP or otherwise hijacking/compromising/legally
compelling use of such a node), or by launching a tar-
geted network denial of service attack against the appropri-
ate link(s), router(s) or the server itself. In our experiments,
we assumed that the attacker controls the server.

However, any other scheme for causing “large enough”
traffic variations, as defined later in the paper, would suf-
fice. Our scheme empowers an attacker with access only to
a few high-bandwidth edge hosts to identify the Tor nodes
participating in a circuit. This knowledge can be used in
a number of follow-on attacks, as it enables the violation
of a key property of Tor and similar anonymity networks:
no entity other than the user should have complete knowl-
edge of the circuit path (i.e., the identity of the proxies).
We stress that we do not assume that the attacker has access
to large numbers of routers, network infrastructure nodes
(e.g., DNS or DHCP servers), or Tor nodes, nor do we ex-
ploit software vulnerabilities that inadvertently expose the
true network identity of the user.

To evaluate our measurements, we built a prototype of
LinkWidth and evaluated its effectiveness in detecting small



variations in available bandwidth through a series of ex-
periments in a lab environment. We also launch an attack
against a number of circuits through Tor, aiming to ex-
pose the intermediate Tor relays. Even with our limited
resources, we could successfully probe 26 separate Tor cir-
cuits with a true positive rate of 59.46% and true negative
rate of 10%. Details of our experiments and their outcomes
are documented in Section 4.

Possible countermeasures to our attack include shorter
circuit lifetimes, limited traffic smoothing by Tor nodes,
striping over multiple parallel circuits to access the same
server, and preventing the use of long-lived TCP connec-
tions. We note that the use of longer Tor circuits does not
appear to make the attack more difficult [4].

The novel contributions of this paper include:
• An attack against Tor and similar anonymity systems,
wherein a bandwidth-provisioned adversary can expose the
network identity of all Tor relays.
• LinkWidth, a novel single-end available-bandwidth esti-
mation technique.
• An demonstration of our proxy-discovering attack against
Tor.

2 Related Work

Onion-routing anonymizing networks [24] use multi-
hop encrypted communications to protect sender and/or re-
ceiver anonymity. Tor [8] extends the existing onion rout-
ing scheme by adding support for integrity protection, con-
gestion control, and location-hidden services through ren-
dezvous points. Tor can be used for both initiator and re-
sponder anonymity. Initiator anonymity allows a client to
hide its true identity from a server. Responder anonymity
allows a server to provide a TCP service without revealing
its IP address. Tor circuits are formed using three Onion
Routers (ORs) (by default). The first hop is called the En-
try Node, the second the Middleman, and the third the Exit
Node. A Tor Client, known as Onion Proxy (OP) in Tor
terminology, uses the public-keys (Onion Keys) of the three
ORs to to establish shared secrets with them. The OP frag-
ments the data into 512 byte units called cells. These cells
are encrypted incrementally using the shared secrets of the
Exit Node, the Middleman and the Entry Node. This tech-
nique, common for many anonymizing networks and mixes,
is known as Telescopic Encryption. Each of the three ORs
“peels-off” the headers off the Tor cell it receives and for-
wards it to the next OR along the circuit. The Exit Node de-
capsulates and decrypts the Tor cell retrieving the payload
which is sent encapsulated into a regular TCP/IP header to
the intended destination. Since an OP selects different ORs
for every new circuit, the destination receives packets from
different Tor Exit Node each time a new circuit is estab-

lished.
Tor trades off resistance against certain adversaries with

better performance characteristics relative to more robust
privacy mechanisms, such as MIXes [6] and DC-nets [5,
26]. An adversary observing all links in an onion rout-
ing network can record arrival and departure times for
all messages in the network and use statistical methods
to determine exactly who is communicating with whom
[20, 22, 27]. However, Tor is considered “secure enough” in
practice for semi-interactive traffic, e.g. web sessions, be-
cause few entities are believed to have the ability to act as
global passive adversaries. This is precisely the assumption
that our attacks work.

There have been prior efforts in using network latency
to attack Tor. Perhaps the closest prior work is the one
from Murdoch et al. [17]. They focus on using network
latency for determining if a relay node is a part of a specific
Tor circuit. Their method requires a server to send pseudo-
random data as fast as allowed by the underlying network to
the victim client. The adversary uses a modified Tor Proxy
for establishing single-hop circuits (rather than the default
3 hops) through the victim Tor relay, back to itself. The
corrupt server sends traffic to the client having a particu-
lar “on-off” pattern. The adversary attempts to observe the
variation in one-way delay through the victim Tor relay due
this induced network traffic fluctuation. Higher correlation
between these induced fluctuations and the observed one-
way latency distortions gives a better probability that the
victim Tor relay is the one which is a part of the victims
Tor circuit. In contrast, our approach is much less invasive
and does not require the inclusion of a malicious Tor relays,
padding, extra traffic, and nominal network conditions (i.e.,
no congestion).

Hopper et al. [12] go a step ahead and try to use a
combination of this technique and pairwise round-trip times
(RTTs) between Internet nodes as input to statistical mea-
sures to correlate Tor nodes to probable clients. In addition,
their method can be extended to application-layer RTT esti-
mates (rather than TCP RTT estimates). However we argue
that RTT is a temporal network parameter which cannot be
considered a constant.

Previous work also disregarded traffic filtering and shap-
ing either at the end hosts or at network edges. Our scheme
uses TCP packets for probing. Where TCP is filtered or
rate-limited, we emulate the same behavior using ICMP.
Unlike previous work, we assume least control over various
network elements. All such traffic analysis attacks may fail
if the Tor relays perform traffic engineering by controlling
the outgoing traffic rate and burst length.

Bandwidth Estimation Prior research in bandwidth mea-
surement has taken two major forms [21]. One focuses
purely on the measurement of bottleneck bandwidth for IP



payload. Tools such as Pathchar [14], Pathrate [9] and Pchar
[10] measure the bottleneck bandwidth. These techniques
rely on the Packet Pair Technique [15]. A pair of pack-
ets, sent back-to-back to the destination, “spreads” in time.
This spreading in time, known as received dispersion, is in-
versely proportional to the bottleneck link capacity. The
capacity is thus measured as B = L/T . In this formula,
L is length of the second transmitted packet (in bits). T ,
the dispersion, is measured as the latency between the re-
ception of the last bit of the first packet and the last bit of
the second packet. The Packet Train Technique extends the
Packet Pair Technique by sending a train of packets. The
use of more packets minimizes the error due to noise and
cross traffic. A detailed discussion of various packet pair
and packet train techniques and their comparison can be
found elsewhere [19].

The other major family of measuring techniques fo-
cuses on the estimation of end-to-end throughput, typically
for use with transport-layer protocols such as TCP. The
transport-protocol mechanics are geared towards optimiz-
ing in-order and correct delivery of messages in the pres-
ence of unreliable links without under-utilizing the end-to-
end path capacity. Therefore, it is important for TCP to
determine the number of bits correctly received since the
previously received acknowledgment. Tools such as Iperf
[25] and abget [2] and Sprobe [23] come close to measur-
ing throughput.

3 Approach

Our attack on Tor relays leverages LinkWidth, our single-
end measurement and estimation technique for bandwidth
estimation. Below we present a more detailed description
of how we identify the Tor nodes participating in a given
circuit:

• An adversary continuously senses the available band-
width in the up-links of all Tor relays. These may be the
immediate up-link, or some other link that carries all traffic
to and from the Tor node.

• When an anonymous user contacts a server of interest and
requests data (e.g., a web page), the traffic from the server to
the Tor exit node is artificially modulated. This modulation
can be done by the server itself, or by an upstream router
that is under the control of the attacker. The modulation
can be as simple as temporarily queuing all traffic and then
releasing it in a high-volume burst, or may involve a unique
throughput pattern. The goal of the adversary is to detect
this pattern with high confidence as it manifests itself in the
three Tor relays.

Alternatively, an adversary interested in identifying all
users accessing a server that is not under his control may
launch a network denial of service attack against the server

or one of its up-links, causing a back-off in TCP connec-
tions and hence an increase in available bandwidth in these
links traversed by those connections. This scenario requires
more resources (in terms of bandwidth) on the part of the
attacker. Lacking these, we decided to focus on the mali-
cious/compromised server/router scenario. We note that we
require at most one such router, and its identity/location is
independent from that of the client.

Our technique works well only when we use a well-
provisioned probing node is at a network “vantage” point
with respect to the victim Tor relay. Stated simply, this
would mean that the bottleneck in the path connecting the
adversary to the victim relay should be the latter. However,
we posit that nodes in major ISPs, government organiza-
tions and universities do have such capabilities. The orig-
inal Tor model does aim to mitigate such traffic analysis
attacks. We only try to approximate a global passive adver-
sary (which may be anyways a difficult task due to limited
control over network links and resources). We end up with
a “pseudo” global passive adversary while still managing to
only target a vulnerability within the Tor threat model.

In the next subsection, we provide a in-depth explana-
tion of the measurement methods that we use as part of our
bandwidth-estimation tool: LinkWidth.

3.1 LinkWidth

LinkWidth is a tool that allows us to estimate available
and capacity bandwidth on a path, without additional sup-
port or active collaboration from a remote host or any de-
vice in the network. LinkWidth transmits TCP SYN pack-
ets to a remote host on a closed TCP port. The receiver
(a router or end-host) replies with a TCP packet where ei-
ther RST and ACK flags (closed port) or SYN and ACK
(open port) are set. Where TCP packets are filtered and/or
rate limited due to security considerations, we can use
ICMP ECHO REPLY messages from the receiver to sig-
nal correct reception of probe packets (by sending ICMP
ECHO REQUEST packets instead of TCP SYNs). This is
described in more detail in our technical report [4].

To measure end-to-end TCP capacity, the sender em-
ulates the TCP Westwood sender by sending cwin pack-
ets. cwin − 2 TCP RST packets (called load packets), are
“sandwiched” between two TCP SYN Packets (called the
head measurement packet and tail measurement packet re-
spectively). These TCP SYN packets, sent to closed ports,
evoke TCP RST+ACK reply packets. Correct reception
of the train of cwin + 1 packets is determined by two TCP
RST+ACK packets from the receiver (due to the head and
tail measurement packets). Each correct reception of the
TCP RST+ACK pair causes cwin to be increased either
exponentially (Slow Start phase) or linearly (Congestion
Avoidance phase). Since we do not rely on an established



TCP connection, the only way to signal a packet loss is by
coarse timeout. After sending the train, the sender initial-
izes a timer to wait for the two expected ACKs. The expira-
tion of the timeout causes the readjustment of the cwin and
ssthresh parameters inside a timeout event handler method.

We use TCP RST packets to avoid generating unneces-
sary replies, either in the form of TCP RST or ICMP Des-
tination Host/Net Unreachable packets, which could poten-
tially interfere with our forward probe traffic. The time dis-
persion between two consecutive TCP RST+ACK replies
due to the head and tail measurement packets are stored as
tn and tn−1. Thus the capacity/bandwidth is measured as:

bk = (cwin ∗ L)/(tn − tn−1)

Here, bk is the measured “instantaneous” bandwidth (mea-
sured throughput), cwin ∗ L is the total data sent (in bits)
for the entire train, tn and tn−1 are the times of reception of
the two TCP RST+ACK reply packets. The successful re-
ception to a previous train determines how many packets we
send in the current train. Our method is a direct extension
of the packet train method.

The throughput measurement is a slight modification of
the capacity measurement. The TCP RST packets are re-
placed by TCP SYN packets. The time of reception of the
TCP RST+ACK due to the first TCP SYN packet is stored
in the variable first. Thus, for any value of cwin, if any m
replies are received correctly (such that 1 ≤ m ≤ cwin),
this indicates that the throughput is:

bk = (m ∗ L)/(Tm − first)

where tm is the time when the mth reply is correctly re-
ceived. LinkWidth reports the measurement as BWE.

The arrangement of packets differs when using ICMP
packets. We replace the head and tail TCP SYN packets
with ICMP ECHO packets. The load packets continue to be
TCP RST packets. Correct reception of the train is indicated
by reception of ICMP ECHO REPLY packets at the sender.
A similar modification is used for measuring throughput:
the receiver waits to see how many ICMP ECHO REPLY
response packets it receives before estimating the through-
put.

We developed a prototype of LinkWidth for GNU/Linux.
To avoid incurring packet delays due to kernel resource
scheduling, we bypassethe regular protocol stack and send
our own TCP and ICMP packets crafted using the Raw
Socket API. The coarse timeout is implemented using the
standard POSIX API function settimer(). The expiration of
the timer is indicated by raising a SIGALRM signal.

4 Detecting Proxy Nodes

We employ LinkWidth to detect induced traffic fluctua-
tions in Tor relays participating in a circuit. We demonstrate

how an adversary may use LinkWidth for linking Tor relays
to Tor clients and/or servers of a communication.

We have performed extensive measurements in a con-
trolled lab-environment to measure the effectiveness of
LinkWidth in detecting small bandwidth fluctuations. The
results of our controlled experiments are included in a tech-
nical report [4].

We use LinkWidth to do traffic analysis for uncovering
the Tor relays participating in a communication. This is
achieved by measuring the fluctuation of available band-
width or throughput of the probable Tor relays participating
in a circuit, induced by a colluding client or server, from
a network “vantage” point. Further, the information of re-
lays participating in a circuit may be used to launch trace-
back attack to determine Tor clients or Hidden servers par-
ticipating in a communication. This might require a well
provisioned adversary, with possibly multiple vantage point
and a map of the network. He/She should be observing
induced fluctuation on network routers connecting the Tor
end-points to their respective Entry Nodes1.

Figure 1 illustrates how an adversary probes the Tor
relays involved in a circuit. In our experiments, we use
LinkWidth to probe Tor relays that may possibly be part
of Tor circuits. An adversary with sufficient bandwidth re-
sources can simultaneously probe all (or a large fraction of)
the advertised Tor nodes. To detect the participating Tor re-
lays, the adversary can collude with server and induce fluc-
tuations in bandwidth of existing anonymous circuits (ba-
sically TCP connections). The goal is to demonstrate that
an adversary is able to detect these induced fluctuations in
bandwidth in the Tor relays whenever the client downloads
the file from the server.

Figure 1. Adversary probing the fluctuation in avail-
able bandwidth of ORs participating in a Tor circuit

To bypass the default restrictions on Middleman Node
selection, we modified the Tor Client version 0.1.2.18 to
enable the establishment of circuits in which the users can

1Optimizing the adversary’s search of links to probe is a different prob-
lem in itself.



select all the ORs manually2.
In our experiments, the client, the web server, and the

probing host used by the adversary are all scattered in sepa-
rate geographic locations and networks within the US3. The
web server offers a 100 MByte file; a relatively large file
for providing adequate delay to the adversary for perceiv-
ing the changing network congestion at each value of the
client-server traffic bandwidth. The available bandwidth of
the client-server TCP connection is shaped using the Linux
Traffic Controller [13]. Because the client selects the Tor
relays from the publicly available Tor status page [16], the
adversary also has knowledge of all the available Tor nodes.
Therefore, the adversary can detect the Tor relays in the cir-
cuit by measuring bandwidth variations whenever the client
communicates to the web server through the Tor circuit.

We quantify the effectiveness of detecting the ORs in-
volved in Tor circuits by creating 26 distinct Tor circuits.
We probed these Tor relays from different network loca-
tions. The results, summarized in Table 1, indicate how
many of the Tor relays in each circuit reported fluctuation
in available bandwidth (and thus were correctly identified
by the attacker).

Relays/Circuit # of
Detected Circuits
3 8
2 8
1 4
0 6

Table 1. Number of Tor relays per Tor circuit where
available bandwidth fluctuation is correctly detected.

In our experiments, we successfully identified all the
relay nodes in 8 out of the 26 circuits that we probed. For
8 circuits, we were able to identify 2 of the 3 participating
Tor relays. There were 4 circuits in which only one 1 of the
relays was detected. Finally, there were 6 circuits in which
we could detect fluctuation in none of the relays involved.
Amongst the 6 undetected, were 4 relays which filtered all
probe traffic. Using these results we can compute the true
positives and false negatives:

Total number of nodes probed = 74 (N) (not counting

2Selection of the intermediate relay nodes cannot be controlled in the
standard Tor distribution. There are, however, source-code options that can
unlock the intermediate relay selection.

3We avoid selecting nodes in Europe and Asia so as to avoid inter-
continental Internet links which may a times act as bottlenecks. An ad-
versary would need nodes in these geographical locations from which to
probe the relevant Tor relays. While this is generally feasible, we do not
currently have such capabilities.

the 4 which filtered all probe traffic)
Total number of nodes in which bandwidth fluctuation
was observed = 44 (T )
True Positives (T/N) = 44/74 (59.46%)
False Negatives (1− T/N) = 30/74 (40.54%)

To determine the false positives, we repeated the
same experiment: we generated 10 different “3-hop” Tor
circuits and for each of these circuits, we selected ORs not
participating in any of these circuits and probed them for
available bandwidth fluctuations induced by the colluding
server. The results from these experiments are summarized
as follows:

Total number of nodes probed = 30 (N)
Total number of non-participating nodes which report
fluctuation = 3 (F )
False Positives (F/N) = 3/30 (10%)
True Negatives (1− F/N) = 27/30 (90%)

In the first set of experiments, we observed bandwidth
fluctuation in some relays which were not part of our
client’s anonymous circuit. However, on repeated attempts
of the same experiment, we saw no fluctuation in available
bandwidth; thereby detected no false positives.

In laboratory conditions, our system can successfully de-
tect 50 Kbps fluctuations in bandwidth, or approximately
6 KBytes/second. In a “noisy” network environment with
cross-traffic, our detection ability is limited to variations
that are at least 30–40 KBytes/second.

Most of the ORs filter and/or rate limit TCP SYN pack-
ets to closed ports. In the presence of such filtering, we
use the ICMP-based emulation of LinkWidth. Probes us-
ing ICMP are prone to error due to difference in disper-
sion of the replies from those of the forward probe traffic
(when the probes reach the destination). Moreover, priori-
tized packet-scheduling and forwarding of data packets over
control packets, in modern IP routers, can result in erro-
neous measurements. This refers only to probe packets that
use ICMP.

From our experience of real-world Tor circuits, we have
learnt that correct detection of the exact pattern of increas-
ing or decreasing available bandwidth is contingent upon
various factors. The most restricting appears to be the num-
ber and quality of the attackers’ network vantage points. If
this condition is not met, then accurate bandwidth measure-
ment may not be possible in all cases (depending on link
utilization). In practice, our use of a few vantage points
in academic institutions in the US seems to provide suffi-
cient bandwidth to conduct our attack against a large sub-
set of the Tor network. For an attack against all of the Tor
relays, we would require access to nodes in the different
major geographical areas hosting Tor relays (Europe, Asia)



such that we do not have to probe over trans-Atlantic or
trans-Pacific long-haul links that affect the accuracy of our
measurements.

5 Discussion

In the attack presented so far, we avoid crossing the con-
tinent in our search for Tor relays. The trans-continental
links are a bottleneck in many instances, and we do not have
network vantage points located outside the US. To make
things worse, out of the approximately 150 Exit Nodes
within the US that were available at the time of our experi-
ment, less than 100 provide adequate quality of service and
exit policies that allow our client’s traffic. Unfortunately,
PlanetLab [18] hosts cannot provide accurate traffic mea-
surements because we cannot control kernel scheduling of
network resources. Consequently, they cannot be used as
neither network vantage points nor colluding entities.

To obtain high confidence detection results, we need to
observe traffic from Tor nodes with throughput of at least
30–40 KBytes/sec (approximately 300 Kbps). In addition,
packet loss, traffic filtering and shaping, intermediate net-
work bottlenecks, and operating system and networking de-
vice driver issues play an important role in measurement-
based network monitoring. TCP SYN packets are also fil-
tered by some Tor relays. In most instances where TCP
probes were rate-limited or filtered, we rely on ICMP
probes. However, as mentioned earlier in Section 4, mod-
ern IP routers prioritize data traffic (e.g., TCP and UDP)
over control traffic (e.g., ICMP). Thus ICMP-based emula-
tion may be affected due to erroneous values of end-to-end
dispersion.

The effectiveness of the Tor attacks presented earlier is
constrained by the limitations of the traffic-based measuring
techniques. These limitations could be leveraged to create
countermeasures to our attack. First, a Tor client can use
parallel circuits in a round-robin fashion to access the same
server; this would diffuse the ability of the server to gen-
erate detectable traffic variations, since traffic spikes would
be distributed across all parallel connections. The use of
shorter circuit lifetimes may prevent an adversary from de-
tecting Tor relays with high confidence. Traffic smoothing
by Tor relays is another potential countermeasure. Use of
Tor circuits with more relay nodes, leading to longer net-
work paths, does not appear to make the attack apprecia-
bly more difficult. However, it can significantly affect the
client-perceived latency and throughput of the connection
[4], making it a particularly unsuitable countermeasure.

6 Conclusion

We propose a new technique for uncovering the identity
of Tor relays participating in an anonymous circuit. Our

scheme works by artificially inducing traffic fluctuations in
the traffic sent by the server to the anonymous client. This
can be achieved by colluding with the server, controlling
an upstream router, or possibly through a targeted DDoS
attack. We detect these perturbations as they traverse the
network using single-end bandwidth measurements. From
our experiments on 26 Tor circuits we showed that we were
able to expose Tor relays with a true positive rate of 59.46%
and a true negative rate of 10%. This knowledge can then
be used in follow-on attacks, either against the anonymous
client or against the Tor network itself. For accurately de-
tecting the relevant nodes, it is essential for an adversary
to be at a “vantage point” in the network such that either
the bottleneck link itself or the disturbance in cross traf-
fic caused by the server is enough to distort LinkWidth’s
probes. As future work, we plan to extend our technique
to produce a full trace-back to the Tor client and Hidden
Servers using our single-end bandwidth estimation tech-
nique.

References

[1] D. Agrawal and D. Kesdogan. Measuring Anonymity: The
Disclosure Attack. IEEE Security & Privacy, 1(6):27–34,
November/December 2003.

[2] D. Antoniades, M. Athanatos, A. Papadogiannakis, E. P.
Markatos, and C. Dovrolis. Available Bandwidth Measure-
ment as Simple as Running wget. In Proceedings of Passive
and Active Measurements (PAM), March 2006.

[3] K. Borders and A. Prakash. Web Tap: Detecting Covert
Web Traffic. In Proceedings of the 11th ACM Conference
on Computer and Communications Security (CCS), pages
110–120, October 2004.

[4] S. Chakravarty, A. Stavrou, and A. D. Keromytis. Approx-
imating a Global Passive Adversary Against Tor. Com-
puter Science Department Technical Report cucs-038-08,
Columbia University, August 2008.

[5] D. Chaum. The Dining Cryptographers Problem: Uncondi-
tional Sender and Recipient Untraceability. Journal of Cryp-
tology, 1(1):65–75, 1988.

[6] D. L. Chaum. Untraceable Electronic Mail, Return Ad-
dresses, and Digital Pseudonyms. Communincations of the
ACM, 24(2):84–90, February 1981.

[7] D. L. Chaum. Untraceable Electronic Mail, Return Ad-
dresses, and Digital Psuedonyms. Communications of the
ACM, 1981.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In In Proceedings of the
13th USENIX Security Symposium, pages 303–319, August
2004.

[9] C. Dovrolis and R. Prasad. Pathrate. http:
//www.cc.gatech.edu/fac/Constantinos.
Dovrolis/pathrate.tar.gz, 2004.

[10] A. B. Downey. Using pathchar to Estimate Internet Link
Characteristics. In Proceedings of ACM SIGCOMM, August
1999.



[11] D. Goldschlag, M. Reed, and P. Syverson. Onion Routing
for Anonymous and Private Internet Connections. Commu-
nications of the ACM, 43(2):39–41, 1999.

[12] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How Much
Anonymity does Network Latency Leak? In Proceedings of
ACM CCS, October 2007.

[13] B. Hubert, T. Graf, G. Maxwell, R. Mook, M.Oosterhout,
P.Schroeder, J. Spaans, and P. Larroy. Linux Advanced
Routing and Traffic Control HOWTO. http://lartc.
org/howto.

[14] V. Jacobson. PATHCHAR. http://www.caida.org/
tools/utilities/others/pathchar/, 1997.

[15] S. Keshav. Congestion Control in Computer Networks. UC
Berkely Technical Report TR-654, September 1991.

[16] J. B. Kowalski. TorStatus. http://anonymizer.
blutmagie.de:2505/.

[17] S. J. Murdoch and G. Danezis. Low-Cost Traffic Analysis
of Tor. In IEEE Symposium on Security and Privacy, pages
183–195, May 2005.

[18] PlanetLab. http://www.planet-lab.org/.
[19] R. Prasad, M.Murray, C. Dovrolis, and K. Claffy. Bandwidth

Estimation: Metrics, Measurement Techniques, and Tools.
In Proceedings of IEEE Network, August 2003.

[20] J.-F. Raymond. Traffic Analysis: Protocols, Attacks, De-
sign Issues, and Open Problems. In Proceedings of De-
signing Privacy Enhancing Technologies: Workshop on De-
sign Issues in Anonymity and Unobservability, pages 10–29.
Springer-Verlag, LNCS 2009, July 2000.

[21] M. Y. Sanadidi. Bandwidth Estimation Techniques , A Tu-
torial Presentation. In SBRC 2002:Brazilian Symposium on
Computer Networks Date, Buzios, Brazil, May 2002.

[22] A. Serjantov and P. Sewell. Passive Attack Analysis for
Connection-Based Anonymity Systems. In Proceedings of
ESORICS, October 2003.

[23] Stefan, Saroiu, and Krishna. Sprobe: Another tool for mea-
suring bottleneck bandwidth. In Proceedings of InfoComm
2002, 2002.

[24] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anony-
mous Connections and Onion Routing. In IEEE Symposium
on Security and Privacy, pages 44–54, May 1997.

[25] A. Tirumala, F. Qin, J. Dugan, J. Feguson, and
K. Gibbs. IPERF. http://dast.nlanr.net/
projects/Iperf/, 1997.

[26] M. Waidner. Unconditional Sender and Recipient Untrace-
ability in Spite of Active Attacks. In Proceedings of EURO-
CRYPT, pages 302–319, April 1989.

[27] X. Wang and D. S. Reeves. Robust Correlation of Encrypted
Attack Traffic Through Stepping Stones by Manipulation of
Interpacket Delays. In Proceedings of the 10th ACM Con-
ference on Computer and Communications Security (CCS),
pages 20–29, October 2003.


