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We create variable-length pseudorandom permutationsgPaid strong PRPs (SPRPS)
accepting any input length chosen from the rangeé tf 20 bits from fixed-lengthp-bit
PRPs. We utilize thelastic networkthat underlies the recently introduced concrete de-
sign of elastic block ciphers, exploiting it as a network &H%. We prove that three and
four-round elastic networks are variable-length PRPs argdriund elastic networks are
variable-length SPRPs, accepting any input length thaxéslfin the range ab to 2b bits,
when the round functions are independently chosen fixegtheRRPs orb bits. We also
prove that these are the minimum number of rounds required.
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1 Introduction

In this work, we prove that the elastic network, the undadystructure of elastic block
ciphers [2], allows for the creation of variable-length RREad SPRPs from fixed-length
PRPs, meaning it provides a PRP or SPRP for every lengthichudiity within a range of
input lengths. In the abstract sense, a block cipher sha#d®PRP. Feistel networks were
analyzed in this manner and proven to provide fixed-lengtR$?&d SPRPs under certain
conditions by Luby and Rackoff [7], and by Naor and Reing@H This approach has also
been used to justify modes of encryption. For example, th€-&ask-CBC mode (CMC)
of encryption was proven to provide a SPRP on multiples obtbek length under certain
conditions on the block cipher used within the mode [5]. Imgral, the implementation
of a block cipher can be considered a black box to applicatrnaking function calls to
the cipher. This is especially true in modern computers ehéwock cipher hardware may
be included, such as Intel's plan to have AES in hardware gsopéts future CPUs [4].
Understanding how to combine PRPs in theory to provide amfdit functionality translates
into practical implementations by replacing the PRP with litack box that is the block
cipher.

We consider the elastic network in an analogous mannerti€lalock ciphers are
variable-length block ciphers created from existing bloighers. The elastic version of a
block cipher supports any actual block size between onevandiines that of the original
block size. The method consists of a substitution-perrartaetwork, the elastic network,
that uses the round function from the existing fixed-lendplckcipher. We prove that three
and four round elastic networks provide variable-lengtiPBRnd five round elastic net-
works provides a variable-length SPRP for each input lengthe range ob to 2b bits
when the round functions are independently chosen fixegthePRPs or-bits.



Our results assist in proving the soundness of the elastekldipher’s basic structure.
The security of elastic block ciphers against practicackis was evaluated in [3]. By
proving the elastic network forms variable-length PRPs 8R&RPs on inputs df to 2b
bits, under certain restrictions on the number of roundsiaddpendence of the round
functions as was done for Feistel networks [7, 8], our workvjtes further justification
for the elastic block cipher approach to creating varidetegth block ciphers.

We consider analysis of the elastic block cipher approadbetof value because of
how the approach differs from other approaches that reusgrexblock ciphers when cre-
ating a variable-length block cipher in practice. Unlikbext variable-length block cipher
constructions that build upon existing fixed-length blogkhers, the elastic block cipher
approach does not require multiple applications of the fieedjth block cipher to encrypt
b+ y bits, whered < y < b. By using the round function of the existing fixed-lengthdio
cipher as a black box within the elastic network the comjantal workload of an elastic
block cipher is proportional to the block size. In contrasier methods, such as [1, 9, 10],
treat a fixed-length block cipher as a black box. When enargpt+ y bits, each of these
methods apply a block cipher multiple times along with addgl operations, resulting in a
computational workload that is not proportional to the lleze and which is less efficient
than padding the data to two full blocks, regardless of tleeexalue ofy.

The remainder of this paper is organized as follows. Se@isammarizes the defini-
tions of a PRP and SPRP, and the structure of elastic blotlecipIn Section 3, we show
how to create variable-length PRPs from fixed-length PREs thiee and four round elas-
tic networks. In Section 4, we prove that a five-round elastiwvork allows for the creation
of a variable-length SPRP from fixed-length PRPs. In Sed@iaounter-examples used to
define the minimum number of rounds and independence of tnedrfunctions required
for the proofs are presented. In Section 6, we summarizeesuits and explain how the
elastic network can be combined with CMC mode to extend tippaued input length
beyond2b bits.

2 Background

2.1 PRP and SPRP Definitions

We informally remind the reader of the definitions of a PRP ar8PRP, and define the
terms variable-length PRP and variable-length SPRP. Reffd] for formal definitions.
Although we are discussing permutations (as opposed tdigpahblock ciphers), we will
use the terms "plaintext” and "ciphertext” to refer to th@urs and outputs of the permu-
tation. We use the following terms in the definitions of a PRE a SPRP.
— Random permutation: A permutation dbits that is chosen randomly from all permu-
tations or bits.
— Let P be a permutation oh bits. P! denotes its inverse?(z) is the output ofP
when given input: of lengthb bits.
— Chosen plaintext query: An adversary chooses an inputp a permutationf, and
receives the output; = P(p;).
— Chosen ciphertext query: An adversary chooses an inpug the inverse of a permu-
tation, P~1, and receives the output, = P~!(c;).
— Chosen plaintext - chosen ciphertext queries: An advensakes a series of queries
to a permutationP, and its inverseP !, and receives the outputs.



— Adaptive queries: When making chosen plaintext, chosemectpxt or chosen plain-
text - chosen ciphertext queries to a permutation (andséaniterse), the queries are
said to be adaptive if the adversary making the queriesveséhe output of the'"
query before forming thé + 1) query and can use the previougueries and their
outputs when forming thé + 1)t query.

The concepts of a PRP and a SPRP can be described by congittexiprobability
with which an adversary can correctly determine whetheratranblack box contains a
specific permutation or a random permutationbdpoits while using only polynomial (in
b) many resources. LeP be a permutation o bits. Given a black box that contains
either P (or its inverse) or a random permutation, an adversary mpglgsomially many
adaptive queries to the black box and receives the outputsegbermutation within the
box. If the probability that the adversary correctly detgras (using polynomial time and
memory) the contents of the box-21»3+ e for negligiblee > 0, thenP is a PRP. In terms of
block ciphers, this corresponds to the adversary beingtabiteake either adaptive chosen
plaintext queries or adaptive chosen ciphertext querigsnat both, to a black box which
contains either the cipher or a random permutation.

Similarly, a permutationf’, onb bits is a SPRP if itis not possible to distinguiBHrom
a random permutation drbits in polynomial (inb) time and memory when queries to both
the permutation and its inverse are permitted. In termsaflbtiphers, this corresponds
to the adversary being able to make adaptive chosen plaintdrosen ciphertext queries
to a black box which contains either the cipher or a randormpéation.

We now define variable-length PRPs and SPRPs.A bk a permutation that accepts
inputs of any lengthi within some rangéz, y] where0 < z < y. If P is a PRP for each
individual value ofl (meaningy — « + 1 PRPs exist, one for each input length) thieis a
variable-length PRP on the ranpe y|. Similarly, if P is a SPRP for each individual value
of [ then P is a variable-length SPRP on the rarigey]. In the variable-length case, an
adversary is allowed to choose any valué nfthe rangdz, y] before making any queries,
but oncel is chosen it remains fixed and all queries performed by theradvy use inputs
of lengthi.

2.2 Elastic Network

We provide a brief review of the elastic network, which paes the underlying structure
of elastic block ciphers. The elastic block cipher method defined for creating variable-
length block ciphers in practice [2]. The round function pcle of an existing fixed-length,
b— bit, block cipher is inserted into the elastic network, showRigure 1 and becomes the
round function of the elastic version of the cipher. The iripé + y bits, whered < y < b.

In each round the leftmostbits are processed by the round function and the rightmost
bits are omitted from the round function. Afterwards, a "pvgsep” is performed in which
the rightmosty bits are XORed with a subset of the leftmédtits and the results swapped
when forming the input to the next rourfd.

4 Elastic block ciphers also include initial and end-of-rdumhitening, and initial and final key-
dependent permutations. Our analysis focuses on the hasituse and thus we omit these steps.
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Fig. 1. Two Rounds of an Elastic Network

3 Variable-Length PRPs

As our first step, we prove that a three-round elastic netantkthe inverse of a four-round
elastic network are variable-length PRPs when their rowmttions are independently
chosen random permutations (RP). From these results, wéheanprove that the same
networks are variable-length PRPs when the round functimasndependently chosen
fixed-length PRPs. Figure 2 shows three-round and fourdelastic networks.
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Fig. 2. Three and Four-Round Elastic Networks

We prove that if a three-round elastic netwo€K, with round functions that are in-
dependently chosen random permutations drits can be distinguished from a random



permutation o + y bits, for some fixed value df+ y, using polynomially many queries
to G’ then at least one of the round functions can be distinguifiioed a random permu-
tation onb bits, which is a contradiction. Therefore, we conclude thais a PRP. We use
a black box,B¢, that contains eithe®’ or a random permutation dn+ y bits. We prove
that if a distinguisherDs3, exists that can determine whether or i} containsG’ using
polynomially many adaptive queries to the box thep can be used to create a distin-
guisher for at least one of the round functiong8fto distinguish the round function from
a random permutation dnbits. When we say a distinguisher f6Y exists, we mean that
the distinguisher, using polynomially many adaptive gein one direction can predict or
eliminate a possibility about an additional input/outpairpvalue of the given permutation
with greater certainty than that of a random guess. In cefjtwdath a random permutation,
anything beyond the input/output pairs from the queriesmAn with the same probability
as a random guess. We repeat the process for the inversewfefod elastic network.

We will refer to the components of the three and four-rountivoeks as they are la-
belled in Figure 2. We use the following notation:

— b > 0is aninteger.

— yis aninteger such that< y <.

— X @Y whereX is ab-bit string andY” is ay-bit string, means the bits af are XORed
with y specific bits ofX and the otheb — y bits of X are treated as if they are XORed
with O’s. If the resulting string is stored in a variable caining onlyy bits instead of
b bits, the result consists only of thebits in the positions that involved botk and
Y instead ofX and theb — y 0's. For example, consider XORing a 2-bit string with
a 4-bit string such that the XOR involves the leftmost 2 bitthe 4-bit string. Letz1
anda2 be 4-bit strings. Letvl andw?2 be 2-bit strings. Ifz1 = 0110 andwl = 11,
a2 =z1®wl =1010.w2 = 21 ® wl = 10.

— n > 0 is an integer that generically represents the number ofpohyally many (in
terms of the length of the input) queries made to a function.

— | X is the length, in bits, of.

— RFiis thei’™ round function, for = 1,2, 3, 4. Any restrictions placed on BF'i will
be specified as needed. Each round function is a permutatibiiits.

— ai is theb-bit input to thei*” round function fori = 1,2, 3, 4.

— zi is theb-bit output of thei*” round function fori = 1,2, 3, 4.

— wi is they bits left out of thei*” round function fori = 1,2, 3,4. For any particular
elastic networkyw?2 is formed from a fixed set af-bit positions fromz1, w3 is formed
from a fixed set ofy-bit positions ofz2, andw4 is formed from a fixed set of-bit
positions ofz3 (i.e., the positions of the bits taken from to form w1 do not vary
amongst the inputs to a specific three-round elastic nefwbikewise, when forming
w2, w3 andw4.

— When referring to a specific value for am, zi or wi, a subscript will be used. For
exampleal;.

Theorem 1. A three-round elastic networks’, onb + y bits in which the round functions
are independently chosen random permutation$ oits is a variable-length pseudoran-
dom permutation oh + y bits in the encryption direction for any fixed valueyoivhere

0 < y < b. Three rounds are the mininum number of rounds required.

Proof. A two-round elastic network cannot be a PRP. Refer to Se&ifor the counter-
example. We define the following notation for use in proving three round case:
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— By is a black box that contains eith€f or a random permutation dn+ y bits.

— (al;,wl;) is aninputtoBg-. |al;| = band|wl;| = y as defined previously.

— (23;,w3;) is the output ofBss corresponding to the inpytl;, wl;). [23;] = b and
|w3;| = y as defined previously.

— Dsis adistinguisher fo€’, meaningDs; can determine whether or nBt; containgz’
with probability% + « for non-negligibley, 0 < a < % when using only polynomially
(in b + y) many resources. LeDs return a 1 if it thinksBgs containsG’ and a 0
otherwise D3 makes: adaptive chosen plaintext or adaptive chosen ciphertestieg)
but not both.

- S1 = {(al;,wl;)} andS2 = {(23;,w3;)}, fori = 1 to n are the sets of inputs
and outputdD; uses to distinguish¥’ from a random permutation. Whepg works by
making queries t@- in the encryption direction§'1 contains the inputs anti2 con-
tains the resulting outputs. Whéed; works by making queries tB¢- in the decryption
direction,S2 contains the inputs ansll contains the resulting outputs.

— Bgri is ablack box that contains either tH& round function REF'i, of G’ or arandom
permutation orb bits, fori = 1,2, 3.

— Bpgri(X) is the output ofBgr; when given inputX.

— Bpp,(X) is the inverse ofBgr;(X). i.e., the inverse of whatever permutation is in
Brr; is applied toX.

— Dpgrp; is a distinguisher foR F'i, meaningD g ; can determine whether or n®z;
containsRE'i with probability% + « for non-negligiblea, 0 < a < % using poly-
nomially (inb + y) resourcesDrr; uses either adaptive chosen plaintext or adaptive
chosen ciphertext queries, but not both.

— "plaintext query” refers to a query t6” in the encryption direction and "ciphertext
query” refers to a query t6” in the decryption direction (a query &~ 1).

We note that the bit positions used in the swap ste@s iare not secret and this infor-
mation can be used by any distinguisher. We define the fatigWitinctions corresponding
to the swap steps for use by the distinguishers:

— Let Fi(X,Y) be a function that takesiabit input, X, and ay-bit input, Y, and returns
the pair(Z, W) whereZ is ab-bit string andiW is ay-bit string. F'i replaces the bits
of X with they bits of Y such that the bits idX which are replaced are in the same
positions as the bits from the output of tHé round function that are involved in the
swap step after thé” round of G’. Fi returns the updated value inZ and returns
a bit string,IW, that contains thg bits of X that were removed fro’X XORed with
they bits inserted intaX. Fi(X,Y) computes the inverse of th& swap step in the
elastic network.

— Let F'Yi(X) be a function that takestabit input X and returns thg bits that are in
the same bit positions used to createfrom z(i — 1) in G'.

— Let Oi be an oracle that contains tifé round function,RFi of G’. Oi~" will refer to
an oracle containingg F'i L.

We now prove Theorem 1. [D3, a distinguisher foiG’ in the encryption direction,
exists,D3 must fall into one of the following categories:

— Category I:D3 does not use the3 portion of the output in its decision. The only part
of the output used is the3 portion. This means that given theinput/output pairs in
S1andS2, Ds never uses the3 portion from any of the pairs i§2.



— Category II:D3s does not use the3 portion of the output in its decision. The only part
of the output used is the3 portion. This means that given theinput/output pairs in
S1andS2, Ds never uses the3 portion from any of the pairs i§2.

— Category lll: D3 uses both the3 andw3 portion of the outputs in its decision. This
means that givem input/output pairs inS1 and 52, D3 uses thez3 portion of the
output from at least one of of the pairs §2 and uses thev3 portion from at least
one of the pairs irb2. Without using both portiond); fails to distinguish the elastic
network from a RP.

In each category, there are no restrictions on what portdrise inputs,{(al;, wl;)},
are used. For each of the categories, we will show that thetemde ofD3 implies a distin-
guisher can be formed for either the second or third roundtfan of G, which contradicts
the round functions being independently chosen randomyaations.

Category I If D falls into Category |, a distinguishef)zr2, can be defined for the
second round functio@ F'2. Intuitively, D3 using only thew3 portion of the output o&’
whenw3 is from the output ofR 7’2 whose inputs cannot be predicted with non-negligible
probability implies D3 can distinguishRF'2 from a random permutation. The inputs to
RF?2 are distinct except with negligible probability. Theredothew3 values are distributed
as if they are taken from the outputs of distinct querietB2, except with negligible
probability andD3 cannot rely on being givemn3 values that were generated from identical
inputs toRF'2.
Define D as follows:

Ask D3 what its first query (input) would be if it was queryirgy,.. PopulateS1 with
this first input, sqaly,wl;) has been chosen and is$fi. S1 is known toDgpo.

fori=1ton {
Take(al;, wl;) from S1 for use in subsequent steps.
Setzl; = Ol(al).
Setz2; = BRFQ(Z].i D 'lU].Z‘).
Setw3; = FY?)(ZQZ)
Give al;, wl;, w3; to Ds.
Add to S1 the next inputDs; would use when trying to distinguisbs, having
seen the inputs and partial output of the firqueries. This igal;1, wl;11).
}
Let ans be the valueDs returns.
Returnans.

The values given td; are the input and rightmost bits of the output of a three-round
elastic network withR F'1 as the first round function and the contentdhfr- as the sec-
ond round function. The third round function is irrelevast&ébecaus®s is not using the
output of the third round function. The values giverl1g correspond to those &fl and the
w3; values ofS2 whenDjs is allowed to make: adaptive chosen plaintext queriesBg: .
D3 succeeds with non-negligible probability in determiningather or not it was given the
input and partial output of’ implies D g2 Will succeed with non-negligible probability
in determining if then (a2;, 22;) pairs correspond to the inputs and output®éf2. There-
fore, Drpo can distinguish the contents &2 using then queries{O1(al;) & wl;}.
Brra, contradicting the assumption that the second round fondsian RP.



Category II: If D3 falls into Category I, a distinguishef)rr3, can be defined for the
third round function,RF'3. Intuitively, D3 using only thez3 portion of the output of3’
whenz3 is from the output ofR F'3 whose inputs cannot be predicted with non-negligible
probability implies D3 can distinguishRF'3 from a random permutation. The inputs to
RF3 are distinct except with negligible probability. Theredpthez3 values are distributed
as if they are the outputs of distinct queries taR '3, except with negligible probability
and D3 cannot depend on being givefl values that were generated from identical inputs
to RF'3. Therefore,D5 using only the input t@>’ and thez3 portion of the output implies
D3 can distinguishR F'3 from a random permutation.

Define D3 as follows:

Ask D3 what its first query (input) would be if it was queryidgy,.. PopulateS1 with
this first input, sqal;,wl;) has been chosen and is$ii. S1 is known toDgps.

fori=1ton {
Take(al;, wl;) from S1 for use in subsequent steps.
Setzl; = Ol(ali).
Setz2; = OQ(Z].Z &) wll)
Setw?2; = FYQ(Z].Z)
Setz3; = BRF3(Z2¢ D w2i).
Give al;, wl;, 23; 10 Ds.
Add to S1 the next inputDs; would use when trying to distinguisbs, having
seen the inputs and partial output of the firqueries. This igal;1, wl;1+1).
}
Let ans be the valueDs returns.
Returnans.

The values given td3 are the input and leftmodt bits of the output of a three-round
elastic network withRF'1 as the first round functionR F'2 as the second round function
and the contents aBr 3 as the third round function. The values given/?g correspond
to those 0fS1 and thez3; values fromS2 when D5 is allowed to make, adaptive chosen
plaintext queries taBg . D3 succeeds with non-negligible probability in determining i
was given the input and partial output@f implies D i r3 will succeed with non-negligible
probability in determining the contents Bz 73 by usingn queries{02(01(al;)Dwl;)®
F2(01(al))}, contradicting the assumption that the third round funciioan RP.

Category lll: If D3 falls into Category I, a second version of tligz »3 distinguisher
we just defined can be created for the third round functioR3. We call this new version

D rrs3e2. Intuitively, D3 using both the:3 andw3 portions of the output off’ whenz3 is
from the output ofR F'3 whose inputs cannot be predicted with non-negligible piodiig,
wherew3 is from the output ofR F'2 whose inputs cannot be predicted with non-negligble
probability and wherev3 contributes to the formation of the input &F'3 (and thus con-
tributes to the input to the permutation that produegsimplies D5 can distinguishR '3
from random.D3 cannot depend on being givefi and/orw3 values that were generated
by holding the inputs td? "2 and/orR F'3 constant since this occurs with negligible proba-
bility. Therefore,Ds can be viewed as using some relationship between part@hiation
(i.e.,w3) used in forming the input t& '3 and the output (1.ez3) of RE'3 to distinguish
the third round function from a random permutation.



Dgrrsy2 IS Drps with the modification thatv3; is given toD5 along withal;, w1; and
23;. Define D, as follows:

Ask D3 what its first query (input) would be if it was queryidgy,.. PopulateS1 with
this first input, sqal;,wl;) has been chosen and is$ii. S1 is known toDgps.

fori=1ton {

Take(al;, wl;) from S1 for use in subsequent steps.

Setz1l; = O1(al).

Setz2;, = OQ(Z].Z &) wll)

Setw?2; = FY2(z1;).

Setz3; = BRF3(2'271 &) w21').

Setw3; = FY?)(ZQZ)

Give al;,wl;, z23;, w3; to Ds.

Add to S1 the next inputDs would use when trying to distinguishs, having

seen the inputs and output of the firsfueries. This igal; 11, wl;t1).
}

Letans be the valueD; returns.
Returnans.

The values given tdz are the inputs and outputs of a three-round elastic netwdttk w
RF1 as the first round functionR F'2 as the second round function and the contents of
Brrs as the third round function. The values giveni¥g correspond to those &1 and
S2 whenDj is allowed to make: adaptive chosen plaintext queriesig.. D3 succeeds
with non-negligible probability in determining it was givehe input and output of’
implies Drr3,2 Will succeed with non-negligible probability in determigithe contents
of Brrs by usingn queries,{02(01(al;) & wl;) & F2(01(al;))}, contradicting the
assumption that the third round function is a random pertiarta

For each category, we have shown thgtcannot exist. Therefore, a three-round elastic
network cannot be distinguished from a PRP by using polyatyninany plaintext queries
when the round functions are independently chosen randomutations. In the decryption
direction, four rounds are required to create a PRP.

Theorem 2. The inverse of a four-round elastic netwotk’~1), onb + y bits in which
the round functions are independently chosen random patioas onb bits is a variable-
length pseudorandom permutation bn- y bits for any fixed value af where0 < y < b.

Four rounds are the minimum number of rounds required.

Proof. Refer to Section 5 for an example showing why three roundéatdficient. The
notation and terms are the same as in the proof to Theorene$siatherwise stated. The
black box,B¢, will contain G’~! or a random permutation dn+ y bits. The categories
for the distinguisher are the same as in the three-round Easéwno of the categories, three
rounds are sufficient fo:’~! to be a PRP. We prove these cases first. Then the proof for
the third category, which requires four rounds, followsedtty. The inputs are of the form
(23, w3) when using three rounds afe4, w4) when using four rounds. The outputs are of
the form(al,wl). D3 and D4 will denote the distinguishers when three and four rounds
are under consideration, respectively. When the numbenuwofds is not specified),. will

be used to denote eithé&l; or D,. If a distinguisher exists fo&’~! it must fall into one of
the following three categories:



— Category I:D,. does not use thel portion of the output in its decision. The only part
of the output used is the1 portion. This means that given theinput/output pairs in
S2 andS1, D, never uses thel portion from any of the pairs if'1.

— Category II:D,. does not use the1 portion of the output in its decision. The only part
of the output used is thel portion. This means that given theinput/output pairs in
S2 andS1, D, never uses ther1l portion from any of the pairs ig'1.

— Category llI: D,. uses both the1 andw1 portion of the outputs in its decision. This
means that givem input/output pairs inS2 and S1, D, uses thez1 portion of the
output from at least one of them and uses dHeportion from at least one of them.
Without using both portiond),. fails to distinguish the elastic network from a RP.

In each category, there are no restrictions on what portiérise inputs{(z3;,w3;)} or
{(24;,w4;)}, are used. Whem,. is restricted to Category Il or Ill, only three rounds are
needed foilG~! to be a PRP. These two categories will be addressed befoeg@wtl.
Similar to what was done with the encryption directi@?, can be used to create a distin-
guisher for one of the round functions. Since the round fionstare random permutations,
this results in a contradiction; therefore, cannot exist.

Category Il: If D5 falls into Category I, a distinguisheR g1, can be defined for the in-
verse of the first round function ¢f’ (the last round of’—1). Intuitively, D3 using only the
al portion of the output of7’~! whenal is from the output ofR 71~ whose inputs can-
not be predicted with non-negligible probability impli®s can distinguislR'1~! from a
random permutation. The inputs RF1~! are distinct except with negligible probability.
Therefore, ther1 values are distributed as if they are the outputs afistinct queries to
RF171, except with negligible probability. ThereforB3 using only the input td’'~* and
theal portion of the output implie®; can distinguislRF1~! from a random permutation.

DefineD g1 as follows:

Ask D3 what its first query (input) would be if it was queryidgy,.. PopulateS2 with
this first input, sq(z31, w31) has been chosen and is$®. S2 is known toD g .

fori=1ton {
Take(z3;, w3;) from S2 for use in subsequent steps.
Seta3; = 03_1(237)
Set(z27;, w2¢) = F2(a37;, w31)
Seta2; = 0271(220.
Set(zli, wli) = F].(G,Qi, w2i).
Setal; = Bpp, (21:).
Give al;, z3;, w3; t0 D3.
Add to S2 the next inputDs would use when trying to distinguishs, having
seen the inputs and output of the firsfueries. This i§23;+1, w3;4+1).
}
Let ans be the valueDs returns.
Dprp3yo returnsans.

The values given td3 are the inputs and outputs of the inverse of a three-rourstiela
network with RF'3 as the third round functiomR F'2 as the second round function and the
contents ofBrr; as the first round function. These values correspond to thients 0fS2
and then1; values ofS1 whenDs is allowed to make: adaptive chosen plaintext queries to
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Bgr. D3 succeeds with non-negligible probability in determinitgas given the input and
output of G’ implies D g1 Will succeed with non-negligible probability in determiigithe
contents ofBrr1, contradicting the assumption that the first round funcisoa random
permutation.

Category lll: If Dj falls into Category lll, a distinguishef) zr3, can be defined for the
inverse of the first round functiod 1. Intuitively, D3 can be viewed as using some
relationship between partial informatione( w1) used in forming the input ta? 1!
and the output (1.ez1) of RF1~! to distinguish the first round function from a random
permutation.
Define Dgr1.2 to be Drri with the addition that thev1; values are also given tDs.
Ask D3 what its first query (input) would be if it was queryirgy;: in the decryption
direction. Populat&2 with this first input, sq 231, w3;) has been chosen and isS2. 52
is known toDgrr1y2.

fori=1ton {
Take(z3;,w3;) from S2 for use in subsequent steps.
Seta3; = 0371(2&).

Set(z2i, w2i) = F2(a3i, wSi).
Seta2; = 0271 (22;).
Set(zL;, wli) = Fl(a27;, w2¢).

Setal; = Béflpl(z].l)
Give al;, wl;, 2’37;, w33; 10 Ds.
Add to S2 the next inputDs; would use when trying to distinguish
D3, having seen the inputs and output of the firgtieries.
Thisis (23i+17 w3i+1).
}
Let ans be the valueDs returns.
Returnans.

The values given td5 are the inputs and outputs of the inverse of a three-rourstiela
network with RF'3 as the third round functiomR F'2 as the second round function and the
contents ofBr 1 as the first round function. These values correspond to thfoseandsS?2
whenDjs is allowed to make: adaptive chosen plaintext queries®e.. D3 succeeds with
non-negligible probability in determining it was given timput and output ofy’ implies
Dgrr1.2 Will succeed with non-negligible probability in determigithe contents oBr 1,
contradicting the assumption that the first round functgoa random permutation.

Category I: The result for this category follows directly from the rdsiufbr Categories Il
and IlIl. If D4 only uses thev1 portion of the outputs, sincel = w2 @ a2, this implies
D, is using a combination af2 andw2 on which to base its decision. This impliés,
is a distinguisher for the first three rounds of the networkhim decryption direction that
falls into Category lll because the leftmdsbit portion @2) and rightmosty-bit portion
(w?2) of the three round output is used. Assulg exists for the four-round networl0,
is used to define a distinguishé?, for the three rounds consisting BF4—4 to RF272,
taking inputs(z4;, w4;) and producing output&2;, w2;). In this caseBg- is a black box
containing eitheG—! with four-rounds or a random permutation bs- y bits. Let B3 be

11



a black box containing either the three-round elastic netk@rmed from rounds F4—*
to RF2~2 or a random permutation dn+ y bits.

Define D5 as follows:

Ask D, what its first query (input) would be if it was queryirgy, in the decryption
direction. Populat&2 with this first input, saz4,, w4, ) has been chosen and is§2. 52
is known toDs.

fori=1ton {
Take(z4;,w4,) from S2 for use in subsequent steps.
Give (z4;, w4;) to B3 and get bacKa2;, w2;).
Give wl;, z4;, wa; t0 Dy.
Add to S2 the next inputD,4 would use when trying to distinguisB, having
seen the inputs and output of the firsfueries. This igz4,1, w4;+1).
}
Letans be the valueD, returns.
D3 returnsans.

The values given t@, are the inputs and rightmogbits of the outputs of the inverse of
a four-round elastic network. Thegdits are formed from both thiebit andy-bit portions
of the output of three rounds. Therefore, by the assumgbpexists,D3 will succeed with
non-negligible probability in determining that te2;, w2;) values were formed from the
first three rounds of decryption. This contradicts the prasiresult from Category Ill.

For each of the three categories, we have shbywiannot exist. Therefore, the inverse
of afour-round elastic network is a PRP when the round fonstare independently chosen
random permutations.

Using Theorems 1 and 2, we can prove that a three-roundcetettvork in the encryp-
tion direction and a four-round elastic network in the dedign direction is a variable-
length PRP when the round functions are independently chiosed-length PRPs.

Theorem 3. A three-round elastic networks’, onb + y bits in which the round functions
are independently chosen PRPs ipbits is a variable-length PRP ob + y bits in the
encryption direction for any fixed value gfwhere0 < y < b. Three rounds are the
mininum number of rounds required.

Proof. First, as noted in Theorem 1, a two-round elastic networkhotibe a PRP. The
result for three rounds follows directly from Theorem 1 ahd triangle inequality. We
consider the relationships between four versions of a thwaad elastic network that differ
in regards to the number of their round functions that areP&il RPs. We consider the
relationships between the four versions shown in Figurea8tbfee-round elastic network.
In each version, the round functions are chosen indepelyddrach other and mapiabit
input to ab-bit output.

We define the following six permutations:

— Let PRP1, PRP2, PRP3 be three independently chosen pseudorandom permuta-
tions.
— Let RP1, RP2, RP3 be three independently chosen random permutations.

12
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Fig. 3. Three-Round Networks Consisting of RPs and PRPs

Let Ni refer to a three-round elastic network in the encryptioedion in which the
first 7 round functions are pseudorandom permutations and themgmaound functions
are random permutations, foe= 0, 1, 2, 3 defined as follows:

— NO: Each round function is a RP. The round functions&¢el, RP2 and RP3.

— N1: The first round function is the PRP. The second and thirdddunctions are RPs.
The round functions ar® RP1, RP2 andRP3.

— N2: The first two round functions are PRPs and the third roundtfan is a RP. The
round functions aré? RP1, PRP2 and RP3.

— N3: Eachround functionis a PRP. The round functionsiarg?1, PRP2 andPRP3.

As shown by Theorem Y0 is a PRP. Therefore, if Theorem 3 is not true it is possible
to distinquish/V3 from N0 with probability> « for some non-negligible whered < o <
1. However, if N3 can be distinquished from random then at least one 81, PR P2
and PR P3 can be distinguished from random, which is a contradictiothé definition of
a PRP and thus proves Theorem 3. Debe a distinguisher that takés+ y)-bit inputs and
runs in polynomial time D outputs a 1 if it thinks the inputs are the outputs of a random
permutation and outputs a 0 otherwise. Idt(Ni) be the probability thaD outputs a
1 when given polynomially many outputs frofdi. If N3 can be distinguished from a
random permutation, thg#r(N0) — Pr(N3)| > «. However,

|Pr(NO) — Pr(N3)| = |Pr(N0O) — Pr(N1) + Pr(N1) — Pr(N2) + Pr(N2) —
Pr(N3)| < |Pr(NO) — Pr(N1)| +|Pr(N1) — Pr(N2)| + |Pr(N2) — Pr(N3)|.
Thereforep < |Pr(NO) — Pr(N1)| + |Pr(N1) — Pr(N2)| + |Pr(N2) — Pr(N3)|.
This implies at least one term on the right side of the ineigued > <. Therefore, it is
possible to distinguish a three-round elastic network aneéhcryption direction that has
1 round functions that are pseudorandom permutations3and round functions that are
random permutations from a three-round elastic networkitas; — 1 round functions that
are pseudorandom permutations dnd i round functions that are random permutations
with non-negligible probability, whereis at least one value frofil, 2, 3}. Therefore, it
is possible distinguish between a round function which iaralom function and one that
is a pseudorandom function with non-negligible probagitbntradicting the definition of
pseudorandom.
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Theorem 4. The inverse of a four-round elastic netwotk’~!), onb + y bits in which
the round functions are independently chosen PRP&laits is a variable-length pseudo-
random permutation oh + y bits for any fixed value af where0 < y < b. Four rounds
are the minimum number of rounds required.

Proof. First, as noted in Theorem 2, the inverse of a three-rourstieleetwork cannot be a
PRP. The proof uses the same method as in the proof to Thegrgithh&@ach network now
having four rounds and/: defined fori = 0,1, 2, 3, 4, with 4 — ¢ round functions being
RPs and round functions being PRPs. In each version, the round iumgtare chosen
independently of each other and maj-ait input to ab-bit output.

We define the following eight permutations:

— Let PRP1, PRP2, PRP3, PRP4be four independently chosen pseudorandom per-
mutations.

— Let RP1, RP2, RP3, RP4 be four independently chosen random permutations.

Let Ni refer to the inverse of a four-round elastic network in whilsh first: round
functions are pseudorandom permutations and the remaiaingl functions are random
permutations, fof = 0, 1, 2, 3, 4 defined as follows:

— NO: Each round function is a RP. The round functionsi&rel, RP2, RP3 andRP4.

— N1: The first round function is the PRP. The second to fourth ddunctions are RPs.
The round functions ar@ RP1, RP2, RP3 and RP4.

— N2: The first two round functions are PRPs and the last two are Risround func-
tions arePRP1, PRP2, RP3 andRP4.

— N3: The first three round functions are PRPs and the last one iB.arRe round
functions arePRP1, PRP2, PRP3 and RP4.

— N4: Each round function is a PRP. The round functions @f@P1, PRP2, PRP3
andPRPA4.

As shown by Theorem 2Y0 is a PRP. Therefore, if Theorem 4 is not true it is possible
to distinquishN4 from N0 with probability > « for some non-negligible: where0 <
a < 1. We will show that if N4 can be distinquished from random then at least one of
PRP1,PRP2, PRP3 and PR P4 can be distinguished from random in order to derive a
contradiction and thus conclude Theorem 4 is true.

Let D be a distinguisher that takés + y)-bit inputs and runs in polynomial timeé?
outputs a 1 if it thinks the inputs are the outputs of a randenmuitation and outputs a 0
otherwise. LefPr(N4) be the probability thab outputs a 1 when given polynomially many
outputs fromVi. If N4 can be distinguished from a random permutation, tier{ N0) —
Pr(N4)| > a.

However,

|Pr(NO) — Pr(N4)| = |Pr(NO) — Pr(N1) + Pr(N1) — Pr(N2) + Pr(N2) —
Pr(N3)+ Pr(N3) — Pr(N4)|

< |Pr(NO0) — Pr(N1)|+|Pr(N1) — Pr(N2)|+ |Pr(N2) — Pr(N3)| + |Pr(N3 —
Pr(N4)|.

Thereforepy < |Pr(NO) — Pr(N1)| + |Pr(N1) — Pr(N2)| + |Pr(N2) — Pr(N3)| +
|Pr(N3) — Pr(N4)|.
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This implies at least one term on the right side of the inequed > . Therefore, it is
possible to distinguish a four-round elastic network in deeryption direction that hais
round functions which are pseudorandom permutationstand round functions that are
random permutations from a four-round elastic network tfigst — 1 round functions that
are pseudorandom permutations @nd 7 round functions that are random permutations
with non-negligible probability, wheree {1, 2, 3,4}. Therefore, it is possible distinguish
between a round function which is a random function and oa¢ itha pseudorandom
function with non-negligible probability, contradictirige definition of pseudorandom.

4 Variable-Length SPRPs from Fixed-Length PRPs

We now show how to construct variable-length SPRPs from flgadth PRPs. We prove
that a five-round elastic network in which the round funcsi@me independently chosen
fixed-length PRPs is a variable-length SPRP. This allowsdsrtn SPRPs o + y bits
from b-bit PRPs, wheré < y < b.

We note that a five-round elastic network consisting of roumdtions that are indepen-
dently chosen PRPs is a PRP in both the encryption and démmygtections by Theorems
3 and 4. We also note that by the definition of a SPRP, any rarmmwmutation is a SPRP.
Before stating the theorem regarding the y bit SPRP, we prove a claim. LétP1 and
RP2 be two independently chosen random permutations, each bits. Let Perm1(x)
= RP2(RP1(x)), wherex is of lengthm. Perml is a random permutation om bits
and is a SPRP. Now we consider what happens if we use a conaidfpseudorandom
permutations and permutations in place of RP1 and RP2. Weededirmutations?’1, P2,
PRP1 andPRP2 to satisfy the following conditions:

— P1(x) andP2(z) are independently chosen permutationsobits. P1 # P2 except
with negligible probability.P1 is not pseudorandom in that a relationship between
some subset of bits in its inputs and outputs that occursnaithinegligible probability
is known, but the exact permutation is unknown. Specificallyen given a black box
that contains eitheP1 or a random permutation dnbits, it is possible to determine
the contents of the box in polynomially many queries. Howewden usingP1 in
forming P A as defined below, the exact permutation correspondirgjites unknown
in that P1 will involve applying a PRP to the firétbits of its(b+y)-bit input. Likewise
for P2, which is used to formP B as defined below. The PRPs usedihand P2 are
not the same PRP, except with negligible probability.

— PRP1(z) and PRP2(z) are pseudorandom permutationsrarbits whose indepen-
dence is defined by the independencéafand P2 such that
P2(PRP2(P1(x))) = PRP17(x).

— PA(xz) = PRP2(P1(x))

— PB(z) = PRP1(P2(x)). Therefore PB = PA~!

— Perm?2 will refer to the permutation corresponding foA and PB. Perm2 = PA
andPerm2~! = PB.

Itis possible to definé’1, P2, PRP1 and P RP2 that satisfy these constraints. For exam-
ple, we will later show how a five-round elastic network canvieved in this manner by
defining P1 to be the first roundP2 to be the inverse of the last roundR P2 to be the
last four rounds an@® R P1 to be the inverse of the first four round3erm?2 is a pseudo-
random permutation om bits (this is justP R P2 and P RP1 with the inputs selected by
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choosingn bits then applying a permutatioR,1 or P2, to the input before giving it to the
pseudorandom permutation).

Claim 1: Perm?2 is a SPRP.

Proof. In order for Perm?2 to be a SPRP it must not be possible to distinguishrm?2
from a random permutation on polynomially mamy) Queries toP A and its inverseP B.
For simplicity, when we say an adversary is queryidg-m1 or Perm2, we mean the
adversary is able to issue queries to both the permutatidntarinverse. The adversary
does not have direct accessi®d and P2, meaning the adversary is not able to quéry
and use the output as inputBR P2 and/or queryP2 and use the output as input®RR P1.
The adversary can only give inputsk4 and P B.

— Let (p;, ¢;), fori = 1 ton be pairs ofm bit strings such that; = PA(p;).
Let < +, p; > denote a query t& A using inputp;.
Let < —, ¢; > denote a query t& B using input;.
Let ¢; be the output of thé?” query.t; = ¢; when the query is< +, p; > andt; = p;
when the query i< —, ¢; >.
LetT = (t1,ts,....t,) be the output of: distinct queries taP A. If the it query is
< +,p; > and thej!" query is< —,¢; >, t; = p; if and only if t; = ¢;, fori # j.
Without loss of generality we can assume that if an advergaeyies with< +,p; >
that he will not later query with< —,¢; > since he knows the answer will hg
regardless of whether he is queryiRgrm1 or Perm?2.

— LetU = (uq,ua,....u,) be the output of: distinct queries made tBerml.
We will refer to U andT' as transcripts ofPerm1 and Perm?2, respectively. In order
for Perm?2 to be a SPRP, it must not be possible to distinguisfrom U with non-
negligible probability. The probability ofi;; ocurring given(py, c1), (pa, ¢2)...(ps, ¢i)
is 5=— becaus&’erml is a random permutation. The probability of a spedifioccuring

2m —gq
is Prr = [[1 3.

Since P A is a pseudorandom permutation, it is not possible to diatstgthe output,

t;, of any single query from the output of a random permutati¢h won-negligible prob-
ability. For any single query t@ A, the output occurs with probabilitg% + e for some
negligiblee. When giveni queries taP A, the (i + 1)%¢ such query produces an output that
occurs with probabilityﬁ + e4, for negligiblee 4, . Likewise, when giveri queries to
PB, the(i + 1)* such query produces an output that occurs with probabjlity- + e,

for negligibleep,. Even thoughP A and PB are inverses of each other, there is no non-
negligible relationship between the outputsfofi and PB because these are the outputs
of PRP2 and PRP1, respectively. A transcript ofl1 distinct queries taP A will occur
with probability(]‘[;’:lg1 ﬁ) + e 4 for negligiblee 4. A transcript ofn2 distinct queries

to P B will occur with probability(]_[;ﬁg1 2,,}#) + ep for negligiblee.

We consider the probability with which a transcrifft» 4, of n1 queries toPA oc-
curs and with which a transcripf,rz, of n2 queries toP B occurs. Suppose an adver-
sary makes:1 queries toP A and that between the queries, the adversary is givem;)
pairs that correspond tB A (I.e., the adversary is given extra pairs for which he did not
need to expend resources) such that overall, the advessgiyeinn2 such pairs. The ad-
versary will not repeat any query or make a query for which Ineagly been given the
outcome. Letna; be the number ofp;, ¢;) pairs the adversary has been given prior to
the (i + 1)%t query to PA. na; > na;—1 for 1 < i < nl. Tpa occurs with probabil-

ity Pra = ([Iy" 55———) + epa for negligibleer 4. Suppose an adversary makes

2m —j—na;
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n2 queries are made t6B and that between the queries, the adversary is givemn;)
pairs that correspond tB B (1.e., the adversary is given extra pairs for which he did not
need to expend resources) such that overall, the advessgiyeinn1 such pairs. The ad-
versary will not repeat any query or make a query for which Ineagly been given the
outcome. Letnb; be the number ofp;, ¢;) pairs the adversary has been given prior to
the (j71)st query toPB. nb; > nb;_; for 1 < j < n2. Tpp occurs with probability
Pry = (IT}2," 5v=t=) + eps for negligiblec p .

Whenn = nl 4+ n2 queries are made to Perm2 such thatgueries are made tBA
andn2 are made taP B (the queries can be in any order), the probability of theItegu
transcript,7’, from Perm2 can be written as the productrofy and Prp. Let ¢B; be the
number of queries made 5 between the'" and (i + 1)** queries toP A. Let gA; be
the number of queries made kA between thg?” and(j + 1) queries taP B. By setting
na; =y ._oqAr andnb; = >, _, ¢Bx, the probability ofI” occurring is

(Pra)(Pre) = ([T ! s—) + epa)s (11725 5r—ti) + €pB)

nl—1 n2—1 nl—1

= (T i) * T2 s=;) + ([Ti20 i) * €pa

+(H;zal m) xepp +epa xepp.

= [17=, 5= + e for negligiblee.

Therefore, it is not possible to distinguighfrom U with non-negligible probability.

Theorem 5. A five-round elastic network dn+ y bits in which each round function is an
independently chosen PRP bihits is a variable-length SPRP dn+ y bits for any fixed
value ofy where0 < y < b. Five rounds are the minimum number of rounds required.

— PRP1

—— PRP2

P2

Fig. 4. Five-Round Elastic Network as Two PRPs and Two Permuattions

Proof. Refer to Section 5 for an example showing why four roundsrasefficient.

G’ refers to a five-round elastic network ént+ y bits with round functions that are
independently chosen PRPs bibits. G’ can be defined in a format consistant with the
four permutations used in Claim P1, P2, PRP1, PRP2. Figure 4 shows a five-round
elastic network represented in this manner. In the figueeRii’'s are independently chosen
pseudorandom permutations.

— Let P1 refer to the first round of’, including the swap step.
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— Let P2 referto the inverse of the last round@f, including the swap step that precedes
the round functioni.e., P2 is the first round inG’ 1.

— P1 and P2 are independently chosen permutations, because Ratlis a indepen-
dently chosen pseudorandom permutations. The exact pationg used fo°’1 and
P2 are unknown because they involid'1 and RF'4, respectivelyP1 and P2 are not
pseudorandom because they can be distinguished from amgpelonutation by using
gueries where thbit portion of input is held constant and thebit portion is varied.

— Let PRP2 refer to the last four rounds @¥'; i.e., all steps inG’ after P1.

— Let PRP1 refer to the inverse of the first four rounds@f, excluding the swap step
after the third roundP R P1 consists of all steps i6’~! after P2.

PRP1 and PRP2 are PRPs o + y bits by Theorems 4 and ##RP1 # PRP27!.
P1 and P2 are permutations oh+ y bits. By settingPA = PRP2(P1(x)) andPB =
PRP1(P2(x)), PB = PA~!. Therefore, by Claim 1(’ is a SPRP.

In our analysis for the three, four and five round cases, weiregd|the round functions
be independently chosen random permutations. It may bép®$s relax the requirement
that the round functions must independently chosen PRPsniaraner similar to what
was done by Naor and Reingold in their analysis of Feistakoits [8]. While we have
not determined to what extent the independence of the raumztibns can be relaxed, we
know that at least two of the round functions must differ,eptavith negligible probability.
Specifically, a three-round elastic network and the invefsefour-round elastic network
in which the round functions are identical are not PRPs. Thefg are provided in Section
5. These results indicate some independence is requirée odbtind functions.

5 Counter-Examples

We provide a lower bound on the minimum number of rounds ne:e@dan elastic network
to create variable-length PRPs and variable-length SPRpsdviding examples of when
fewer rounds are not PRPs and SPRPs. We also show that andevdiof independence is
required between the round functions by considering cabesall of the round functions
are identical. First, we show that at least three rounds eeded for an elastic network to
be a PRP by proving that a two-round elastic network is not B Rigardless of the round
functions. Second, we show that a three-round elastic nktiwmot a PRP when the round
functions are identical. Third, we show that the inverse tifrae-round elastic network is
not a PRP regardless of the round functions. Fourth, we shawthe inverse of a four-
round elastic network is not a PRP when the round functioasdemtical. Fifth, we show
that three and four-round elastic networks are not SPRgardkess of the round functions.
When proving an elastic network is not a variable-length RRRRariable-length SPRP
under specific conditions on the number of rounds and/orddumctions, it is sufficient to
provide an example for one block size. All of the counterregies use &b-bit block size
(y = b). Each example will not hold with probability 1 when< b.

Claim 2:
An elastic network with exactly two rounds is not a PRP.

Proof. This claim holds regardless of the properties of the roumattions. Consider the
case wherey = b. Given two 2b-bit plaintexts of the formB||Y'1 and B||Y2 (the b-bit
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portion is the same in each), let the ciphertexts be denagt€dihZ1 andC2||Z2, respec-
tively. Z1 = Z2 with probability 1. If the two-round construction was a PRPbet y bits,
then for large, this equality would occur with probability " + e for negligiblee instead
of with probability 1.

f1(f1(B))
Lo |
C1

Bl = 0] = |Z1]
Encrypting B || Z1 results in Z2 = C1

Fig. 5. Three-Round Elastic Network with Identical Round Funcgion

Claim 3:
A three-round elastic network is not a PRP when the roundtfoms are identical.

Proof. Consider the case shown in Figure 5 when= b. Let 0 denote a string of ze-
roes. EncryptB||0 and letC1||Z1 denote the resulting ciphertex@1 = f1(f1(B)).
Cl = f1(f1(f1(B))@ f1(B)). ThenencrypB3|| Z1 and letC2|| Z2 denote the ciphertext.
Z2 = C'1 with probability 1. If this three-round network was a PRPbof y bits, then for
largeb, this equality would occur with probability—° + e for negligiblee instead of with
probability 1.

Claim 4:
The inverse of a three-round elastic network is not a PRP.

Proof. This is illustrated in Figure 6. The inputs to the round fiows are defined in the
directions of the arrows in the figure and correspond to tinection of decryption. This
claim holds regardless of the properties of the round fonstiand is due to the fact that,
wheny = b, the input to the inverse of the second round function is kmbecause it is
the rightmosty bits. In contrast, in the encryption direction, the XOR aftee first round
prevents the input to the second round function from beirgseh. Let) denote a string
of b zeroes. Whery = b, create four2b-bit ciphertexts of the fornC'1||0, C2||0, C1||Z
andC2||Z whereC'1 # C2 andZ # 0. Let the plaintexts be denoted 81||Y'1, B2||Y2,
B3||Y3 and B4||Y4. ThenY'1 = f271(0) & f371(C1), Y2 = f2710) & f371(C2),
Y3 =f2"Y2Z)e Za f371(C1) andY4 = f271(2) @ Z @ f371(C2). As a result,
Y1® Y2 = Y3 @ Y4 with probability 1. If the three-round network was a PRP28n
bits in the decryption direction, then for largethis equality would occur with probability
2-b 4 ¢ for negligiblee instead of with probability 1. When < b, the attack does not hold
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cegl==PR==Dl==D
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4 R &

|Ci| = |Z] = b, C1 # C2, 0 = string of b zeroes, Z# 0

Fig. 6. Three-Round Elastic Network: Chosen Ciphertext Attack

with probability 1 because the input to the second round ofyggion contain® — y bits
of f4=*(C1). Theseb — y bits would have to be equal fgid=#(C1) and f4=4(C2).

B1 Y1

B1 = f1-1(0)
Y1 = f1-1(B1)

Y1

11(0)

Fig. 7. Four-Round Elastic Network with Identical Round Functions

Claim 5:
The inverse of a four-round elastic network in which the mbfumctions are identical
is not a PRP.

Proof. Consider the case shown in Figure 7 wher= b. Let 0 denote a string ob ze-
roes. Decrypb||0 and letB1||Y'1 denote the resulting plaintexBl = f1-1(0). Y1 =
f171(f171(0)) = f1=Y(B1). Decrypt0||B1 and letB2||Y2 denote the resulting plain-
text. Y2 = f171(B1) @ f171(0) = Y1 @ B1 with probability 1. If the inverse of this
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four-round network was a PRP @+ y bits, then for largé, this equality would occur
with probability2—° + e for negligiblee instead of with probability 1.

Neither a three-round nor a four-round elastic network iP®RB In both cases, this
can be shown with an adaptive chosen plaintext - chosen tgpti@ttack in which two
chosen plaintexts are encrypted then two chosen plainfestteed from the two resulting
ciphertexts are decrypted. We include one four-round aatexample here.

B1 Y1 B1 Y2 ?3 Y3 ?4 Y4

f1 1 I l[ 1] I

& 0 N Y d Y
[ | [ ] e | [ ]

& & & &
[ ] N | s | | 1 ]

& & o &

4 Dla [ 4 ] | fét |

C1 0 C2 72 c2 0

|0] = |Bi| = |Yi| = |Ci| = |Zi] Y1#Y2
Results in B3 = B4

Fig. 8. Four-Round Elastic Network: Chosen Plaintext - Chosen €igixt Attack

Claim 6:
A four-round elastic network is not a SPRP whies y.

Proof. This claim holds regardless of the properties of the roumdtions and is due to
the fact that a three-round elastic network in the decrypdimection is not a PRP. In the
three round case, using chosen ciphertexts only, a resdtiprcan be pushed through the
three rounds of decryption into the right half of the outpittwprobability 1 wheny = .

In the four round case, the same approach is used in that theshaf two ciphertexts
are switched to form to new ciphertexts and push a relatiprisko the rightmosty bits

of the output of the third round. When = b, this becomes the entire input to the round
function in the fourth round of decryption. This time, onaiptext must be encrypted to
assist in providing the values from which the ciphertexésfarmed. The sequence of three
decryptions and one encryption shown in Figure 8 can be asgidtinguish the four-round
elastic network from a SPRP when= b. Each plaintext and ciphertext is of lengib,
I.e.|B| = |Bi| = |Yi| = |Ci| = |Zi] = b Vi. Let0 denote a string of zeroes. Decrypt
a ciphertext of the fornt'1||0. Let B1||Y'1 be the resulting plaintext. Encrypt a plaintext
of the formB1||Y'2 with Y2 # Y'1. Let C2||Z2 be the resulting ciphertext. The output of
the first round functiong1, is identical in both the decryption and encryption. Forno tw
ciphertexts(2||0 andC'1||Z2, and decrypt them. LeB3||Y'3 and B4||Y 4 denote the two
resulting plaintextsB3 = B4 with probability 1.

21



Notice thatal = f4=1(C1) @ f371(0) = Z2 @ f4-1(C2) @ f371(Z2)
a3 = f471(C2) @ f371(0)
ad =720 f47HC1) @ f371(Z22)
By rearranging the equations fo:
fA7HC2) @ £3750) = Z2@ f471(C1) @ f371(22).
Therefore, a3 = a4 andB3 = B4.

6 Discussion and Extensions

Our analysis validates the soundness of the underlyingtsirel used in creating elastic
block ciphers. We have proven that a three-round elastiworktand the inverse of a
four-round elastic network are variable-length PRPs andearfiund elastic network is

a variable-length SPRP when the round functions are inckpely chosen PRPs. These
results allow for the creation db + y)-bit PRPs and SPRPs frobabit PRPs, for each
value ofy where0 < y < b. We also proved that these are the minimum number of rounds
required and that the results do not hold when all of the rdundtions are identical.

We can extend our PRP and SPRP constructions to cover a vaidge iof input sizes
by using instances of CMC mode [5] as the round functionsiwithe elastic network.
CMC mode producesib-bit SPRPs from a fixed-lengthbit PRP, wheren is an integer
and2 < m < a, for some integer upper bound of It involves encrypting data using a
block cipher in CBC mode, applying a mask, then encryptieg#sulting data in a reverse
CBC mode. By using a-bit PRP in CMC mode for each of the round functions in the
elastic network (the PRPs are still independently chosessa@ach round), we are able to
create variable-length SPRPs on a larger range of inputhenm single bit increments,
then when using the elastic network by itself.

Theorem 6. A variable-length SPRP accepting inputs of lengib v, where2 < m < «
andy is a fixed value such thét < y < mb, can be formed from using instances of CMC
mode as the round functions in a five-round elastic netwaritependently chosen fixed-
length PRPs o# bits are used across the instances of CMC mades the minimal upper
bound on the length of SPRPs produced by the five instanced GfrGode.

Proof. (sketch) The result follows directly from the fact that timelividual instances of
CMC mode are SPRPs [5] and Theorem 5. The round functiongieldstic network are
the SPRPs created from instances of CMC mode. The block spgmosted by the round
functions will be the shortest of the lengths supported leyitistances of CMC mode. Let
ab be the minimum upper bound on the length of SPRPs produceldebfive instances
of CMC mode. The length of the round functions within the #tasetwork must be of
the same length; therefore, the maximum length supportetidyound functions igb.
The elastic network extends the supported input leng@tnio By varying the block size
supported by the round function fro2h to ab, SPRPs on all input lengths betwenand
2ab can be formed. We also note that a PR+ y bits is formed by using CMC mode
in a three or four elastic network instead of a five round elasttwork.

This combination for supporting variable-length inputsiggue from previous designs
of variable-length block ciphers that worked on any inpagf [1, 9]. Those constructions
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work by creating an 1V to use with the cipher in counter motientcreate a key stream
to XOR with all but one block of the data. When dealing withubjengths beyond two

blocks, the use of CMC mode and the elastic network providesal@rnative approach
to [1, 9] that does not apply a key stream, but rather creapesrautation that results in
diffusion across all of the bits.
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