
Authentication on Untrusted Remote
Hosts with Public-key Sudo

Matthew Burnside, Mack Lu, and Angelos D. Keromytis – Columbia University

ABSTRACT

Tw o common tools in Linux- and UNIX-based environments are SSH for secure com-
munications and sudo for performing administrative tasks. These are independent programs with
substantially different purposes, but they are often used in conjunction. In this paper, we describe a
weakness in their interaction and present our solution, public-key sudo.

Public-key sudo1 is an extension to the sudo authentication mechanism which allows for
public key authentication using the SSH public key framework. We describe our implementation
of a BSD SSH authentication module and the SSH modifications required to use this module.

Introduction

In today’s age of large, distributed networks,
trusted remote machines are rare. That is, untrusted
machines are the common case, but through business
or other requirements, users and administrators find
themselves required to connect to such machines,
regardless. These may be machines maintained by dis-
reputable system administrators, machines which are
believed to have suffered compromises, or simply
machines for which the user suspects there is a high
probability of future compromise. It is desirable not to
provide sensitive information to such machines.

Two tools which have become the norm in such
environments are SSH [15] and sudo [11]. These are
indpendent programs with substantially different pur-
poses, but they are often used in conjunction. In this
paper, we describe a weakness in their interaction, and
then present public-key sudo to solve it.

SSH is a tool used for secure communication
between computer systems. It protects the end user by,
among other things, providing confidentiality of the
user ’s data on the wire and authentication of the end-
host to the user. It also provides a framework for
authenticating the user to the end-host. In its default
configuration, SSH requires a password on the server,
but it can also be configured to use public keys.

To configure SSH for public keys, the user gen-
erates one or more key pairs (DSA or RSA) and dis-
tributes the public key(s) to the desired servers. The
private keys are encrypted with passwords and stored
on the local host. During the login process, the SSH
client prompts the user for the password to his private
key and uses it to decrypt the key. It then uses the

1This work was partially supported by NSF Grants CNS-
04-26623 and CNS-07-14647. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the NSF or the U.S. Government.

decrypted key to generate a signature which is sent to
the server. If the server can verify the signature, it
allows the user to log in.

SSH provides an additional tool SSH-agent
which assists in managing the private keys and further
assists in multi-hop sessions. After it is started, the
user registers each of his private keys and the SSH-
agent takes responsibility for each. The agent prompts
the user for the private-key passwords, then loads the
keys into protected memory. The agent also creates a
UNIX-domain socket on the local host, and stores its
location in a well-known environment variable. The
socket can be thought of as a tunnel directly to the
agent, and all communication with the agent is
through this socket. The SSH client then uses the tun-
nel to query the agent for authentication material dur-
ing the login process.

SSH also provides an option to forward this
socket to subsequent hosts. This allows SSH connec-
tions started multiple SSH hops away from the client’s
local host to connect back to the SSH-agent on the local
host and authenticate using the material it manages.

One of the great strengths of SSH with public-
key authentication is that a user can log in to an
untrusted host without providing any sensitive data.
The user provides only his public key and a signature.
Even if the remote host is compromised, the user’s
authentication material is safe. Compare this to pass-
word authentication; if the remote SSH daemon has
been compromised, an adversary can obtain the plain-
text password. Any tool on the remote host which uses
password authentication is susceptible to such an
attack. By default, sudo is one of those tools.

The UNIX sudo command is designed to allow
users to run commands as other users. It has a rich
configuration language which allows the system ad-
ministrator to delegate authority to execute commands
as root (or other users) to particular users. It also pro-
vides detailed auditing records. The most common
case is to use sudo for administrative purposes.

22nd Large Installation System Administration Conference (LISA ’08) 103

Authentication on Untrusted Remote Hosts with Public-key Sudo Burnside, Lu, and Keromytis

In this common case, the user instructs sudo to
execute a command, and sudo checks a configuration
file to verify that the user has permission to run the
command as root. It then authenticates the user via
password. If the password is correct, sudo then exe-
cutes the command as the root user, while logging the
details. In some environments [12, 5], sudo has sup-
planted the need for a root user entirely.

The sudo authentication mechanism can be con-
figured to require the user’s password (by default), the
root password, or no password. The sudo package also
includes extra authentication modules for Kerberos,
Secureware, and SecurID, among others. The extra
authentication modules operate in addition to the pass-
word requirements. That is, depending on the configu-
ration, a user may have to enter his Kerberos password,
and the root password. There is no module for public
key-based authentication. Heavyweight schemes like
Kerberos and SecurID require substantial investments
in time and/or money, so the best options for small- to
medium-sized networks are lightweight schemes such
as password authentication or S/KEY [3].

S/KEY is a one-time password scheme which
requires the end-user to maintain a hard-copy list of
passwords, or to run a one-time password generator
locally for each authentication attempt. Sudo requires
re-authentication every five minutes, by default, so
S/KEY is feasible for only the most dedicated. As a
result, password authentication is the most common
technique.

In this paper, we propose an extension to the
sudo authentication mechanism to allow for public key
authentication with the sudo engine. We describe our
implementation of an BSD authentication module that
uses SSH_AUTH_SOCK to authenticate incoming cli-
ents. We then describe the source code and configura-
tion changes required to provide public-key authenti-
cation with sudo.

Related Work

The sudo [11] architecture was designed by Bob
Coggeshall and Cliff Spencer at SUNY/Buffalo in the
early 1980s for a VAX-11/750 running 4.1BSD. Con-
trol of sudo has passed through many hands in the inter-
vening years. It is currently maintained by Todd Miller.

The SSH [15] protocol was designed in 1995 by
Tatu Ylonen at Helsinki University of Technology.
There are now several competing implementations of
the original protocol and its derivatives, including the
implementation released by SSH Communications Se-
curity (founded by Tatu Ylonen), and OpenSSH,
developed by the OpenBSD project. Our work is
based on the OpenSSH implementation.

The BSD Authentication framework [1] is an
authentication framework used by some UNIX-like
operating systems including OpenBSD and BSD/OS.
It is similar in spirit to the Pluggable Authentication
Modules (PAM) [10] found in Linux and Solaris.

Neither provides a mechanism for interaction with the
SSH authentication system.

Other related works include Kerberos [7] and
LDAP [4] which provide unified network authentica-
tion mechanisms. LDAP also provides the Proxied
Authorization Control [13]. In larger networks,
RADIUS [8] and its successor DIAMETER [2] pro-
vide authentication, authorization and accounting pro-
tocols. They allow communication with a policy
server to make policy-based decisions. These latter
protocols are typically used for user administration in
roaming and dial-up situations.

In [6], Napier describes a security flaw in the
default sudo configuration wherein an attacker can
obtain victim’s sudo privileges without the victim’s
password. Sudo caches the user’s password so that a
user only has to enter his password every five minutes.
That cache is valid for all TTYs on which the user is
logged in. If the attacker can run an arbitrary process
as the victim, then the attacker will have the same root
privileges. Napier recommends turning off password
caching entirely, but recognizes that this would en-
courage administrators to use a root shell to avoid re-
typing their passwords – a problem when it comes to
auditing. Sudo with public-key authentication will
allow the system administrator to turn off password
caching, and does not require frequent re-typing of the
administrator ’s passwords.

Sudo and SSH

Our implementation platform is the OpenBSD
4.2 operating system. This operating system ships with
OpenSSH 4.7 and sudo 1.6.9p4, with OpenBSD cus-
tomizations. In this section we will describe some rel-
evant details from the BSD Authentication framework,
sudo, SSH and the ssh-agent, as they exist in OpenBSD
4.2.
BSD Authentication Framework

OpenBSD uses the BSD Authentication frame-
work, sometimes called bsd_auth, to present a uniform
API to the various authentication modules. bsd_auth
maintains a collection of modules in /usr/libexec/auth/.
Each module performs a particular style of authentica-
tion, including password, Kerberos, S/KEY, and RA-
DIUS, among others. A user program interacts with
the authentication framework by making calls on the
bsd_auth API. The API then executes the modules as
separate processes in order to limit interactions be-
tween the child and parent processes, under the princi-
pal of least privilege [9].

The BSD Authentication framework is config-
ured through the file /etc/login.conf. This file allows the
user to add new authentication styles, and to assign
styles to specific users or programs.
Sudo

The sudo command takes as a command line
argument the command the user desires to have exe-
cuted another user (typically root). It then searches for

104 22nd Large Installation System Administration Conference (LISA ’08)

Burnside, Lu, and Keromytis Authentication on Untrusted Remote Hosts with Public-key Sudo

the user’s login name in the configuration file /etc/
sudoers, and verifies that the user has the correct per-
missions. Beyond this point, the sudo implementation
in OpenBSD diverges slightly from the general sudo
release.

The general sudo release is configured to support
multiple authentication styles, including passwords,
Kerberos, and SecurID. The code for implementing
each of these styles is included with the sudo release.
In OpenBSD, these are bypassed and the operating
system’s BSD Authentication framework is called
instead. To effect this, the sudo authentication mod-
ules have been replaced with a single module bsdauth
which, in turn, provides all interaction with the BSD
Authentication framework. Thus, on OpenBSD, the
authentication styles presented by sudo are those sup-
ported by the BSD Authentication framework.

Thus, the complete authentication process with
sudo is as follows. The bsdauth module uses the BSD
Authentication framework API to authenticate the
user. The API uses the definitions in login.conf to deter-
mine the particular authentication type, and then loads
the appropriate module from /usr/libexec/auth. The mod-
ule is loaded, it performs the authentication process,
and then completes with success or failure. If success-
ful, sudo executes the given command in a cleansed
environment. That is, all environment variables except
LOGNAME, SHELL, USER, and USERNAME are re-
moved.
SSH and the SSH Agent

The SSH-agent is used to facilitate the use of
public keys with SSH. We will walk through a sample
SSH connection, from an SSH client to an SSH server,
with SSH-agent enabled on the client, to illustrate
their interaction in the authentication process. Before
the authentication process can begin, the keys must be
generated using the ssh-keygen utility and the public
key must be stored on the server – appended to the
user ’s .ssh/authorized_keys file.

The user then starts the SSH-agent, and verifies
that the SSH_AUTH_SOCK environment variable has
been exported to the environment that will use the
agent. The user adds his keys to the agent using the
ssh-add command. The agent prompts the user for the
password to each key and then loads them into mem-
ory for future use. Once the key has been added to the
agent, the client is ready to initiate an SSH connection.

The SSH protocol architecture consists of a
transport layer protocol, a user authentication proto-
col, and a connection protocol. The transport layer
protocol provides encryption, integrity protection and
server authentication. The transport layer is negotiated
first. When it is complete, the user authentication pro-
tocol begins, as described in [14]. The client requests
public key authentication:
byte SSH_MSG_USERAUTH_REQUEST
string user name
string service name in US-ASCII

string "publickey"
boolean FALSE
string public key algorithm name
string public key blob

Where the ‘public key blob’ may contain certificates.
If the public key matches a public key stored on the
server, the server accepts the request:

byte SSH_MSG_USERAUTH_PK_OK
string public key algorithm
string public key blob

The client uses the SSH_AUTH_SOCK tunnel to obtain
from the agent a signature over the following data:

string session identifier
byte SSH_MSG_USERAUTH_REQUEST
string user name
string service name
string "publickey"
boolean TRUE
string public key algorithm
string public key for authentication

And returns it to the server:

byte SSH_MSG_USERAUTH_REQUEST
string user name
string service name
string "publickey"
boolean TRUE
string public key algorithm name
string public key for authentication
string signature

If the server is able to verify the signature, the
authentication has succeeded.

The agent forwarding option on SSH maintains
the SSH_AUTH_SOCK variable at each hop in a multi-
stage SSH connection. This means that when a client
connects to server h1, the SSH_AUTH_SOCK environ-
ment variable is re-created there, tunneled back to the
SSH-agent on the client machine. When the user then
initiates a connection from h1 to h2, the SSH process
uses the same SSH-agent connection, with the same
authentication process described above, connecting
through the SSH_AUTH_SOCK on h1. We take advan-
tage of the fact that this connection exists and use it to
leverage the authentication process to create public-
key sudo.

Implementation

Our implementation consists of the addition of a
new authentication style login_pubkey to the BSD Au-
thentication framework, and re-configuration of sudo to
make use of the new style. We link the login_pubkey
module to libssh during compilation, which allows our
module to manipulate SSH keys, request signatures,
and call other functions used by the SSH client and
SSH server.

We modify the login.conf file to add login_pubkey
to the BSD Authentication framework authentication

22nd Large Installation System Administration Conference (LISA ’08) 105

Authentication on Untrusted Remote Hosts with Public-key Sudo Burnside, Lu, and Keromytis

styles. We also modify the sudoers file, using the
env_keep directive, to preserve the SSH_AUTH_SOCK
environment variable for the authentication module.

When an authentication module is invoked by
the BSD Authentication API, it receive a number of
arguments from the calling process. These arguments
provide the necessary information for authentication
to occur. Parameters include the name of the user
being authenticated, the authentication service being
requested, and several other options, including details
on whether the authentication service being requested
is a challenge or a response. Since the challenge/
response portion of the SSH authentication are han-
dled outside of sudo, the challenge service is ignored
by login_pubkey; all work is performed during the
response service.

When login_pubkey receives a service request of
type response, this indicates that the parent authentica-
tion process is awaiting an authentication decision.
The module loads the SSH_AUTH_SOCK environment
variable and opens the socket which tunnels to the
SSH-agent, using the SSH client function ssh_get_
authentication_connection(). The module then queries the
agent for key details using the ssh_get_first_identity()
and ssh_get_next_identity() functions.

With the private key details in hand, login_pubkey
then searches the user’s authorized_keys file for a cor-
responding key by calling the SSH server function
user_key_allowed(). It requests the agent signature by
calling ssh_agent_sign, and verifies it by calling key_
verify(). If it succeeds, then user has successfully
authenticated. If any of the functions above fail, the
process is considered a failed authentication.

This process is identical to the authentication
process performed in SSH, with login_pubkey serving
as both SSH client and SSH server with respect to the
SSH-agent. At process completion, a standard SSH
public key authentication has taken place, and no sen-
sitive information has been revealed on the server.
Furthermore, with agent forwarding, the SSH_AUTH_
SOCK is recreated, tunneling back to the original
agent, on each subsequent hop in a multi-hop session,
so this process remains unchanged even in multi-hop
sessions.

Example Session

In this section, we will walk through an example
session using sudo with public key authentication. The
user starts his SSH-agent, and checks to make sure
that the SSH_AUTH_SOCK environment variable has
been created. This variable contains the filename of
the UNIX domain socket connected to the agent.
castor% ssh-agent
castor% echo $SSH_AUTH_SOCK
/tmp/ssh-aHYaC22922/agent.22922

The user then adds his private key to the agent. The
agent now manages the private key, and it is now

possible to make queries through SSH_AUTH_SOCK
against this key. We also make use of the -c option
which is discussed in the following section.
castor% ssh-add -c .ssh/id_rsa
Identity added: .ssh/id_rsa

Next, the user connects to the remote server making
sure to enable agent forwarding. After connecting, the
user checks to make certain that the SSH_AUTH_SOCK
has been forwarded.
castor% ssh -A pollux
pollux% echo $SSH_AUTH_SOCK
/tmp/ssh-kOfZrk1118/agent.1118

It is now possible to use sudo with public key authen-
tication:
pollux% ./sudo -a pubkey /bin/ls
file.1 file.2 hello.txt
pollux%

From the server pollux, connect to another server
clytemnestra, again with agent forwarding.
pollux% ssh -1 -A clytemnestra
clytemnestra% echo $SSH_AUTH_SOCK
/tmp/ssh-jjneu20310/agent.20310

Sudo on clytemnestra uses the local SSH_AUTH_SOCK
which tunnels through pollux to the agent on castor and
authenticates the user.
clytemnestra% ./sudo -a pubkey /bin/ls -a
this_is_an_empty_file hello.txt
clytemnestra%

As long as the SSH_AUTH_SOCK is forwarded, the
number of intervening hops does not affect the authen-
tication mechanism.

Discussion

The adversary we consider is one who has a root
compromise on the remote host. He may have in-
serted, among other things, malicious replacements for
the SSH and Sudo executables and the authentication
modules. Our goal is to prevent the adversary from
obtaining any sensitive authentication materiel (such
as a password).

From this adversary, SudoPK can be viewed as
an API on top of SSH agent forwarding. It does not
provide any additional functionality, it simply pro-
vides easier access to the agent. Hence, we must focus
on attacks on the agent itself.

An adversary who has access to a user’s SSH_
AAUTH_SOCK can use it as an oracle to generate signa-
tures for connecting to any host for which that user has
permission. SSH-agent provides protection against this
attack by allowing the user to add keys with the -c
option. This option requires the local-host identity be
confirmed (via password) before every signature. In
this fashion, the end-user will be notified of unautho-
rized authentication attempts using the SSH-agent.

Even with the -c option in place, the adversary
may attempt to race for the SSH_AUTH_SOCK during a

106 22nd Large Installation System Administration Conference (LISA ’08)

Burnside, Lu, and Keromytis Authentication on Untrusted Remote Hosts with Public-key Sudo

valid attempt. If the adversary wins, the end-user will
receive the -c password prompt as expected. To pre-
vent this attack, which is an attack on agent forward-
ing, regardless of whether SudoPK is in place, we
modify the SSH agent to present the user with the data
to be signed and requesting confirmation before gener-
ating a signature.

Conclusion

The public-key sudo mechanism is an implemen-
tation that solves a specific and common problem.
However, the concepts used here are generic and can
be extended. The notion of public-key authentication
through secure tunnels, as implemented in SSH with
agent forwarding, is quite powerful. The login_pubkey
module is a generic interface to that mechanism and
can be used by any application, not just sudo. We
believe that this architecture is applicable in other sce-
narios, including remote attestation. In this scenario,
the trusted platform module (TPM) takes the place of
the SSH-agent, and queries against the TPM may be
made through the corresponding agent tunnel.

Author Biographies

Mack Lu received his B.S. in Computer Engi-
neering from Columbia University. During his under-
graduate years he worked at the Network Security
Laboratory. He is currently at Google.

Matthew Burnside is a Ph.D. student in the
Department of Computer Science at Columbia Univer-
sity. He works for Professor Angelos Keromytis in the
Network Security Lab. He received his B.A in Com-
puter Science and M.Eng in Computer Science and
Engineering from MIT. His research interests are in
network anonymity, trust management, and enterprise-
scale policy enforcement.

Angelos Keromytis is an Associate Professor
with the Department of Computer Science at Co-
lumbia University, and director of the Network Secu-
rity Laboratory. He received his B.Sc. in Computer
Science from the University of Crete, Greece, and his
M.Sc. and Ph.D. from the Computer and Information
Science (CIS) Department, University of Pennsylva-
nia. He is the author and co-author of more than 130
papers on refereed conferences and journals, and has
served on over 70 conference program committees. He
is an associate editor of the ACM Transactions on
Information and Systems Security (TISSEC). He re-
cently co-authored a book on using graphics cards for
security, and is a co-founder of StackSafe Inc. His cur-
rent research interests revolve around systems and net-
work security, and cryptography.

Bibliography

[1] BSD Authentication System, http://www.openbsd.
org/cgi-bin/man.cgi?query=bsd_auth .

[2] Calhoun, P., A. Rubens, H. Akhtar, and E. Gutt-
man, ‘‘DIAMETER Base Protocol,’’ Internet

Draft, Work in progress, Internet Engineering
Task Force, December, 1999.

[3] Haller, Neil M., ‘‘The S/KEY One-time Password
System,’’ Proceedings of the Internet Society
Symposium on Network and Distributed Systems,
pp. 151-157, 1994.

[4] Harrison, R., ‘‘Lightweight Directory Access Pro-
tocol (LDAP): Authentication Methods and Secu-
rity Mechanisms,’’ RFC 4513, June, 2006.

[5] Mac OS X, http://www.apple.com/macosx .
[6] Napier, Robert A., ‘‘Secure Automation: Achiev-

ing Least Privilege with SSH, Sudo and Setuid,’’
18th Large Installation System Administration
Conference, pp. 203-212, November, 2004.

[7] Neuman, B. Clifford and Theodore Ts’o, ‘‘Ker-
beros: An Authentication Service for Computer
Networks,’’ IEEE Communications, Vol. 32, Num.
9, pp. 33-38, 1994.

[8] Rigney, C., A. Rubens, W. Simpson, and S. Wil-
lens, ‘‘Remote Authentication Dial In User Ser-
vice (RADIUS),’’ Request for Comments (Pro-
posed Standard) 2138, Internet Engineering Task
Force, April, 1997.

[9] Saltzer, Jerome H. and Michael D. Schroeder,
‘‘The Protection of Information in Computer Sys-
tems,’’ Proceedings of the IEEE, Vol. 63, Num. 9,
pp. 1278-1308, 1975.

[10] Samar, V. and R. Schemers, Unified Login with
Pluggable Authentication Modules (PAM).

[11] Sudo, http://www.sudo.ws .
[12] Ubuntu 8.04, http://www.ubuntu.com .
[13] Weltman, R., ‘‘Lightweight Directory Access Pro-

tocol (LDAP) Proxied Authorization Control,’’
RFC 4370, February, 2006.

[14] Ylonen, T., ‘‘The Secure Shell (SSH) Authentica-
tion Protocol,’’ RFC 4252, January, 2006.

[15] Ylonen, T., ‘‘The Secure Shell (SSH) Protocol
Architecture,’’ RFC 4251, January, 2006.

22nd Large Installation System Administration Conference (LISA ’08) 107

