
Asynchronous Policy Evaluation and Enforcement

Matthew Burnside
Computer Science Department

Columbia University
New York, NY

mb@cs.columbia.edu

Angelos D. Keromytis
Computer Science Department

Columbia University
New York, NY

angelos@cs.columbia.edu

ABSTRACT
Evaluating and enforcing policies in large-scale networksis one
of the most challenging and significant problems facing the net-
work security community today. Current solutions are limited by
an out-of-date allow/deny paradigm, and policies are evaluated syn-
chronously and independently at each service. This makes itdiffi-
cult to detect or defend against multi-stage attacks, or attacks which
begin as innocent requests and then later exhibit maliciousbehavior
in the same context. In this paper we describe Arachne, a prototype
for asynchronous policy evaluation. We evaluate the systemby test-
ing it against pre-recorded traffic containing known and unknown
attacks and show that it is capable of processing events at more than
10x the required rate for a deployed, heavily-used network.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection—access controls, information flow con-
trols

General Terms
Management, Security

Keywords
Policy, Access control, Security, Scalabilty

1. INTRODUCTION
One of the most significant problems facing the network security
community is that of evaluating and enforcing policies in large-
scale networks. As networks increase in complexity, so mustpolicy
definition, evaluation, and enforcement. While substantial work
has been done on policy definition in large-scale networks [14, 3,
10], the jobs of policy evaluation and enforcement are stillmired in
the independent allow/deny semantics first proposed by Lampson
[15, 16].

A traditional allow/deny evaluation and enforcement mechanism
performs a one-time evaluation of each request against the policy
and enforces an allow or deny decision. Once made, that decision

CSAW’08,October 31, 2008, Fairfax, Virginia, USA.

is not revisited for the duration of the request. This mechanism fails
when, for an allowed request, subsequent actions in the context of
that request make clear that the evaluation engine should bere-
evaluating its decision.

Consider a web request containing an SQL injection attack arriv-
ing at the firewall of a large, well-defended network (for some def-
inition of well-defended). The request is evaluated in the context
of the firewall policy (the firewall rules) and allowed to continue.
The attack is then (hypothetically) detected and rejected at the web
server. However, this information is not transmitted to thefirewall,
and thus its initial decision stands; the attacker may continue to use
the access through the firewall for subsequent attacks on other hosts
within the network. We call thissynchronouspolicy evaluation.

In synchronous policy evaluation, a request is evaluated against
the policy exactly once, at the time of the request’s arrival, and
that evaluation is never revisited. Synchronous policy evaluation
is flawed in two facets. Since a evaluation engineP1 never revis-
its its policy decisions, so an attacker can perform innocent actions
to gain access and subsequently introduce an attack. If thatattack
is against a downstream service governed byP2, there is no back-
channel to updateP1 on the information gleaned byP2. Therefore,
each policy engine makes its evaluation based solely on local infor-
mation.

Meanwhile, limiting policy enforcement to allow/deny ignores the
diverse assortment of responses available to the modern system ad-
ministrator. These responses include raising the log levels for cer-
tain requests, or redirecting requests to honeypots or instrumented
networks.

This paper describes Arachne, a system for asynchronous policy
evaluation. In asynchronous policy evaluation, policy maybe re-
evaluated against a request at any node at any time. Arachne pro-
vides a back-channel – a database – for collecting and linking policy-
related events and then asynchronously evaluates a global policy
against that database. Arachne also provides a plug-in architecture
for policy enforcement modules, allowing a system administrator to
define arbitrary responses. In this paper, we describe the Arachne
prototype and evaluate it using pre-recorded traffic from a heavily-
used network, containing both known and unknown attacks. We
show that Arachne is capable of handling events at a rate up to10x
the rate generated by this network.

The initial concepts of the Arachne architecture were first sketched
out in [4]. This new paper reflects the substantial changes tothe
core architecture and lessons learned during the development pro-

cess, including radical changes to the event correlation and policy
evaluation mechanisms. This paper also includes details onand
evaluation of our prototype implementation. The work in [5]im-
plements a proper subset of Arachne, allowing back-channelcom-
munication only between immediate neighbors.

The remainder of this paper is organized as follows. In Section 2
we discuss related work. In Section 3 we give an overview of the
Arachne architecture. In Section 4 we discuss our evaluation of the
system, and we conclude in Section 5.

2. RELATED WORK
In traditional policy enforcement mechanisms, as proposedby Lamp-
son [15, 16] and refined by Graham and Denning [12], the access-
control engine operates as agatekeeper. An incoming request is
evaluated against the policy and the request is either denied or al-
lowed to continue. The decision is never revisited.

This philosophy is most clearly embodied in firewalls [7, 18]. They
are one of the most common and most well-known mechanisms
for policy enforcement. The Firmato system [2] is a firewall man-
agement toolkit for large-scale firewall deployments. It provides a
portable, unified policy language, independent of firewall specifics.
Firmato is limited to packet filtering for enforcing policy,and pol-
icy is evaluated synchronously and not revisited.

Other large-scale policy-enforcement engines include RADIUS [22]
and its successor DIAMETER [6]. These are authentication, au-
thorization and accounting protocols. They require communication
with a policy server to make policy-based decisions and are typi-
cally used for user administration in roaming and dial-up situations.
Both enforce policy synchronously.

Recent work [8, 9] on policy-based management [23] and the NSA’s
RAdAC (Risk Adaptable Access Control) [17] model have demon-
strated that evaluation of dynamic policies is feasible anddesirable.
This is a powerful mechanism, closely related to Arachne. How-
ever, though polices themselves are dynamic, they are stillevalu-
ated synchronously.

The usage control philosophy (UCON) [20] integrates mechanisms
including authorizations, obligations, and mutability. UCON is
based oncontinuity, which refers to the concept of ongoing con-
trols for long-lived sessions or asynchronous revocation.It uses
the continuity concept to allow for re-evaluating decisions when an
attribute change occurs in an entity. Arachne can be viewed as an
extension of UCON by re-evaluating decisions whenany relevant
event occurs.

Arachne builds graphs that are, conceptually, similar to attack graphs
as proposed by Sheyner,et al. [24]. However, attack graphs stati-
cally represent attack pathways into a system, while the graphs built
by Arachne are dynamic and represent all active requests – not just
the attacks.

There is a substantial body of work on correlating alerts in in-
trusion detection systems [19]. As we shall see, Arachne applies
techniques from this arena on the small scale, in order to correlate
events, rather than alerts.

3. ARCHITECTURE
Figure 1 shows an overview of the Arachne architecture. The Arachne
system is designed to protect large-scale service-oriented architec-

S e r v i c e s

S e s s i o n d a t a b a s e P o l i c y e n g i n e

S e n s o r s A c t u a t o r s

P o l i c y

R e q u e s t s

Figure 1: Arachne architecture.

ture (SOA) networks against multi-hop or multi-stage attacks by
using asynchronous policy evaluation. It performs this function by
usingsensorsto build and maintain an internal model describing
the current state of each request made on the protected network.
We call the state of each request a session, and the session models
are stored in thesession database. To determine the access level
permitted to each session, each is evaluated by thepolicy engine
against apolicy. The nature of Arachne allows for more sophis-
ticated responses than the allow/deny semantics used by firewalls.
The Arachne response architecture is modular, and each module is
called anactuator. Each rule in the policy has an associated ac-
tuator which is activated when the rule triggers. In the remainder
of this section, we describe the details of those componentsin the
Arachne architecture.

3.1 Session database
The core of the Arachne system is the session database. It main-
tains the session models for each incoming request. Each session
S is represented as a graphS = (V, E). The verticesv ∈ V rep-
resent session-related events generated by sensors. Each vertex has
a unique 32-bit identifier and a set of attribute key-value pairs de-
scribing the event. Each edge(u, v) ∈ E represents a causal link
between eventsu andv. That is, eventu causedeventv.

The causality information is generated at the sensor level and it
is associated with the corresponding events before delivery to the
sensor database. When an event is generated by a sensor and sent
to the sensor database, it contains its successor information (a list
of the 32-bit identifiersp1...pn). The session database inserts the
event into the appropriate location in the session graphs.

Intuitively, a session is a model of the path taken by a request in the
network. It is directed and acyclic.1 It is an embodiment of the the
answer to the question, “Where did this request go when it entered
the network, and what did it do?” We use the session database as a
window into the network, to facilitate policy enforcement.

3.2 Sensors
1The edges in the graph represent causality so creating a cycle
would require time travel.

{ ’app’: "httpd",
’src’: 10.23.1.2:234,
’dst’: 10.1.2.3:80,
’method’: "GET",
’path’: "/index.html",

}

(a)

{ ’app’: "pf",
’src’: 10.23.1.2:234,
’dst’: 10.1.2.3:80,
’method’: "RDR",
’seqnum’: 3851915398,

}

(b)

Figure 2: (a) An event representing an HTTP GET on the file
/index.html. (b) An event representing a firewall redirect of
an incoming TCP session.

Sensors are the eyes of the Arachne system. They detect session-
related events and report them to the session database. In most
cases, a sensor is targeted at and associated with a particular in-
stance of an application. There is a sensor for each web server, a
sensor for each firewall,etc.Every sensor has been pre-configured
to observe and report on the policy-related activity of its specific
application. That is, a sensor reports each local policy decision.
There is no proscribed means by which a sensor must operate, but
the typical case is one of processing the application log filein real
time.

For example, the sensor for an Apache web server parses the log file
access_log. Each entry in the log file represents a step taken by
the web server in response to a request. For each entry, the Apache
sensor generates an event to report to the session database.For ex-
ample, an event representing an HTTP GET request takes the form
shown in Figure 2a. The fields comprising the event are arbitrary
and application dependent. An event representing a redirected TCP
connection on an OpenBSD PF firewall takes the form shown in
Figure 2b.

Sensors may also be more general. One of the strengths of the
Arachne system is that any event-reporting system may be incor-
porated as a sensor. The alerts generated by IDS like Snort are
easily translated into events understood by Arachne, and included
in the session database. Another class of sensors used by Arachne
are link sensors. These sensors are on the wire; they consistof
network taps at both ends of every link in the protected network.
Each link sensor maintains a TCP connection with its siblingand
uses that link to update the sibling regarding the creation and de-
struction of TCP sessions, and to transmit linkage information as
described below.

The Arachne infrastructure depends on the sanctity of the sensor
mechanisms. As such, sensors must be well protected. They may
be virtual-machine based [11] or remote, throughe.g., remote log-
ging. Regardless, if a sensor is compromised an adversary may be
able to use that position to generate events such that his session ap-
pears innocent. This attack may be alleviated through attestation,
similar to that of SBGP [13] – the events generated by a compro-
mised sensor will not correlate with those generated by neighbor-

ing uncompromised sensors. However, we do not address this issue
further in this paper.

3.3 Event correlation
Sensors are grouped into sensor groups, and events are multiplexed
through a group handler and processed there by a correlationengine
before being reported to the session database. Typically, asensor
group consists of the sensors associated with all services on a sin-
gle host. The correlation engine generates linkages between events
by detecting correlations between their attributes. For example, if
the TCP sequence number of an incoming connection on an inter-
nal web server is reported by a link sensor (IDdc1903c8) and
corresponds to the TCP sequence number reported by the firewall
redirect (IDb24838c4), the correlation engine infers that events
dc1903c8 andb24838c4 are causally related. It assigns a new
attribute to the firewall redirect, indicating that the linksensor event
is a successor:

{ ’succ’: [dc1903c8] }.

The correlation engine will attempt correlations between events
based on arbitrary fields, including source or destination IP:port,
TCP sequence number, timing,etc. However, each sensor facili-
tates this operation by providing hints to the correlation engine on
which fields are appropriate. For example, when generating events
relating to TCP sessions, the firewall sensor indicates thatcorrela-
tion on the TCP sequence number should be attempted first.

When, in the process of handling a request, a service forwards that
request on to a downstream service that is situated on another host,
the creation of the TCP session for that forward is detected by the
link sensor on the originating service, using its network tap. This
link sensor forwards to its sibling link sensor on the targetservice
the successor information for the incoming session. In thisfashion,
successor information is passed from sensor group to sensorgroup
as a request traverses a network.

3.4 Policy
A policy is a wildcard-based set of pre-defined session graphs.
Each entry in the set is associated with an actuator to be triggered
if the rule matches.

As sessions for incoming requests are built, they are evaluated against
the set of rules in the policy. If an incoming request graph isdeter-
mined to be isomorphic with one of the policy graphs, the policy
engine performs a wildcard match of the attributes of the corre-
sponding vertices. If the wildcard match succeeds, the rule’s asso-
ciated actuator is triggered.

Figure 3 demonstrates a set of requests (Figure 3.1-3.3) being made
against a policy set (Figure 3.a-3.d). The requests and ruleset are
simplified for this example and, of course, would be substantially
more complex in a real-world deployment. Additionally, each ver-
tex has an associated set of attributes (as in Figure 2) whichare not
shown. The policy engine in this example has been configured to
use the ruleset as a simple whitelist: each rule shown is associated
with a null actuator and there is a fifth rule (not shown) whichis a
catch-all rule. It is associated with an actuator configuredto reject
the incoming request.

Rule 3.a describes the allowed pathway for requests on a particular
web server. In this case, the rule allows requests which passthrough
the firewallfw to the web serverweb and on to the databasedb and

I n c o m i n g r e q u e s t s P o l i c y r u l e s

1.

2 .

c .

a .

b .

3 .

d b
f w

w e b

f s

w e b

f w

s e n d m a i l

f w

w e b

f s

f w l d a p
s s h

f s

f w

s e n d m a i l

f sd b

d b

d. f w f t p

Figure 3: Example requests and a policy set. Each incoming
request is evaluated against the policy set.

file serverfs. The attributes associated with each vertex may fur-
ther restrict allowed requests to,e.g., particular file sets on the web
server or tables on the database. Rules 3.b-3.d describe, respec-
tively, pathways for logging on to an SSH server using LDAP au-
thentication, sending mail, and obtaining files from an FTP server.

As each incoming request is processed by the network, it is mod-
eled by the session database. Those models are shown in 3.1-3.3
and any request which deviates from an allowed rule is rejected.
Request 3.1 is allowed, as it matches rule 3.a. Request 3.2 isre-
jected immediately as it does not match any rule. Request 3.3
matches rule 3.c, initially, and is allowed access. When it devi-
ates from 3.c, however, by attempting to connect to the database, it
is rejected.

The ability of the Arachne system to defend against attacks repre-
sented by 3.2 and 3.3 is one of the key features of asynchronous pol-
icy evaluation. Figure 3.2 represents a scenario where, forexample,
an adversary has obtained access to the internal network through an
unauthorized wireless access point and is probing the web server.
In a traditional network, there is no means for the access control
mechanism on the web server to consult with the firewall to deter-
mine whether the incoming request has been vetted. Arachne,on
the other hand, detects and rejects the request immediately.

Figure 3.3 represents a scenario where an attacker has delivered an
exploit against the mail daemon and is using it as a platform as a
launching point to probe the database. As soon as the attacker de-
viates from the rule, Arachne triggers the reject actuator.Note that,
even though the misbehavior happened only at the database, since
the session database stores the complete details of this connection,
the actuator assigned to reject the connection is able to reject it si-
multaneously from the database, mail daemon, and the firewall.

3.5 Actuators
Through the actuator infrastructure, Arachne allows a system ad-
ministrator to define arbitrary responses when policy rulesare trig-
gered, simply by implementing an actuator to embody the desired
response. Additionally, by providing the session data fromthe
matched session to the actuator, the response may be carefully tar-
geted. Example actuators range from cutting off the sessionat the

firewall to raising the log level across all services involved in the
session to redirecting the session to a honeypot.

4. DISCUSSION
We have designed and built a prototype Arachne system and evalu-
ated that prototype on a number of testbed networks. The prototype
consists of approximately 10,000 lines of Python code, including
sensors for 10-15 of the most common open source server applica-
tions, and 10-15 actuators.

Deployment of the Arachne system requires an installation of the
session database and policy engine, deployment of the sensors and
actuators, and creation of the policy set. Note that each sensor must
be customized for its target application, so the creation cost is rel-
atively high. However, that cost is amortized over all future uses.
Only one user has to write the sensor for a given application and all
future users may utilize and benefit from it.

Once the session database, sensors, and actuators are deployed, the
system administrator may begin to create and install policies. Poli-
cies are created by hand using a graphical editor, called thePolicy
Editor, also written in Python using the Tkinter GUI package. The
Policy Editor allows the system administrator to draw the session
graphs for each policy and define the accepted attribute values for
each vertex in the graphs. The Arachne prototype provides a null
actuator which may be associated with session graphs duringthe
testing process. In this fashion, the system administratormay fine-
tune a session graph before deployment.

We evaluate the Arachne infrastructure by deploying it on testbeds
which replicate networks with known attack histories, and replay
traffic on the testbed. We have been involved in the forensic analy-
sis of a number of sophisticated multi-stage attacks against various
portions of our department network. As such, we have recordings
of traffic and detailed logs during the time period of those attacks.
By replicating the attacked network segments, instrumenting them
with the Arachne prototype, and replaying the traffic against them,
we are able to evaluate the Arachne prototype.

4.1 Sample testbed
In one instance of a real-world attack, an attacker used a well-
known exploit in a popular open source web-based photo gallery
to obtain a shell on a departmental web server. The attacker then
used a local privilege escalation exploit to obtain root on that same
machine. The photo gallery in question was Coppermine Photo
Gallery [1] 1.4.14, which is vulnerable to an exploit which allows
remote command execution [25]. The web server was running
Apache 2.0.55, PHP 5.05, and the Coppermine Photo Gallery back-
end was MySQL 4.0.17. All applications were hosted on Ubuntu
7.04 running Linux kernel 2.6.20. That version of the Linux ker-
nel is vulnerable to the so-called vmsplice exploit [21], which is a
privilege escalation exploit. Given an account with user-level per-
missions on that host, the vmsplice exploit provides a shellwith
root privileges.

We recreated this environment in testbed form and deployed Arachne
on the firewall, web server and photo gallery applications. We then
replayed traffic derived from the logs from the two-week timepe-
riod surrounding the original attack. A simple whitelist ruleset de-
scribing the path of valid requests on the system detected and pre-
vent the known attack, along with a number of failed attemptsfrom
other attackers, both before and after the compromise.

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

Session density (succ./vertex)

P
ro

ce
ss

in
g

 r
at

e
(e

v
en

ts
/s

)

Figure 4: Processing rate at the session database and policy
engine as a function of session density.

4.2 Evaluation
The scalability of the Arachne architecture is limited by the volume
handled at the session database. Furthermore, growth of thesession
database and the density of the individual session graphs impacts
performance of the policy evaluation engine. Figure 4 is a micro-
benchmark demonstrating the impact on the session databaseand
policy engine as the degree of connectivity of each vertex inthe
graph increases. This figure shows the processing rate (events/s)
for 1000 events, as the degree of connectivity of each vertexin-
creases. Each session is evaluated against a 30-rule policy. The
benchmark shows that Arachne is capable of handling approxi-
mately 300 events/s for reasonable density values. The sensors in
the sample testbed described above collectively generatedan aver-
age of 8.3 events/sec, with peak rates up to 30.4 events/sec.Thus,
Arachne is capable of processing events at 10x the peak rate.

The potential impact from high session count is lessened by lever-
aging the sensor infrastructure. Just as the sensors reporteach step
in the construction of an incoming session, they also reportthe clos-
ing of each segment of the session. As each step in the requestcom-
pletes (the database request returns, the web request finishes,etc.)
the sensors report that information to the sensor database.Each
session, as it closes completely, is removed from the database.

5. CONCLUSION
The current paradigm of synchronous policy evaluation is flawed.
A policy evaluation engine never revisits its decisions, and down-
stream events are not propagated back to upstream decision makers.
Each policy engine makes its evaluation based only on local infor-
mation, leading to security flaws. Additionally, policy enforcement
is traditionally limited to allow/deny, ignoring the assortment of re-
sponses available to the modern system administrator. In this paper
we have described the motivating philosophy behind Arachne. It
provides asynchronous policy evaluation, a rich language for pol-
icy definitions, and a flexible policy enforcement engine. Wehave
shown that the Arachne engine can handle more than 10x the events
generated by a heavily-used real-world network.

Acknowledgements
This research was sponsored by the NSF through grants CNS-07-
14647 and CNS-04-26623. We authorize the U.S. Government to
reproduce and distribute reprints for Governmental purposes notwith-

standing any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
NSF or the U.S Government.

6. REFERENCES
[1] Coppermine Photo Gallery.

http://www.coppermine-gallery.net.
[2] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: a

novel firewall management toolkit. InProceedings of the
1999 IEEE Symposium on Security and Privacy, pages
17–31, May 1999.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The KeyNote Trust Management System Version 2. Internet
RFC 2704, September 1999.

[4] Matthew Burnside and Angelos Keromytis. Arachne:
Integrated enterprise security management. In8th Annual
IEEE SMC Information Assurance Workshop, pages
214–220, 2007.

[5] Matthew Burnside and Angelos Keromytis. Path-based
access control for enterprise networks. In11th Information
Security Conference (ISC2008), September 2008. To appear.

[6] P. Calhoun, A. Rubens, H. Akhtar, and E. Guttman.
DIAMETER Base Protocol. Internet Draft, Internet
Engineering Task Force, December 1999. Work in progress.

[7] W. R. Cheswick and S. M. Bellovin.Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley, 1994.

[8] Rahim Choudhary. A Policy Based Architecture for NSA
RAdAC Model. InProceedings of 6th IEEE Workshop on
Information Assurance and Security, United States Military
Academy, West Point, NY, June 2005.

[9] Rahim Choudhary. Compound Identity Measure: A New
Concept in Information Assurance. InProceedings of 7th
IEEE Workshop on Information Assurance and Security,
United States Military Academy, West Point, NY, June 2006.

[10] M. Damianou.A Policy Framework for Management of
Distributed Systems. PhD thesis, 2002.

[11] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza A. Basrai, and Peter M. Chen. Revirt: enabling
intrusion analysis through virtual-machine logging and
replay. InOSDI ’02: Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, pages
211–224, New York, NY, USA, 2002. ACM.

[12] G. S. Graham and P. J. Denning. Protection: Principles and
Practices. InProceedings of the AFIPS Spring Joint
Computer Conference, pages 417–429, 1972.

[13] Stephen Kent, Charles Lynn, and Kareo Seo. Secure border
gateway protocol (secure-bgp). 18(4):582–592, April 2000.

[14] A. D. Keromytis, S. Ioannidis, M. B. Greenwald, and J. M.
Smith. The STRONGMAN Architecture. InProceedings of
the3rd DARPA Information Survivability Conference and
Exposition (DISCEX III), pages 178–188, April 2003.

[15] B.W. Lampson. Protection. InProceedings of the5th

Princeton Symposium on Information Sciences and Systems,
pages 473–443, March 1971.

[16] B.W. Lampson. Protection.Operating Systems Review,
8(1):18–24, January 1974.

[17] Robert W. McGraw. Securing Content in the Department of
Defense’s Global Information Grid. InSecure Knowledge
Management Workshop, State University of New York,
Buffalo, NY, September 2004.

[18] J. Mogul, R. Rashid, and M. Accetta. The Packet Filter: An
Efficient Mechanism for User-level Network Code. In
Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, pages 39–51, November 1987.

[19] Peng Ning, Yun Cui, and Douglas S. Reeves. Analyzing
intensive intrusion alerts via correlation. InProceedings of
the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID 2002), Zurich, Switzerland,
October 2002.

[20] Jaehong Park and Ravi Sandhu. The UCONABC usage
control model.ACM Transactions on Information and
System Security, 7(1):128–174, February 2004.

[21] qaaz. Linux vmsplice Local Root Exploit.
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=464953,
February 2008.

[22] C. Rigney, A. Rubens, W. Simpson, and S. Willens. Remote
Authentication Dial In User Service (RADIUS). Request for
Comments (Proposed Standard) 2138, Internet Engineering
Task Force, April 1997.

[23] J. Schnizlein, J. Strassner, M. Scherling, B. Quinn,
S. Herzog, A. Huynh, M. Carlson, J. Perry, and
S. Waldbusser. Terminology for Policy-Based Management.
Request for Comments (Proposed Standard) 3198, Internet
Engineering Task Force, November 2001.

[24] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard
Lippmann, and Jeannette Wing. Automated generation and
analysis of attack graphs. InProceedings of the IEEE
Symposium on Security and Privacy, May 2002.

[25] Janek Vind. Remote Shell Command Execution in
Coppermine 1.4.14. http://www.waraxe.us/advisory-65.html,
January 2008.

