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ABSTRACT

Evaluating and enforcing policies in large-scale netwagkene
of the most challenging and significant problems facing tae n
work security community today. Current solutions are ledity
an out-of-date allow/deny paradigm, and policies are etallisyn-
chronously and independently at each service. This mak#fiit
cult to detect or defend against multi-stage attacks, ackstwhich
begin as innocent requests and then later exhibit maliciebavior
in the same context. In this paper we describe Arachne, atypet
for asynchronous policy evaluation. We evaluate the sybtetast-
ing it against pre-recorded traffic containing known andnavin
attacks and show that it is capable of processing eventsrat timan
10x the required rate for a deployed, heavily-used network.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information System§
Security and Protectionaecess controls, information flow con-
trols

General Terms
Management, Security
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1. INTRODUCTION

One of the most significant problems facing the network sgcur
community is that of evaluating and enforcing policies irgk
scale networks. As networks increase in complexity, so ipoléty
definition, evaluation, and enforcement. While substamiark
has been done on policy definition in large-scale networks $1
10], the jobs of policy evaluation and enforcement are istited in
the independent allow/deny semantics first proposed by samp
[15, 18].

A traditional allow/deny evaluation and enforcement medsia

performs a one-time evaluation of each request againstdleyp
and enforces an allow or deny decision. Once made, thatidecis
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is not revisited for the duration of the request. This me@rarails
when, for an allowed request, subsequent actions in thexpot
that request make clear that the evaluation engine shoule-be
evaluating its decision.

Consider a web request containing an SQL injection attadk-ar
ing at the firewall of a large, well-defended network (for sodef-
inition of well-defended). The request is evaluated in tbatext
of the firewall policy (the firewall rules) and allowed to conte.
The attack is then (hypothetically) detected and rejectéueaveb
server. However, this information is not transmitted tofihewall,
and thus its initial decision stands; the attacker may ooetio use
the access through the firewall for subsequent attacks en lotsts
within the network. We call thisynchronougolicy evaluation.

In synchronous policy evaluation, a request is evaluatexnay
the policy exactly once, at the time of the request’s arrieald
that evaluation is never revisited. Synchronous policyluation
is flawed in two facets. Since a evaluation engifenever revis-
its its policy decisions, so an attacker can perform innbaetions
to gain access and subsequently introduce an attack. latteatk
is against a downstream service governedPythere is no back-
channel to updat®; on the information gleaned b-. Therefore,
each policy engine makes its evaluation based solely omhiluica-
mation.

Meanwhile, limiting policy enforcement to allow/deny iges the
diverse assortment of responses available to the modetensysl-
ministrator. These responses include raising the log $eieglcer-
tain requests, or redirecting requests to honeypots auimgnted
networks.

This paper describes Arachne, a system for asynchronoisy pol
evaluation. In asynchronous policy evaluation, policy rbayre-
evaluated against a request at any node at any time. Aracbne p
vides a back-channel —a database — for collecting and bypaticy-
related events and then asynchronously evaluates a globey p
against that database. Arachne also provides a plug-iitectire
for policy enforcement modules, allowing a system admiatst to
define arbitrary responses. In this paper, we describe thehhe
prototype and evaluate it using pre-recorded traffic froneavhy-
used network, containing both known and unknown attacks. We
show that Arachne is capable of handling events at a rate Lipxo
the rate generated by this network.

The initial concepts of the Arachne architecture were fikstched
out in [4]. This new paper reflects the substantial changakeo
core architecture and lessons learned during the develupone-



cess, including radical changes to the event correlationpaticy
evaluation mechanisms. This paper also includes detailanon
evaluation of our prototype implementation. The work in iiB}
plements a proper subset of Arachne, allowing back-chasorat
munication only between immediate neighbors.

The remainder of this paper is organized as follows. In $acki
we discuss related work. In Section 3 we give an overview ef th
Arachne architecture. In Section 4 we discuss our evaluatiche
system, and we conclude in Section 5.

2. RELATED WORK

In traditional policy enforcement mechanisms, as propbgddamp-
son [15, 16] and refined by Graham and Denning [12], the aecess
control engine operates aggatekeeper An incoming request is
evaluated against the policy and the request is either demial-
lowed to continue. The decision is never revisited.

This philosophy is most clearly embodied in firewalls [7,.1Bhey

are one of the most common and most well-known mechanisms
for policy enforcement. The Firmato system [2] is a firewadlrm
agement toolkit for large-scale firewall deployments. tiides a
portable, unified policy language, independent of firewadicifics.
Firmato is limited to packet filtering for enforcing policgnd pol-

icy is evaluated synchronously and not revisited.

Other large-scale policy-enforcement engines include RAEI22]
and its successor DIAMETER [6]. These are authentication, a
thorization and accounting protocols. They require comigation
with a policy server to make policy-based decisions and e t
cally used for user administration in roaming and dial-upagions.
Both enforce policy synchronously.

Recent work [8, 9] on policy-based management [23] and th&NS
RAdAC (Risk Adaptable Access Control) [17] model have demon
strated that evaluation of dynamic policies is feasibledeslrable.
This is a powerful mechanism, closely related to ArachnewHo
ever, though polices themselves are dynamic, they areesélu-
ated synchronously.

The usage control philosophy (UCON) [20] integrates meismas
including authorizations, obligations, and mutability. CON is
based orcontinuity, which refers to the concept of ongoing con-
trols for long-lived sessions or asynchronous revocatitiruses
the continuity concept to allow for re-evaluating decisiovhen an
attribute change occurs in an entity. Arachne can be viewatha
extension of UCON by re-evaluating decisions wiaey relevant
event occurs.

Arachne builds graphs that are, conceptually, similartecitgraphs
as proposed by Sheynet, al. [24]. However, attack graphs stati-
cally represent attack pathways into a system, while thetgrauilt
by Arachne are dynamic and represent all active requesttjusto
the attacks.

There is a substantial body of work on correlating alertsnin i
trusion detection systems [19]. As we shall see, Arachndiespp
techniques from this arena on the small scale, in order telzte
events, rather than alerts.

3. ARCHITECTURE

Figure 1 shows an overview of the Arachne architecture. Tilaelne
system is designed to protect large-scale service-odarzhitec-
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Figure 1: Arachne architecture.

ture (SOA) networks against multi-hop or multi-stage dtsaby
using asynchronous policy evaluation. It performs thisfiom by
using sensorsto build and maintain an internal model describing
the current state of each request made on the protected nketwo
We call the state of each request a session, and the sessitmaismo
are stored in theession databaseTo determine the access level
permitted to each session, each is evaluated bydhiey engine
against gpolicy. The nature of Arachne allows for more sophis-
ticated responses than the allow/deny semantics used byafise
The Arachne response architecture is modular, and eachlenisdu
called anactuator Each rule in the policy has an associated ac-
tuator which is activated when the rule triggers. In the riewher

of this section, we describe the details of those comporiaritse
Arachne architecture.

3.1 Session database

The core of the Arachne system is the session database. it mai
tains the session models for each incoming request. Easioses
S is represented as a graph= (V, E). The vertices € V rep-
resent session-related events generated by sensors. &tehhas

a unique 32-bit identifier and a set of attribute key-valugspde-
scribing the event. Each edde, v) € E represents a causal link
between events andv. That is, event. causedeventu.

The causality information is generated at the sensor levélit

is associated with the corresponding events before dgligethe
sensor database. When an event is generated by a sensonand se
to the sensor database, it contains its successor infaméilist

of the 32-bit identifiergp;...p,). The session database inserts the
event into the appropriate location in the session graphs.

Intuitively, a session is a model of the path taken by a retjndgke
network. Itis directed and acycliclt is an embodiment of the the
answer to the question, “Where did this request go when éredt
the network, and what did it do?” We use the session datalsase a
window into the network, to facilitate policy enforcement.

3.2 Sensors

1The edges in the graph represent causality so creating & cycl
would require time travel.



{ "app’: "httpd",
"src’: 10.23.1.2:234,
"dst’: 10.1.2.3:80,
"met hod’ : "GET",
"path’: "/index.htm",
}
(@)
{ 'app’: "pf",
"src’: 10.23.1.2:234,
"dst’: 10.1.2.3:80,
"met hod’ : "RDR',
"seqnumi : 3851915398,
}

(b)

Figure 2: (a) An event representing an HTTP GET on the file
/i ndex. ht ml . (b) An event representing a firewall redirect of
an incoming TCP session.

Sensors are the eyes of the Arachne system. They deteatrsessi
related events and report them to the session database. dih mo
cases, a sensor is targeted at and associated with a particul
stance of an application. There is a sensor for each webrserve
sensor for each firewalktc. Every sensor has been pre-configured
to observe and report on the policy-related activity of fieafic
application. That is, a sensor reports each local policysé@t
There is no proscribed means by which a sensor must opetdte, b
the typical case is one of processing the application logrfikeal
time.

For example, the sensor for an Apache web server parsegtfikelo
access_| og. Each entry in the log file represents a step taken by
the web server in response to a request. For each entry, tieh&p
sensor generates an event to report to the session dat&loasx-
ample, an event representing an HTTP GET request takesrtie fo
shown in Figure 2a. The fields comprising the event are anyitr
and application dependent. An event representing a redaddcCP
connection on an OpenBSD PF firewall takes the form shown in
Figure 2b.

ing uncompromised sensors. However, we do not addressshis i
further in this paper.

3.3 Event correlation

Sensors are grouped into sensor groups, and events arplexdt
through a group handler and processed there by a correttgine
before being reported to the session database. Typicadignsor
group consists of the sensors associated with all servitessin-

gle host. The correlation engine generates linkages betesmnts

by detecting correlations between their attributes. Fangple, if

the TCP sequence number of an incoming connection on an inter
nal web server is reported by a link sensor @01903c8) and
corresponds to the TCP sequence number reported by thelfirewa
redirect (IDb24838c4), the correlation engine infers that events
dc1903c8 andh24838c4 are causally related. It assigns a new
attribute to the firewall redirect, indicating that the lisdnsor event

is a successor:

{ "succ’: [dc1903c8] }.

The correlation engine will attempt correlations betweganes
based on arbitrary fields, including source or destinat®mpart,
TCP sequence number, timingtc However, each sensor facili-
tates this operation by providing hints to the correlatiogiae on
which fields are appropriate. For example, when generatiagte
relating to TCP sessions, the firewall sensor indicatesdaela-
tion on the TCP sequence number should be attempted first.

When, in the process of handling a request, a service fosnthat
request on to a downstream service that is situated on artaikg
the creation of the TCP session for that forward is detecyetthd®
link sensor on the originating service, using its network t&his
link sensor forwards to its sibling link sensor on the taggtvice
the successor information for the incoming session. Inféskion,
successor information is passed from sensor group to sgnsap
as a request traverses a network.

3.4 Policy

A policy is a wildcard-based set of pre-defined session graph
Each entry in the set is associated with an actuator to bgetragl

if the rule matches.

As sessions for incoming requests are built, they are etedisgainst

Sensors may also be more general. One of the strengths of thethe set of rules in the policy. If an incoming request graptheier-

Arachne system is that any event-reporting system may lm-inc
porated as a sensor. The alerts generated by IDS like Sreort ar
easily translated into events understood by Arachne, ariddad

in the session database. Another class of sensors used bgn&ra
are link sensors. These sensors are on the wire; they cafsist
network taps at both ends of every link in the protected nekwo
Each link sensor maintains a TCP connection with its sibéind
uses that link to update the sibling regarding the creatiahde-
struction of TCP sessions, and to transmit linkage infoiomaas
described below.

The Arachne infrastructure depends on the sanctity of these

mined to be isomorphic with one of the policy graphs, thegoli
engine performs a wildcard match of the attributes of theecor
sponding vertices. If the wildcard match succeeds, thésrakeso-
ciated actuator is triggered.

Figure 3 demonstrates a set of requests (Figure 3.1-313) beade
against a policy set (Figure 3.a-3.d). The requests andetubge
simplified for this example and, of course, would be subgifint
more complex in a real-world deployment. Additionally, baer-
tex has an associated set of attributes (as in Figure 2) vainechot
shown. The policy engine in this example has been configured t
use the ruleset as a simple whitelist: each rule shown iceded

mechanisms. As such, sensors must be well protected. Thgy ma with a null actuator and there is a fifth rule (not shown) which

be virtual-machine based [11] or remote, throwgd, remote log-
ging. Regardless, if a sensor is compromised an adversanpea
able to use that position to generate events such that i®eep-
pears innocent. This attack may be alleviated throughtattes,
similar to that of SBGP [13] — the events generated by a compro
mised sensor will not correlate with those generated byhiig

catch-all rule. It is associated with an actuator configucexkject
the incoming request.

Rule 3.a describes the allowed pathway for requests on ydart
web server. In this case, the rule allows requests whichthessgh
the firewallf wto the web serveneb and on to the databasdé and
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Figure 3: Example requests and a policy set. Each incoming
request is evaluated against the policy set.

file serverf s. The attributes associated with each vertex may fur-
ther restrict allowed requests &g, particular file sets on the web
server or tables on the database. Rules 3.b-3.d descripece
tively, pathways for logging on to an SSH server using LDAP au
thentication, sending mail, and obtaining files from an FéRrer.

As each incoming request is processed by the network, it @&-mo

eled by the session database. Those models are shown in33.1-3

and any request which deviates from an allowed rule is regect
Request 3.1 is allowed, as it matches rule 3.a. Request 82 is

firewall to raising the log level across all services invalia the
session to redirecting the session to a honeypot.

4. DISCUSSION

We have designed and built a prototype Arachne system amat eva
ated that prototype on a number of testbed networks. Thetyp
consists of approximately 10,000 lines of Python code uiticig
sensors for 10-15 of the most common open source servecappli
tions, and 10-15 actuators.

Deployment of the Arachne system requires an installaticihe
session database and policy engine, deployment of thersessd
actuators, and creation of the policy set. Note that eacéosenust
be customized for its target application, so the creatiast orel-
atively high. However, that cost is amortized over all fetuises.
Only one user has to write the sensor for a given applicatiohedi
future users may utilize and benefit from it.

Once the session database, sensors, and actuators argedefhe
system administrator may begin to create and install gsidPoli-
cies are created by hand using a graphical editor, calleBdokiey
Editor, also written in Python using the Tkinter GUI packagae
Policy Editor allows the system administrator to draw thesgm
graphs for each policy and define the accepted attributesdhr
each vertex in the graphs. The Arachne prototype providasdia n
actuator which may be associated with session graphs dtheng
testing process. In this fashion, the system administratoyr fine-
tune a session graph before deployment.

We evaluate the Arachne infrastructure by deploying it atbeds
which replicate networks with known attack histories, aaplay

jected immediately as it does not match any rule. Request 3.3 traffic on the testbed. We have been involved in the forensitya

matches rule 3.c, initially, and is allowed access. Whereiti-d
ates from 3.c, however, by attempting to connect to the dawht
is rejected.

The ability of the Arachne system to defend against attaegeer
sented by 3.2 and 3.3 is one of the key features of asynchsquiu
icy evaluation. Figure 3.2 represents a scenario wherexmmple,
an adversary has obtained access to the internal netwarkghian
unauthorized wireless access point and is probing the welerse
In a traditional network, there is no means for the accessr@on
mechanism on the web server to consult with the firewall terdet
mine whether the incoming request has been vetted. Aracme,
the other hand, detects and rejects the request immediately

Figure 3.3 represents a scenario where an attacker hasréelisin
exploit against the mail daemon and is using it as a platfesra a
launching point to probe the database. As soon as the attdeke
viates from the rule, Arachne triggers the reject actudfote that,
even though the misbehavior happened only at the datatiase, s
the session database stores the complete details of thisction,
the actuator assigned to reject the connection is able ¢atritjsi-
multaneously from the database, mail daemon, and the firewal

3.5 Actuators

Through the actuator infrastructure, Arachne allows aesysad-
ministrator to define arbitrary responses when policy rakestrig-
gered, simply by implementing an actuator to embody there@si
response. Additionally, by providing the session data fri@
matched session to the actuator, the response may be bataful
geted. Example actuators range from cutting off the sessidine

sis of a number of sophisticated multi-stage attacks agaanous
portions of our department network. As such, we have rengedi
of traffic and detailed logs during the time period of thogaaks.
By replicating the attacked network segments, instrumgritiem
with the Arachne prototype, and replaying the traffic agatimsm,
we are able to evaluate the Arachne prototype.

4.1 Sample testbed

In one instance of a real-world attack, an attacker used & wel
known exploit in a popular open source web-based photorgalle
to obtain a shell on a departmental web server. The attabker t
used a local privilege escalation exploit to obtain rootlwat same
machine. The photo gallery in question was Coppermine Photo
Gallery [1] 1.4.14, which is vulnerable to an exploit whidloars
remote command execution [25]. The web server was running
Apache 2.0.55, PHP 5.05, and the Coppermine Photo Galleky ba
end was MySQL 4.0.17. All applications were hosted on Ubuntu
7.04 running Linux kernel 2.6.20. That version of the Lintetk

nel is vulnerable to the so-called vmsplice exploit [21],iethis a
privilege escalation exploit. Given an account with usel per-
missions on that host, the vmsplice exploit provides a shith

root privileges.

We recreated this environment in testbed form and deployadhke
on the firewall, web server and photo gallery applications.tkién
replayed traffic derived from the logs from the two-week tipge
riod surrounding the original attack. A simple whitelistaset de-
scribing the path of valid requests on the system detectdgaat
vent the known attack, along with a number of failed atterfmois
other attackers, both before and after the compromise.
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Figure 4: Processing rate at the session database and policy
engine as a function of session density.

4.2 Evaluation

The scalability of the Arachne architecture is limited bg tlolume
handled at the session database. Furthermore, growth sédséen
database and the density of the individual session grappadis
performance of the policy evaluation engine. Figure 4 is eroi
benchmark demonstrating the impact on the session databdse
policy engine as the degree of connectivity of each vertethin
graph increases. This figure shows the processing ratetéésen
for 1000 events, as the degree of connectivity of each ventex
creases. Each session is evaluated against a 30-rule.pdliey
benchmark shows that Arachne is capable of handling approxi
mately 300 events/s for reasonable density values. Theseims
the sample testbed described above collectively genesateder-
age of 8.3 events/sec, with peak rates up to 30.4 eventsibes,
Arachne is capable of processing events at 10x the peak rate.

The potential impact from high session count is lessene@\sri
aging the sensor infrastructure. Just as the sensors esgurtstep
in the construction of an incoming session, they also repertlos-
ing of each segment of the session. As each step in the rezprast
pletes (the database request returns, the web requesefirash)
the sensors report that information to the sensor datab@aeh
session, as it closes completely, is removed from the dsg¢aba

5. CONCLUSION

The current paradigm of synchronous policy evaluation isdth
A policy evaluation engine never revisits its decisiong] down-
stream events are not propagated back to upstream decial@rsn
Each policy engine makes its evaluation based only on lodai-
mation, leading to security flaws. Additionally, policy enfement
is traditionally limited to allow/deny, ignoring the assoent of re-
sponses available to the modern system administratoridpéper
we have described the motivating philosophy behind Arachhe
provides asynchronous policy evaluation, a rich language®l-
icy definitions, and a flexible policy enforcement engine. Nige
shown that the Arachne engine can handle more than 10x théseve
generated by a heavily-used real-world network.
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