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The Case for Self-Healing Software
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Abstract. Existing approaches to software security and reliability have proven in-
adequate in offering a good tradeoff between the assurance,reliability, availability,
and performance. We argue thatreactive protection mechanisms need to be added
to our panoply of defenses. Furthermore, we argue that such mechanisms need to
be much more invasive than previously envisioned. We discuss our approach to
such mechanisms by introducing the concept ofself-healing software. We describe
the principles behind self-healing software systems and showcase the concepts by
giving an overview the Worm Vaccine architecture.
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1. Motivation

Despite considerable work in fault tolerance and reliability, software remains notoriously
buggy and crash-prone. The current approach to ensuring thesecurity and availability of
software consists of a mix of different techniques:

• Proactive techniques seek to make the code as dependable as possible, through a
combination of safe languages (e.g., Java [8]), libraries [1] and compilers [9,14],
code analysis tools and formal methods [3,7,25], and development methodologies.

• Debugging techniques aim to make post-fault analysis and recovery as easy as
possible for the programmer that is responsible for producing a fix.

• Runtime protection techniques try to detect the fault using some type of fault
isolation such as StackGuard [6] and FormatGuard [4], whichaddress specific
types of faults or security vulnerabilities.

• Containment techniques seek to minimize the scope of a successful exploit by
isolating the process from the rest of the system,e.g., through use of virtual ma-
chine monitors such as VMWare or Xen, system call sandboxes such as Systrace
[16], or operating system constructs such as Unixchroot(), FreeBSD’sjail facility,
and others [24,13].

• Byzantine fault-tolerance and quorum techniques rely on redundancy and di-
versity to create reliable systems out of unreliable components [26,17].

These approaches offer a poor tradeoff between assurance, reliability in the face of
faults, and performance impact of protection mechanisms. We believe that a new class
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of reactive protection mechanisms need to be added to the above list. Some techniques
that can be classified as reactive include Intrusion Prevention Systems (IPS) and auto-
matically generated content-signature blockers,e.g., [15]. Most such systems have fo-
cused on network-based prevention, augmenting the functionality of firewalls. However,
a number of trends make the use of such packet inspection technologies unlikely to work
well in the future:

• Due to the increasing line speeds and the more computation-intensive protocols
that a firewall must support (such as IPsec), firewalls tend tobecome congestion
points. This gap between processing and networking speeds is likely to increase, at
least for the foreseeable future; while computers (and hence firewalls) are getting
faster, the combination of more complex protocols and the tremendous increase
in the amount of data that must be passed through the firewall has been and likely
will continue to outpace Moore’s Law [5].

• The complexity of existing and future protocols makes packet inspection an ex-
pensive proposition, especially in the context of increasing line speeds. Further-
more, a number of protocols are inherently difficult to process in the network be-
cause of lack of knowledge that is readily available at the endpoints (etc. FTP and
RealAudio port numbers).

• End-to-end encryption, especially of the opportunistic type1 effectively prevents
inspection-based systems from looking inside packets, or even at packet headers.

• Finally, we believe that it is only a matter of time until exploits such as worms start
using polymorphism or metamorphism [23] as cloaking techniques. The effect
of these is to increase the analysis requirements, in terms of processing cycles,
beyond the budget available to routers or firewalls.

All these factors argue for host-based reactive protectionmechanisms. In the space of
such mechanisms, we focus onself-healing software as a reactive protection technique.
In the next section we outline our view of self-healing software systems and give our
first thoughts on the structure of such systems. In Section 3 we give a brief overview
of an instance of a self-healing software system, the Worm Vaccine architecture. As the
name implies, this is a system designed to protect against network worms that spread
through software-based vulnerabilities such as buffer overflows. Although this class of
vulnerabilities has been studied extensively, we discuss our architecture as a concrete
example of a self-healing software system.

2. Principles of Self-Healing Software

Our approach to self-healing software, shown in Figure 1, ismodeled after the concept
of an Observe Orient Decide Act (OODA) feedback loop. Our high-level intuition is
that, if proactive or runtime protection mechanisms are tooexpensive to use in a blanket
manner, we should instead use them in a targeted manner. Identifying where and how to
apply protection is done by observing the behavior of the system in a non-invasive (or
minimally invasive) manner. The goal of this monitoring is to detect the occurrence of a

1By “opportunistic” we mean that client-side, and often server-side, authentication is often not strictly re-
quired, as is the case with the majority of web servers or withSMTP over TLS (e.g., sendmail’s STARTSSL
option).
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Figure 1. General architecture of a self-healing system. The system monitors itself for indications of anoma-
lous behavior. When such is detected, the system enters a self-diagnosis mode that aims to identify the fault
and extract as much information as possible with respect to its cause, symptoms, and impact on the system.
Once these are identified, the system tries to adapt itself bygenerating candidate fixes, which are tested to find
the best target state.

fault and determine its parameters,e.g., the type of fault, the input or sequence of events
that led to the it, the approximate region of code where the fault manifests itself, and any
other information that may be useful in creating fixes.

Following identification, the system will need to create oneor more possible fixes
tailored to the particular instance of the fault. The natureof these fixes depends on types
of faults and the available protection mechanisms. Potential fixes to software faults in-
clude snapshot-rollback, input filtering, increased monitoring or isolation for the vulner-
able process, selective application of any runtime protection mechanism, and others.

Each candidate fix produced by the system is then tested, ideally in an isolated envi-
ronment, to verify its efficacy and impact on the application(e.g., in terms of side effects
or performance degradation). This testing can take severalforms, including (but not lim-
ited to) running pre-defined test-suites, replaying previously seen traffic (including the
input that triggered the fault),etc. The various fixes are rank-ordered based on the results
of the testing phase, as well as other information (e.g., how many lines of code are modi-
fied, what the down-time for deploying the fix will be, how manycomponents need to be
reconfigured,etc.). If an acceptable fix is produced, the system is updated accordingly.
This can be done through established patch-management and configuration-management
mechanisms, or any other suitable mechanism.

Our particular approach to self-healing software, shown inFigure 2, is to apply struc-
tural transformations to the application itself, aimed at eliminating the root cause of the
vulnerability. Our system uses a set of software probes thatmonitor the application for
unknown instances of specific types of faults (e.g., application crash, buffer overflow ex-
ploit, etc.). Upon detection of a fault, we invoke a localized recovery mechanism that
seeks to recognize and prevent the specific failure in futureexecutions of the program.
Using continuous hypothesis testing, we verify whether thefault has been repaired by
re-running the application against the event sequence thatapparently caused the failure.
Our initial focus is on automatic healing of services against newly detected low-level
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software faults. We emphasize that we seek to address a wide variety of software failures,
not just attacks.

Attack recognition &
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Figure 2. Our approach to self-healing software systems. We instrument the production system with
lightweight sensors that do not affect its performance or functionality. If an attack or other anomalous event
if flagged, we use an instrumented version of the system to diagnose the event. Once the fault is localized in
terms of code region, we produce a set of candidate patches that are appropriate for that specific class of fault,
or are generic band-aids. The resulting system images are evaluated against a test-suite as well as the malicious
input. A human may be required to approve deployment, or the system may perform all the steps automatically.

In our overall approach, we treat faults as exceptions. In determining how to recover
from such exceptions, we introduce the hypothesis of anexecution transaction. Very
simply, we posit that for the majority of code, we can treat each function execution as a
transaction (in a manner similar to a sequence of operationsin a database) that can be
aborted without adversely affecting the graceful termination of the computation. Each
function call from inside that function can itself be treated as a transaction, whose suc-
cess or failure does not contribute to the success or failureof its enclosing transaction.
Under this hypothesis, it is sufficient to snapshot the stateof the program execution when
a new transaction begins, detect a failure per our previous discussion, and recover by
aborting this transaction and continuing the execution of its enclosing transaction. Note
that our hypothesis does not imply anything about the correctness of the resulting compu-
tation, when a failure occurs. Rather, it merely states thatif a function is prevented from
(for example) overflowing a buffer, it is sufficient to continue execution at its enclosing
function, “pretending” the aborted function returned an error. We call this approacher-
ror virtualization. Depending on the return type of the function, a set of heuristics are
employed to determine an appropriate error return value that is, in turn, used by the pro-
gram to handle error condition. For more details, includingour preliminary experimental
validation of the concept of execution transactions, see [18].

However, saving the application’s state prior to each function call is likely to be an
expensive proposition. Instead, we introduce such transactional processing as directed by
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the fault-identification phase,i.e., only for the function(s) where the fault exhibited itself.
One way to view our system is that we speculatively execute code that we have previously
determined to be susceptible to faults. This approach, which we callmicro-speculation,
can be implemented through source-level code transformations [18], a selective emulator
[20], or by modifying the compiler [22].
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Figure 3. Worm vaccination architecture: sensors deployed at various locations in the network detect a po-
tential worm (1), notify an analysis engine (2) which forwards the infection vector and relevant information
to a protected environment (3). The potential infection vector is tested against an appropriately-instrumented
version of the targeted application, identifying the vulnerability (4). Several software patches are generated
and tested using several different heuristics (5). If one ofthem is not susceptible to the infection and does not
impact functionality, the main application server is updated (6).

3. A Case Study: Worm Vaccine Architecture

We now describe one instance of a self-healing software architecture geared specifically
against worms spreading via buffer overflow vulnerabilities. The architecture is shown
graphically in Figure 3, and is described in more detail in [21]. Our system assumes ac-
cess to source code, and automatically generates source-level patches that can be applied
against the application’s source code to address newly discovered vulnerabilities. Our
approach creates an OODA loop using a properly instrumentedversion of the applica-
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tion (called theOracle). The instrumentation is specific to the types of faults thatwe are
interested in addressing,e.g., buffer overflow vulnerabilities. We use the Oracle to verify
hypotheses that a particular connection or packet is malicious,i.e., that it will cause a
fault when processed by the application. Such hypotheses can be generated in a number
of different ways (all of which may be used simultaneously):

• Implicitly, any traffic that reaches the Oracle from a sourceexternal to the organi-
zation is considered suspicious. In this case, the Oracle operates in a honeypot-like
mode.

• Explicitly, if an anomaly detector that inspects network traffic generates a sus-
picion that a particular connection or packet is anomalous.Such traffic may be
forwarded to the Oracle for further inspection.

• Reactively, as a result of an observed fault on the production version of the appli-
cation by a host-resident sensor or anomaly detector. Traffic thatmay have con-
tributed to the fault is replayed to the Oracle, under the assumption that the fault
manifests itself shortly after the attack.

Alternatively, we can construct a distributed Oracle (which we have named an Appli-
cation Community [12,11]) by spreading the task of monitoring for failures across mul-
tiple independent instances of the software. For example, each instance of a web server
in a server farm may only be monitoring one code function; or each instance may be ran-
domly selecting requests during the handling of which full monitoring will be enabled.
These nodes then exchange alerts or fixes, or notify a centralsite.

In addition to confirming a causal relationship between a particular connec-
tion/packet and a fault, the Oracle localizes it in terms of the functions and buffers in-
volved. There are several ways to achieve this, and many of the existing buffer-overflow
protection mechanisms can be used to that end. We developed our wrapping technique,
DYBOC [18], which performs three source code transformations:

1. DYBOC instruments all function entry and exit points to record which functions
are active at any time. Thus, we can obtain an accurate snapshot of the call graph
at the time a fault occurs.

2. DYBOC transforms all buffers that were allocated on the stack such that they
are allocated on the heap. Furthermore, the allocation routine allocates two extra
memory pages that surround the desired memory region. Theseextra memory
pages are marked as read only, so any write operations (as maybe the case when
a buffer overflow occurs) generate a fault that is delivered to the process in the
form of a signal (SIGSEGV). DYBOC also records the name of thebuffer and
the function in which it was allocated.

3. DYBOC inserts a signal handler that prints the call stack and the name of the
buffer on which the overflow (or underflow) occurred.

These transformations can lead to a significant performanceslowdown for the Ora-
cle, relative to the unmodified application. Since the Oracle is not used to serve actual
requests (unless so desired), this slowdown only affects our ability to test hypotheses.

Once the Oracle confirms and localizes the failure, the system attempts to generate a
series of source-level patches that eliminate the vulnerability. These fixes have the same
form as the instrumentation we described previously, but are tailored to the specifics of
the vulnerability. Specifically:
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• We transform the buffer that is overflowed, as above.
• We snapshot the program state at the point where the functionduring the ex-

ecution of which the overflow actually occurs is called. We use sigsetjmp() as
a lightweight mechanism for achieving this, although more comprehensive and
computationally expensive mechanisms may be used if necessary [20].

• We insert a signal handler that will catch the signal generated by a buffer overflow
on the instrumented buffer, and recover program execution.The program will
continue executing from the location immediately after thecall to the vulnerable
function.

If no overflow occurs, the program will continue behaving as before. However, if an
overflow occurs, our patch will cause execution of the vulnerable function to terminate
and control to be transferred to its caller. The hypothesis behind this approach is that in
most cases the caller will gracefully handle this condition. Since we cannot depend on
this to always be true, the system includes a testing phase during which it examines the
impact of the generated patch. This testing phase involves instantiating a patched version
of the application and then testing its behavior against(a) a pre-defined set of test in-
puts (e.g., a regression test suite previously created by the administrator),(b) the specific
input the caused the fault, as well as any other inputs that caused faults in the past, and
(c) previously seen traffic to the production system (assuming it is safe to do so). The
goal of the testing phase is to identify whether the patch haseliminated the vulnerability
and whether any instability has been introduced. As a proactive measure, we can use
DYBOC at system creation time to perform exhaustive fault-injection and analysis to de-
terminea priori whether any side effects manifest under specific transformations. If we
are satisfied, we update the production server image and restart the process. If we failed
to produce a good fix, we move up the call stack and restore execution to the caller of the
caller of the vulnerable function. The same testing phase occurs,etc. Naturally, it is pos-
sible that no fix is possible, at which point other mechanisms, e.g., code randomization
[10,2], will have to be used.

All the steps described occur automatically. Thus, it is possible to construct a fully
automated self-healing system. Alternatively, we can allow human intervention and in-
spection once a patch has been generated and tested by displaying a message on the ad-
ministration console. The administrator can then inspect the incident details, view the
generated fix and the results of the testing phase, and even interact with the patched
application (if possible), before deciding whether to rollout the patch.

Since these steps (especially the recompilation and testing of the application) can
take a non-trivial amount of time to complete, we can engage additional protection mech-
anisms while we are attempting to create a suitable patch. For example, we can restrict
or prohibit access to the production server by installing a port-blocking or signature-
blocking rule on the firewall, or we can turn on complete logging of all the actions of the
production server, so that we can later on audit and recover from a compromise.

For a detailed description of the system and its evaluation,see [21,20,18].

4. Conclusions

We have made a case for the desirability and feasibility of self-healing software systems,
as a class of reactive software-protection mechanisms. Such systems represent a new ap-
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proach to system security and reliability. We discussed ourearly thoughts on the princi-
ples behind such systems and described the Worm Vaccine architecture, the first instance
of a self-healing software system. Although work in this area is in its early stages, our
results so far have been very encouraging [18,20,21,11,12,19]. We hope that this paper
will motivate additional research in this promising new area.
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