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Abstract. Existing approaches to software security and reliabiléyénproven in-
adequate in offering a good tradeoff between the assuragi@hility, availability,
and performance. We argue thactive protection mechanisms need to be added
to our panoply of defenses. Furthermore, we argue that sedhamisms need to
be much more invasive than previously envisioned. We d&scus approach to
such mechanisms by introducing the concepetffhealing software. We describe
the principles behind self-healing software systems awgvshse the concepts by
giving an overview the Worm Vaccine architecture.
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1. Motivation

Despite considerable work in fault tolerance and relighifioftware remains notoriously
buggy and crash-prone. The current approach to ensurirggtheity and availability of
software consists of a mix of different techniques:

Proactivetechniques seek to make the code as dependable as possible, through a
combination of safe languagesd., Java [8]), libraries [1] and compilers [9,14],
code analysis tools and formal methods [3,7,25], and dpwedmt methodologies.
Debugging techniques aim to make post-fault analysis and recovery as easy as
possible for the programmer that is responsible for prauyaifix.

Runtime protection techniques try to detect the fault using some type of fault
isolation such as StackGuard [6] and FormatGuard [4], whidtress specific
types of faults or security vulnerabilities.

Containment techniques seek to minimize the scope of a successful exploit by
isolating the process from the rest of the system, through use of virtual ma-
chine monitors such as VMWare or Xen, system call sandbaxasas Systrace
[16], or operating system constructs such as Whioot(), FreeBSD'qail facility,

and others [24,13].

Byzantine fault-tolerance and quorum techniques rely on redundancy and di-
versity to create reliable systems out of unreliable conepit$[26,17].

These approaches offer a poor tradeoff between assuratiedjlity in the face of
faults, and performance impact of protection mechanisnesbélieve that a new class
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of reactive protection mechanisms need to be added to the above liste 8mhniques
that can be classified as reactive include Intrusion Prewei8ystems (IPS) and auto-
matically generated content-signature blockerg, [15]. Most such systems have fo-
cused on network-based prevention, augmenting the furaltty of firewalls. However,
a number of trends make the use of such packet inspectiondkxjies unlikely to work
well in the future:

e Due to the increasing line speeds and the more computattensive protocols
that a firewall must support (such as IPsec), firewalls terltbttome congestion
points. This gap between processing and networking speéksly to increase, at
least for the foreseeable future; while computers (anddérawvalls) are getting
faster, the combination of more complex protocols and teméndous increase
in the amount of data that must be passed through the fireaslbben and likely
will continue to outpace Moore’s Law [5].

e The complexity of existing and future protocols makes paakgpection an ex-
pensive proposition, especially in the context of incnegdine speeds. Further-
more, a number of protocols are inherently difficult to pisecia the network be-
cause of lack of knowledge that is readily available at thdpeimts étc. FTP and
RealAudio port numbers).

e End-to-end encryption, especially of the opportunistimetyeffectively prevents
inspection-based systems from looking inside packetsyem at packet headers.

e Finally, we believe that it is only a matter of time until egjif such as worms start
using polymorphism or metamorphism [23] as cloaking teghes. The effect
of these is to increase the analysis requirements, in tefrpsogessing cycles,
beyond the budget available to routers or firewalls.

All these factors argue for host-based reactive proteatiechanisms. In the space of
such mechanisms, we focus sehf-healing software as a reactive protection technique.
In the next section we outline our view of self-healing s@ftes systems and give our
first thoughts on the structure of such systems. In Sectiore e a brief overview
of an instance of a self-healing software system, the Worotiig architecture. As the
name implies, this is a system designed to protect agairatonke worms that spread
through software-based vulnerabilities such as bufferftoxgs. Although this class of
vulnerabilities has been studied extensively, we discugsacchitecture as a concrete
example of a self-healing software system.

2. Principles of Self-Healing Software

Our approach to self-healing software, shown in Figure lpdsleled after the concept
of an Observe Orient Decide Act (OODA) feedback loop. OuthHigyel intuition is
that, if proactive or runtime protection mechanisms arestqeensive to use in a blanket
manner, we should instead use them in a targeted mannetifyitegmwhere and how to
apply protection is done by observing the behavior of théesgsn a non-invasive (or
minimally invasive) manner. The goal of this monitoringasdetect the occurrence of a

1By “opportunistic” we mean that client-side, and often serside, authentication is often not strictly re-
quired, as is the case with the majority of web servers or &MTP over TLS €g., sendmail's STARTSSL
option).
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Figure 1. General architecture of a self-healing system. The systenitors itself for indications of anoma-
lous behavior. When such is detected, the system enters-diaghosis mode that aims to identify the fault
and extract as much information as possible with respedstoaiuse, symptoms, and impact on the system.
Once these are identified, the system tries to adapt itsejEhgrating candidate fixes, which are tested to find
the best target state.

fault and determine its parameteeg., the type of fault, the input or sequence of events
that led to the it, the approximate region of code where th# faanifests itself, and any
other information that may be useful in creating fixes.

Following identification, the system will need to create @amenore possible fixes
tailored to the particular instance of the fault. The natfréhese fixes depends on types
of faults and the available protection mechanisms. PatkEfities to software faults in-
clude snapshot-rollback, input filtering, increased mamifg or isolation for the vulner-
able process, selective application of any runtime prameehechanism, and others.

Each candidate fix produced by the system is then testedlyidean isolated envi-
ronment, to verify its efficacy and impact on the applicatieg., in terms of side effects
or performance degradation). This testing can take sef@rak, including (but not lim-
ited to) running pre-defined test-suites, replaying presip seen traffic (including the
input that triggered the fault§fc. The various fixes are rank-ordered based on the results
of the testing phase, as well as other informati@g.(how many lines of code are modi-
fied, what the down-time for deploying the fix will be, how margmponents need to be
reconfiguredetc.). If an acceptable fix is produced, the system is updatedrdicayy.
This can be done through established patch-managemenoafiguration-management
mechanisms, or any other suitable mechanism.

Our particular approach to self-healing software, showFigure 2, is to apply struc-
tural transformations to the application itself, aimedlahimating the root cause of the
vulnerability. Our system uses a set of software probesntiwatitor the application for
unknown instances of specific types of faultgy(, application crash, buffer overflow ex-
ploit, etc.). Upon detection of a fault, we invoke a localized recovemchranism that
seeks to recognize and prevent the specific failure in fudMeeutions of the program.
Using continuous hypothesis testing, we verify whetherfghdt has been repaired by
re-running the application against the event sequencefipgrently caused the failure.
Our initial focus is on automatic healing of services agairewly detected low-level
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software faults. We emphasize that we seek to address a aiyof software failures,
not just attacks.

Lightweight sensors

(software instrumentation) Attack recognition &

localization in terms of cod
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Figure 2. Our approach to self-healing software systems. We instntintiee production system with
lightweight sensors that do not affect its performance ocfionality. If an attack or other anomalous event
if flagged, we use an instrumented version of the system gndie the event. Once the fault is localized in
terms of code region, we produce a set of candidate patchearéappropriate for that specific class of fault,
or are generic band-aids. The resulting system images algas¢®d against a test-suite as well as the malicious
input. A human may be required to approve deployment, ontiEm may perform all the steps automatically.

In our overall approach, we treat faults as exceptions. tardgning how to recover
from such exceptions, we introduce the hypothesis ofxacution transaction. Very
simply, we posit that for the majority of code, we can treatrefunction execution as a
transaction (in a manner similar to a sequence of operatinaglatabase) that can be
aborted without adversely affecting the graceful termorabf the computation. Each
function call from inside that function can itself be tredhtes a transaction, whose suc-
cess or failure does not contribute to the success or faillits enclosing transaction.
Under this hypothesis, it is sufficient to snapshot the stftiee program execution when
a new transaction begins, detect a failure per our previdaeugsion, and recover by
aborting this transaction and continuing the executionénclosing transaction. Note
that our hypothesis does not imply anything about the comess of the resulting compu-
tation, when a failure occurs. Rather, it merely statesifteatunction is prevented from
(for example) overflowing a buffer, it is sufficient to contmexecution at its enclosing
function, “pretending” the aborted function returned aroenWe call this approacér-
ror virtualization. Depending on the return type of the function, a set of haasistre
employed to determine an appropriate error return valugghan turn, used by the pro-
gram to handle error condition. For more details, includingpreliminary experimental
validation of the concept of execution transactions, ség [1

However, saving the application’s state prior to each fiamctall is likely to be an
expensive proposition. Instead, we introduce such traiogeat processing as directed by
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the fault-identification phaseg., only for the function(s) where the fault exhibited itself.
One way to view our system is that we speculatively execude timat we have previously
determined to be susceptible to faults. This approach,wvie callmicro-speculation,
can be implemented through source-level code transfoomsfi 8], a selective emulator
[20], or by modifying the compiler [22].
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Figure 3. Worm vaccination architecture: sensors deployed at variocations in the network detect a po-
tential worm (1), notify an analysis engine (2) which fordsithe infection vector and relevant information
to a protected environment (3). The potential infectionteets tested against an appropriately-instrumented
version of the targeted application, identifying the vuaislity (4). Several software patches are generated
and tested using several different heuristics (5). If onthem is not susceptible to the infection and does not
impact functionality, the main application server is ugdi(6).

3. A Case Study: Worm Vaccine Architecture

We now describe one instance of a self-healing softwardtanthre geared specifically
against worms spreading via buffer overflow vulnerabsgiti€he architecture is shown
graphically in Figure 3, and is described in more detail ib][Dur system assumes ac-
cess to source code, and automatically generates sowedgstches that can be applied
against the application’s source code to address newlypwksed vulnerabilities. Our
approach creates an OODA loop using a properly instrumerdgesion of the applica-
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tion (called theDracle). The instrumentation is specific to the types of faults thatre
interested in addressingg., buffer overflow vulnerabilities. We use the Oracle to verify
hypotheses that a particular connection or packet is noalsgi.e., that it will cause a
fault when processed by the application. Such hypothesebe&generated in a number
of different ways (all of which may be used simultaneously):

e Implicitly, any traffic that reaches the Oracle from a sowxtrnal to the organi-
zation is considered suspicious. In this case, the Oraemtgs in a honeypot-like
mode.

e Explicitly, if an anomaly detector that inspects networkffic generates a sus-
picion that a particular connection or packet is anomal@uh traffic may be
forwarded to the Oracle for further inspection.

e Reactively, as a result of an observed fault on the prodne#osion of the appli-
cation by a host-resident sensor or anomaly detector. it may have con-
tributed to the fault is replayed to the Oracle, under theiagdion that the fault
manifests itself shortly after the attack.

Alternatively, we can construct a distributed Oracle (whie have named an Appli-
cation Community [12,11]) by spreading the task of monitgrior failures across mul-
tiple independent instances of the software. For exampleh exstance of a web server
in a server farm may only be monitoring one code function;amhenstance may be ran-
domly selecting requests during the handling of which fulimtoring will be enabled.
These nodes then exchange alerts or fixes, or notify a cesitizal

In addition to confirming a causal relationship between ati@dar connec-
tion/packet and a fault, the Oracle localizes it in termshaf tunctions and buffers in-
volved. There are several ways to achieve this, and manyeahtisting buffer-overflow
protection mechanisms can be used to that end. We developedapping technique,
DYBOC [18], which performs three source code transfornretio

1. DYBOC instruments all function entry and exit points toged which functions
are active at any time. Thus, we can obtain an accurate soiapfsthe call graph
at the time a fault occurs.

2. DYBOC transforms all buffers that were allocated on tteelstsuch that they
are allocated on the heap. Furthermore, the allocatiom®atlocates two extra
memory pages that surround the desired memory region. Tddse memory
pages are marked as read only, so any write operations (aberthg case when
a buffer overflow occurs) generate a fault that is delivepethe process in the
form of a signal (SIGSEGV). DYBOC also records the name oflthffer and
the function in which it was allocated.

3. DYBOC inserts a signal handler that prints the call stacit #the name of the
buffer on which the overflow (or underflow) occurred.

These transformations can lead to a significant performslogalown for the Ora-
cle, relative to the unmodified application. Since the Graslnot used to serve actual
requests (unless so desired), this slowdown only affeatalility to test hypotheses.

Once the Oracle confirms and localizes the failure, the syatéempts to generate a
series of source-level patches that eliminate the vulnilgsaf hese fixes have the same
form as the instrumentation we described previously, beitatored to the specifics of
the vulnerability. Specifically:
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e We transform the buffer that is overflowed, as above.

e \We snapshot the program state at the point where the fundtioing the ex-
ecution of which the overflow actually occurs is called. We sgsetjmp() as
a lightweight mechanism for achieving this, although masenprehensive and
computationally expensive mechanisms may be used if nagelg)].

e \We insert a signal handler that will catch the signal gereray a buffer overflow
on the instrumented buffer, and recover program execufibe. program will
continue executing from the location immediately after¢h# to the vulnerable
function.

If no overflow occurs, the program will continue behaving afobe. However, if an
overflow occurs, our patch will cause execution of the vidbé function to terminate
and control to be transferred to its caller. The hypothesksrd this approach is that in
most cases the caller will gracefully handle this conditiBimce we cannot depend on
this to always be true, the system includes a testing phasegdwhich it examines the
impact of the generated patch. This testing phase invohgantiating a patched version
of the application and then testing its behavior again$ta pre-defined set of test in-
puts €.g., a regression test suite previously created by the admatisjt(b) the specific
input the caused the fault, as well as any other inputs thagezhfaults in the past, and
(c) previously seen traffic to the production system (assuntiigysafe to do so). The
goal of the testing phase is to identify whether the patchetiasnated the vulnerability
and whether any instability has been introduced. As a pr@aateasure, we can use
DYBOC at system creation time to perform exhaustive fanjitétion and analysis to de-
terminea priori whether any side effects manifest under specific transfoomsa If we
are satisfied, we update the production server image arattrést process. If we failed
to produce a good fix, we move up the call stack and restoraiérado the caller of the
caller of the vulnerable function. The same testing phasarsgetc. Naturally, it is pos-
sible that no fix is possible, at which point other mechanjsgs, code randomization
[10,2], will have to be used.

All the steps described occur automatically. Thus, it issille to construct a fully
automated self-healing system. Alternatively, we carvallmman intervention and in-
spection once a patch has been generated and tested byitigElanessage on the ad-
ministration console. The administrator can then inspeetimcident details, view the
generated fix and the results of the testing phase, and etemadh with the patched
application (if possible), before deciding whether to mlt the patch.

Since these steps (especially the recompilation and ¢esfithe application) can
take a non-trivial amount of time to complete, we can engagéianal protection mech-
anisms while we are attempting to create a suitable pataheX@mple, we can restrict
or prohibit access to the production server by installingogt-plocking or signature-
blocking rule on the firewall, or we can turn on complete loggof all the actions of the
production server, so that we can later on audit and recoosr & compromise.

For a detailed description of the system and its evaluatiea [21,20,18].

4. Conclusions

We have made a case for the desirability and feasibility ibfiszaling software systems,
as a class of reactive software-protection mechanismé Sistems represent a new ap-
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proach to system security and reliability. We discussedeauly thoughts on the princi-
ples behind such systems and described the Worm Vacciniemtcine, the first instance
of a self-healing software system. Although work in thisaai®in its early stages, our
results so far have been very encouraging [18,20,21,1119]L.2)Ve hope that this paper
will motivate additional research in this promising neware
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