On the Infeasibility of Modeling Polymorphic Shellcode:

Yingbo Song
Dept. of Computer Science
Columbia University

yingbo@cs.columbia.edu

Angelos D. Keromytis
Dept. of Computer Science
Columbia University

angelos@cs.columbia.edu

ABSTRACT

Polymorphic malcode remains a troubling threat. The abfbr
malcode to automatically transform into semantically ealgnt
variants frustrates attempts to rapidly construct a singieaple,
easily verifiable representation. We presemuantitativeanaly-
sis of the strengths and limitations of shellcode polym@phand
consider its impact on current intrusion detection practic

We focus on the nature of shellcodecoding routinesThe em-
pirical evidence we gather helps show that modelingdlass of
self-modifying code is likely intractable by known methpds-
cluding both statistical constructs and string signaturesaddi-
tion, we develop and present measures that provide insighttie
capabilities, strengths, and weaknesses of polymorplgines. In
order to explore countermeasures to future polymorphieats; we

show how to improve polymorphic techniques and create afproo

of-concept engine expressing these improvements.

Our results indicate that the class of polymorphic behaigor
too greatly spread and varied to model effectively. Our ysial
also supplies a novel way to understand the limitations ofect
sighature—based techniques. We conclude that modelingahor

content is ultimately a more promising defense mechanisa th

modeling malicious or abnormal content.

Categories and Subject Descriptors

H.1.1 Models and Principleg: Systems and Information The-
ory—Value of Information

General Terms
Experimentation, Measurement, Security

Michael E. Locasto
Dept. of Computer Science
Columbia University
locasto@cs.columbia.edu

Angelos Stavrou
Dept. of Computer Science
Columbia University

angel@cs.columbia.edu

Salvatore J. Stolfo
Dept. of Computer Science
Columbia University

sal@cs.columbia.edu

Keywords

polymorphism, shellcode, signature generation, stasisthodels

1. INTRODUCTION

Code injection attacks have traditionally received a gdeat of
attention from both security researchers and the blackivatrou-
nity [1, 14], and researchers have proposed a variety ohdefe
from artificial diversity of the address space [5] or instioic set
[20, 4] to compiler-added integrity checking of the stacR,[15]
or heap variables [34] and “safer” versions of library fuois [3].
Other systems explore the use of tainted dataflow analygiseto
vent the use of untrusted network or file input [9, 29] as pért o
the instruction stream. Finally, a large number of schemepqgse
capturing a representation of the exploit to create a sigador
use in detecting and filtering future versions of the atteigna-
ture generation methods are based on a number of content mod-
eling strategies, including simple string—based sigmatoatching
techniques like those used in Snort [36]. Many signatureegen
tion schemes focus on relatively simple detection hegsssuch
as traffic characteristics [35, 228.0, frequency of various packet
types) or identification of the NOP sled [38], while otherside
a signature from the actual exploit code [24, 43, 25] or stiatl
measures of packet content [41, 40, 28], including contapt.zed
by honeypots [44].

This paper presents a study of the efficacy of contempordyy po
morphism techniques, as well as methods to combine and iapro
them. Our analysis focuses on what we consider the most con-
strained section of malcode, tHecoderportion. Since this section
of a malcode sample or exploit instance must contain exblzuta

“This material is based on research sponsored by the Air Forcecode, it cannot easily be disguised (unlike most other pefrs

Research Laboratory under agreement number FA8750-@22;0

malcode sample, except, perhaps, the higher order bitseafeth

Army Research Office contract number W911NF0610151, and by turn address section).

NSF Grant 06-27473, with additional support from Google.e Th

U.S. Government is authorized to reproduce and distritepgamts
for Governmental purposes notwithstanding any copyrigkétion
thereon.

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

CCS’07, October 29-November 2, 2007, Alexandria, Virginia,
USA.

Copyright 2007 ACM 978-1-59593-703-2/07/001%5.00.

We derive our motivation from the challenge of modeling this
particular type of malcode data. We wondered whether, given
limited samples of polymorphic code, it is possible to cotepand
store a set of signatures or a statistical model that coydcesent
this class of code. If so, how costly would such a task be ims$eof
memory and processing time? In the span ofrtHeyte space that
these samples of code populate, how much overlap is thehelveit
class of benign network traffic? Unlike current research oly-p
morphic engines [17], our work focuses on the general classde
that performs decryption independent of the payload. Algio
other research focuses on determining if an arbitrary sexpief
bytes represents executable malcode (either by employintpit
anomaly detection or detecting streams of executable codeti

work traffic), our objective is quite different: we aim to danine
if malcode itself has any distinguishing features that rhagtpport
the construction and use of exploit signatures or statistimdels.

1.1 Shellcode Background

AlephOne first illustrated the basics of smashing the stag¢k [
The virus writer Dark Avenger’s Mutation Engine influencéxe t
shellcoder K2 to develop shellcode polymorphism [19]. ten
proceeds to show how to perform alphanumeric encoding £&8hn
Eran showed how to smash the kernel stack [14], Obscue Hedcri
how to encode shellcode to make it survive ASCII to unicodagr
formations [30], the CLET team developed the technique etsp
trum spoofing and implemented a recursive NOP sled [13] and
most recently the Metasploit project combined vulnerapijbirob-
ing, code injection, and polymorphism (among other feafuiro
one complete system [26].

While injected malcode can follow a wide variety of interaal
rangements in order to trigger a particular vulnerabibych code
is conceptually structured as a set that contains a NOP &ls€;
guence of positions containing the targeted return addaessthe
executable payload of the exploie., shellcode Recently, both
polymorphism and metamorphism have been used to disguise ma
code [19]. One approach is to use code obfuscation and ngaskin
such as encrypting the shellcode with a randomly chosen Key.
decoding engine is then inserted into the shellcode and muast
before the exploit to reverse the obfuscation during ruetiresult-
ing in a fairly standard conceptual format for shellcode:

[NOP][DECODER[ENCPAYLOAD][RETADDR]

Only the decoding routine now need be polymorphic; this task
proves less daunting than morphing arbitrary exploit cddapid
development of polymorphic techniques has resulted in abeum
of off-the—shelf polymorphic engines [19, 13, 26, 6]. Caunt
measures to polymorphism range from emulation methodst{81]
graph-theoretic paradigms aimed at detecting the underiyul-
nerability [7] or signatures based on higher order infoiorasuch
as the control-flow graph of the exploit [23, 8] or correlgtioro-
tocol format information with memory corruption vulnerktigs
[12]. We elaborate on defense techniques in Section 5.

Contemporary shellcode polymorphism techniques typieat-
ploy two ways of disguising code. The first rewrites the coalehe
time so that it differs syntactically but retains the samerapional
semantics. This process, akin to metamorphism, is decaabjeos
to graph isomorphism [37], and unlike virus metamorphisee(s
Zmist [16]), it is, in general, a non-trivial solution to itepnent.
The other common approach is to self-cipher: the exploitrapped
as payload within a larger malcode component and is disduise
using a reversible cipher (usually a linear sequence ofatioeral
loopse.g.,xor, add, subtract, ror, roétc, although a looping con-
struct is not always required). An attacker typically usegesal
rounds of ciphering. Polymorphism is obtained by randongjzhe
order of these ciphers and using different keys. In ordeevense
the cipher, a clear—text program must exist immediatelpigefin
terms of execution flow) the payload. This program decodesxh
ploit payload at runtime. Such “decoders” typically havesagth
of 30 to 50 bytes and can decode arbitrary payloads. Decpders
vide an effective technique for rapid and simple dissenvnabf
malcode variants. Attackers reuse exploits in arbitradifferent
forms. In fact, many polymorphic engine in the wild licarrgapy
of the shellcode listed in AlephOne’s seminal paper [1].

1.2 Shellcode Polymorphism

Polymorphic techniques no longer consist of simply disiggis

addr ess byt e val ues x86 code

00000000 EB2D jmp short Ox2f
00000002 59 pop ecx

00000003 31D2 xor edx, edx
00000005 B220 nmov dl , 0x20
00000007 8BO1 nmov eax, [ecx]
00000009 C1C017 rol eax, Ox17
0000000C 35892FC9D1 xor eax, Oxd1c92f 89
00000011 C1C81F ror eax, Ox1f
00000014 2DOF253D76 sub eax, 0x763d259f
00000019 0543354F48 add eax, 0x484f 3543
0000001E 8901 nmov [ecx], eax
00000020 81E9FDFFFFFF sub ecx, Oxfffffffd
00000026 41 inc ecx

00000027 8OEA03 sub dl, 0x3
0000002A 4A dec edx

0000002B 7407 jz 0x34

0000002D EBD8 j mp short Ox7
0000002F E8CEFFFFFF call 0x2

00000034 FE db OxFE

'p'aﬂll oad foll ows

Figure 1: A 35 byte polymorphic decryption loop. From left
to right, the columns contain the address or offset of the in-
struction, the byte value of the instruction, and an x86 asge-
bly representation. Note the five cipher operationsy or xor
ror sub add, that begin at 0x0C. The working register for
the cipher is %eax. Note the stop condition aDx2B.

the payload; attackers frequently conceal other sectibmsatrode.

e [NOP]: The most basic design of a nop-sled is a buffer of NOP
instructions{x90, x90, ..., x90} inserted ahead of the decoder
to safely capture a future change in the value of the instmct
pointer. Many signature—based systems rely on this arfifacle-
tection. Attackers, however, have introduced various vations

to make the NOP sled polymorphic. The sled need not consist of
actual NOP instructions — it only has to pass the flow of exeaut
safely into the decoder without causing instability. K2aésed at
least 55 different ways to write such single byte benigrrirgions
[19] and implemented this method in the ADMmutate enginds Th
technique provides the potential f85™ unique NOP sleds (where
n is the sled length).

The CLET polymorphic engine [13] employs a more advanced
NOP sled design. This method discovers benign instructigns
first finding a set of 1-byte benign instructions, then findarggt of
2-byte benign instructions that contains the 1-byte imstons in
the lower byte. Therefore, it does not matter if control flawess
the 2-byte instruction or if it lands one byte to the rightcainhat
position will hold another equally benign instruction. Resive
use of this method to additional depths finds longer benigtruc-
tion sequences for a NOP sled. To the best of our knowledge, no
analysis of the potential of this method exists, but it sea&a use-
ful polymorphic technique because modeling this type o sfay
amount to modeling random instructions.

e [RETADDR]: Without address space randomization, the location
of the stack and stack variables on most architectures rencain-
sistent across program executions. Thus, the attackertresssafor
guessing the appropriate value for an injected return addoeredi-
rect the instruction pointer into the malcode. Generatiggatures
that use these specific address values to filter out malcaasse
possible for certain types of code injection attacks. Amckier
can, however, achieve return address polymorphism by ryiadif

the lower order bits [19]. This method causes control flonutap
into different positions in the stack. As long as it lands sarnere
in the sled, the exploit still works. The return addressiseaton-
sists of the return target repeatednumber of times. Each repeat
can be modified times (wherev is some tolerable variance in the
jmptarget) for a total o™ possible variations.

e Spectrum shapi ng & byte paddi ng: In polymorphic
blending attacks [17], exploits attempt to appear simibaoenign
traffic in terms of the n-gram content distribution. The CLiEam’s
polymorphic engine [13] is an example of such a techniqueirTh
engine alters the shellcode to take on the form:

[NoP][DECODER[ENC PAYLOAD][PADDING][RETADDR]

The engine adds junk bytes in the new padding area to ensufe th
gram distribution of the shellcode appears different. lditioh, the
shellcode itself is ciphered with different length keys.e$a keys
exhibit a variety of byte distributions that reshape thelsgectrum
of the payload. This technique increases both the variatith
propagation strengths of a polymorphic engine to make istast
to a statistical content anomaly detectors [40].

Perhaps the most worrisome threat is that these individwaalt
nigues are interchangeable and can be combined into a giolgte
morphic engine. Section 3 shows that this engine is simple to
implement. Furthermore, the structure used by modern csiusl
(i.e.,[NOP][DECODER[ENC PAYLOAD][RETADDR]) is really just
a conventional design that happens to work. Nothing prevér
attacker from modifying the sections between the sled aaddh
turn address. With some additiorjaip instructions, it is not hard
to imagine seeing future shellcode of the forms:
[NOP][ENCRYPTED PAYLOAD|[DECODER[RETADDR]

[NOP][DECODER1][ENC. PAYLOAD][DECODER2][RETADDR]

[NOP][PADDING][ENC. PAYLOAD][PADDING][DECODER[RETADDR]
and so on. These types of encoding will present difficultytfoth
static and dynamic code analysis.

1.3 Contributions

Conventional wisdom has held that attackers retain a stgmifi
advantage by using polymorphic tactics to disguise theilsbde.
To the best of our knowledge, however, there exists no cfading
analysis of this advantage. Our work provides empiricallence
to support this folk wisdom and helps improve understandirtge
polymorphic shellcode problem in the following ways:

e We illustrate the ultimate futility of string—based sigma
schemes by showing that the classmebyte decoder sam-
ples spans-space. Although our results should not be inter-
preted as a call for the immediate abandonment of all sigeatu
based techniques, we believe there is a strong case for inves
tigating other protection paradigms.

As a corollary, we show that given any normal statistical
model, there is a significant probability that an attacker ca
craft successful targeted attacks against it.

We propose metrics to gauge the relative strengths of poly-

that corresponds to decoders is a subset of this supersgtspan-
ning a subspace within this larger space. How difficult ipitrtodel
this subspace — in other words, what is the magnitude of plais
What are polymorphic threats we can expect to see in the inateed
future? Finally, what are the theoretical limits?

We combine a number of methods to answer this question,, First
we introduce a set of measures to assess the randomnessmf a po
ulation of samples. We employ these measures to analyzela poo
of decoders generated by existing polymorphic enginest,Nex
demonstrate our improvements to existing polymorphicrépkes.
Finally, we analyze the theoretical limits of polymorphisy ex-
amining a fixed size space afbytes. We explore this space using
efficient genetic algorithms to characterize the span of@8lcode
that exhibits polymorphic behavior. Along the way, we expla
why signature—based detection currently works, why it maykw
in the short term, and why it will progressively become leakiv
able. We also discover that shellcode behavior varies éntougot
only present a challenge for signature systems, but alsepte a
significant challenge for statistical approaches to modsdtode.

2. POLYMORPHIC ENGINE ANALYSIS

This section explains the details of our approach for ariadyz
the range of decoders generated by any given engine. Welso a
ply our methods to analyzing some of the state-of-the-dytrpor-
phic engines used in the wild. Six popular engines are exaanin
ADMmutate, CLET, and four engines from Metasploit: Shikata
Gai Nat, Jumpcall additive, Call4dword and fnstenv mov. Pre-
vious research on automatic generation of exploit sigeatnom
polymorphic code [22, 28] reports successful detectiorxpfasts
from many existing engines, some of which are from Metasploi
Our work makes it easy to visually observe the artifacts soate
of these engines leave in each shellcode instance that drerg
ate: artifacts which can be taken advantage of for detectitla
show, however, that these artifacts are not strongly catedlwith
polymorphic behavior itself and look very different acrd#erent
engines — thus they cannot be generalized to detect polywitorp
behavior outside of their training class.

We designed our measufearound the following parameteriza-
tions for engine efficacy:

VARIATION STRENGTH: Given sequences of length the varia-
tion strength of an engine measures that engine’s abilieteer-
ate sequences of lengththat span a sufficiently large portion of
n-space. This metric is meant to offer some insight into thg-ma
nitude of the set of signatures that may be needed to acburate
encapsulate all decoders generated by a particular engine.

PROPAGATION STRENGTH: For the sequence of decodess,.. .,

xn that an engine can generate, the propagation strength of the
engine characterizes the efficacy of the engine in makinghaay
samplesx;, x; forall i, = 1... N, look different from one an-

morphic engines, and we use these to examine some of theother. The purpose of this metric is to quantify the amouritfur-

current state-of-the-art engines. We believe our methodol
ogy is novel and helps provide some insight in a space that
has generally been lacking in quantitative analysis.

We show how to augment existing polymorphic engines and
demonstrate this process by presenting our implementation
of a proof-of-concept engine.

The problem we address can be stated as follows:

PROBLEM DEFINITION Givenn bytes, there can be a set of
256" possible strings. The specific class of x86 code of length

mation gain obtained by isolating a few samples from a paleic
engine.

Using these metrics, we analyze six current polymorphic en-
gines and provide some measurements for their relativeypaty

1A common Japanese cultural phrase meaning “nothing can be
done about it.”

2Notations used in this paper: all variables in bold text fanth as
x andy denote column vectors. We ugeto denote the'" vector

of a set of vectors and we usgi) to denote the*” component of
the vectorx.

phic strengths, yielding a scaled score for each enginehwvie
call the “relative polymorphism strength score”mscore We use
this score to compare the samples generated by the polyimorph
engines to sequences that we generate at random. In adaiion
leverage the concept of a spectral image, which allows easgplv
ization of the amount of distortion in a sample pool. We cambi
this technique with the above metrics to derive our resuitsan-
firm the folk wisdom that the class of x86 polymorphic shetleo
is too random to model.
SPECTRAL | MAGE

Given any polymorphic engine, we can use it to generate &set o
D decoders, each of lengti. For non-fixed length decoders, we
can add padding at the end to make the lengths equal so tyat the
can be displayed. We next sort these decoders and stack them t
gether row-wise into & x N matrix, then display this matrix as an
image, considering thé" byte of decodey as the intensity value
for the (4, 7)™ pixel of the image. A byte value of 0x00 produces a
black pixel; OxFF produces a white pixel. Values within ttasge
exhibit a shade of gray. This representation helps us visithe
randomness of a set of generated decoders. Salient bytegs- by
that exist in the same places within all generated decodene —
easily identifiable artifacts since they show up as visildkeimns
within the spectral image. Figure 2 shows the spectral imagthe
six engines we examined. They were generated by taking &sing
shellcode sample and encrypting it with each engine 10,00€st
to generate 10,000 unique shellcode sequences for eacteeige
extracted the decoder portions from these sequencesd shetn,
down-sampled (so that the number of samples used is on the ord
of the dimensions of the samples), then generated the images

Notice how Shikata Ga Nai generates roughly three subdasse
of decoders. The same blocks of code exist in the engine lbai-no
ways at the same place. The weaknesses affldeandf nst env

rot(y,r) means rotate the string to the left by r-bytes, with
wraparound. We divide byix|| + ||y|| to transform the metric
into a ratio of the distance between two vectors with resfretiie
sum of their individual lengths. This normalizes the meamal re-
moves the number of dimensions (length) of a string as arfacto
the distance. This distance measure plays an importanirraler
metrics, described more fully in the following sections.

VARIATION STRENGTH

Following our previously described notion of viewing deecsl
as embedded points im-dimensional space, we can conceptually
visualize a set of decoders generated by a particular eragire
cloud of points in this n-space. The magnitude of the spacered
by the span of these points is what we refer to aswheation
strengthof the engine. The magnitude and complexity of the span
is directly proportional to the difficulty of modeling thegine,i.e.
the number of signatures in the case of signature based detho
or model complexity in the case of statistical models. Wesgne
a method to bound this magnitude, making use of the covagianc
matrix, which is defined as the following:

N
= - —)" @
i=1
This gives us a symmetric matrix with dimensionsn for decoder
sequences of dimensionality Here,x; is a decoder sample and
w= % va x; is the sample mean of the set of decodersind
are column vectors arifl denotes the vector transpose operator.
The covariance matrix describes the shape ofi-atimensional
ellipsoid inn-space. Therefore, recovering the covariance matrix
for a set of decoders recovers hyper-ellipsotglddound on the data
set. Calculating the span of the set is a problem of meastinmg

nov engines are apparent as the vertical columns show that theseradii of the principle axes of the ellipsoid, which is an eigec-

engines always embed large artifacts in every decoder.€eTémtis
facts can be used as signatures and are easily recovergdcusin
rent techniques [22, 28]. As the images show, even thougdethe
engines perform the same basic actions to decode a strihgwit
a small distance of itself in memory, these invariants dohaid
across different engines. For example, the vertical ban@CEET
represents clearing of registers (we confirmed this by repttfieir
documentation).

MINIMUM EUCLIDEAN DISTANCE

Any stringx of fixed lengthn can be considered as a single point
embedded im-spacej.e.,x € R". Forn = 2, we can imagine
a 2-D plane — the string “ab”, where the ASCII character “a@7s
and “b” is 98, can be considered as a single point in this 2Dl
embedded at (97,98). The string “yz” would likewise be entset
at (121,122). The Euclidean “distance” between these tvinogst
quantifies the length of the line drawn from (97,98) to (122)1
and is calculated using the Euclidean norm, denof¢/dand de-
fined as:||x|| = /> . ;(x(4))2. Without loss of generality, we
can see that this extends for strings up to higher ordspace for
any arbitraryn. We can therefore consider each decoder string a
single point within thise-space of all strings of length.

The minimum Euclidean distance between two strings is deéfine
as the normalized Euclidean distance between the strirggr @am-
bitrary byte—level rotation. We find this definition usefiddause
we expect decoders to employ forms of polymorphism thairreta
the same ciphering methods but shift the order of operations

|

6(x,y) = mi (1)

r=

IIX—Tot(yJ)Iq
(el + [yl

tor decomposition problem. Recall that eigenvector decsitipn
finds a new set of basis vectors that spans a space defined by any
given symmetric matrix. The new basis vectors are callegrsigc-
tors, and their corresponding eigenvalues reveal the sfdlese
vectors. Thus, we recoverand\ such thatov = v, wherev is
the set ofn eigenvectors and is the set of, eigenvalues. We now
define the variation strength of a polymorphic engine as:

. IR
U (engine) = - Zz:; Vi ?3)
The square roots of the eigenvalues are takenmhitenthe distri-
bution, and we take the average of the eigenvalues since ave ar
interested in the relative scatter of the decoders-8pace; higher
dimensions should not increase the score. The utility ofritre
malization procedures is shown in Table 1, where the digioh
spanning [0..128] is shown to exhibit half of the “randonsiesf
one that spans [0..256].

To analyze the variation strength of an engine, we encoded a
shellcode sample 10,000 times and extracted the correspph@d, 000
decoder sequences. After generating the covariance naatord-
ing to Equation 2, we recovered the eigenvalues and obtafreed
score using Equation 3. The larger the number of samplestased
generate the covariance matrix, the more accurate theagstimill
be. In practice, around a few hundred samples is usuallygifou
PROPAGATION STRENGTH

If the true decoder distribution happens to exhibit a langans
but lies on a lower-dimensional “manifold” in-space where the

3Defining a full ranked covariance matrix requires more saspl
than the dimensionality of the data sample.

Lo g ey 1

T s |

L
5
=
&
-
B
H
=
i
L

.

(c)

Figure 2: Spectral images to show variation strength (a) Slkiata Na Gai (b) jcadd (c) call4dword (d) fnstenv mov (e) ADMmutate (f)
CLET. Each pixel row represents a decoder from that engine and eadndividual pixel value represents the corresponding byterdom that decoder.
A column of identical intensities indicates an identifiableartifact left by the engine.

significant dimensions of the manifold is much less thafin the
worst case, imagine a hollowdimensional sphere with large radii)
then the variation strength might overestimate the bounthen-
space scatter since the decoders do not exist in the spagedret
the sphere and the origin. This is why we introduce a second co
ponent to the engine strength metric based on the expecsed di
tances between decoders. To visualize this metric, imamiody

properly trained.
OVERALL STRENGTH

We define the overall strength of a polymorphic endibe) to
be the product of the variation strength and propagaticength
since they are positively correlated.

II(engine) = ¥(engine) - (engine) (5)

connected graph where each node is a decoder sample andjéhe ed To normalize the metric, we find the “strengths” of complgtein-

weight is the distance between any two nodes. The averade of t

dom distributions of data we generated, then divide thengthes

edge weight is then proportional to the scale of the graph. We of each engine by these strengths to generate a scaled wiich,

call this metric thepropagation strengttbecause of its close re-
lationship to the problem of connecting any two decoder $asp
together.

aengine) = (1= 2) [[po(xy)otxy) dxay (@

d(x,y) is a function that returns the distance between any two de-

coder sequences. Flexibility in choosing théunction allows us
to fine tune this metric. For our experiments we set delta amEq
tion 1, which is rotation invariant. If the engine performsimple
shift in the different layers of cipher operations, thenltytes are
decoupled from one another, and the variance in the samplelslw
be great. The propagation strength, however, would be wavy |
sinced is shift invariant, thus lowering the overall score. In addi
tion, we introduce the) variable which is defined as the number
of salient bytes within all of the decoder samples generhjedn
engine. This parameter is used as a scaling factor to dectkeas
strength of engines that leave consistent artifacts irr ttegtoders
which signature—based IDS implementation can lock on tpridfr
information is available in the form of probability densftynction

we call the “relative polymorphism score”, go-6corg for short.
Non-linear combinations (such as adding exponents to wiigh
two strengths differently) of thé(-) and ¥ (-) metrics are possible.
Althougth we could attempt to find tighter bounds, our maialgo
was to introduce this particular dual approach to quamtgyihe
capacity of polymorphic engines, allowing them to be rantedd-
tive to one another. We therefore keep the metric in its beetting
and leave open problems such as what is the most appropriate
function.

[Engine Prop. St. Var. St. Overall St.p-score]
Shikata 0.14 53.24 7.24 0.62
Jcadd 0.11 44.62 4.87 0.42

C4d 0.06 14.62 0.83 0.07
Fnstenv 0.07 15.70 1.05 0.09
Clet 0.14 53.00 7.37 0.63
Admmutate 0.15 68.76 10.59 0.91
randios 0.16 36.90 5.83 0.50
randsse 0.16 73.74 11.61 1.00

(pdf) for p(5(x,y)) such as a Gaussian then the above equation is Table 1: Decoder polymorphism strengths of various engines

solvable in closed form and can act as a regularizer for thds m
ric. If not we can use a uniform pridre. p(§(-)) = 1 and the
result can be approximated by generating the mafrisuch that
D, ; = §(xi,%;) and taking the average of this matrix. Singe)

is symmetric 0;,; = Dj;;), we only find the average of the upper
diagonal of the matrix. We use this simpler estimation pdoce
to derive the results presented in this paper.

A polymorphic engine might have a restricted span, but if the
sequences that it generates are sparsely spread out andesach
coder looks very different from the next, then it will be diffit to
train any generalized statistical models or extract usgfatures
until a sufficiently large number of samples from this engime
seen. Our propagation metric is proportional to how long &n e
gine’s generated shellcode can propagate before a detesidre

under our metric (the first four engines are from Metasploit).
Also shown are the scores for random distributions of string
within range 128 and range 256. Compare with Figure 2.

Table 1 shows the strengths of these engines based on our met-
rics. The latter two rows in the tablegndi2s andrandase, refer to
a set of randomly generated strings with each byte valuegdest
[0..128] and [0..256], respectively.

This overallp-score used in conjunction with the spectral im-
ages, can be used to gauge the effectiveness of polymorphic e
gines relative to each other as well as to noise. This comsmari
provides some utility for predicting detection succesesaif var-
ious IDS systems for newly released engines. For exampl8, ID
solutions that cannot detect CLET samples have no hope sigain

ADMmutate. Thep-scoreis also useful in determining identifia-
bility. Engines with scores higher than a certain thresheddld
generate decoders which cannot be traced back to the saine eng
as we can see from the spectral image for ADMmutate. The value
of this threshold is the subject of our ongoing work.

Some of the engines we examined can be adjusted to obtain bet-

ter scores. For example, CLET allows the user to specify an ar
bitrary number of decoding operations., xorthensubthenadd,

and so on. Our experiments used the default setting of fitauinis
tion operations. CLET’s main weakness derives from the fixag

in which it clears registers before decoding. Thereforstjrg dif-
ferent levels of ciphering would not yield significantly féifent re-
sults. Note that three of the engines from Metasploit arentitely
polymorphic (according to the Metasploit documentatiamj & is
easy to see which ones these are.

While CLET's cleverness and efficiency was on par with that of
ADMmutate in terms of disguising its payload, we found thit a
decoders generated by CLET contained a unigpbgte signature
string that represents a set of instructions used to cleawtirk-
ing registers and the appropriate jump/call instructiosesi.to load
the needed loop counter variable into memory. While CLET is
one of the more creative engines that we have seen, thigyarti
feature makes the decoders easier to detect and identifiyttiea
other engines, thus explaining the lowered score. The Clefamt
acknowledged as one of their weaknesses this static stality-
out [13]. This weakness is not difficult to address, and wesekp
future versions of CLET will eliminate these artifacts.

3. AHYBRID ENGINE: FULL SPECTRUM
POLYMORPHISM AND BLENDING

Previous sections illustrated how polymorphism works iri-va
ous engines and how efficient certain engines are at hidieig th
payloads. In this section, we show how one can extend egistin
polymorphic methods by combining two powerful engines: CTLE
and ADMmutate. While CLET's decoder leaves some noticeable
artifacts, it has very useful spectral ciphering technigtieat al-
low the shellcode to blend to a target byte distribution. ADM
tate cannot perform blending attacks, but it generates nagrgom
looking decoders as well as a recursive NOP sled. We sim@y us
CLET to cipher the shellcode, then hide CLET'’s decoder wilh+ A
Mmutate. We also take advantage of ADMmutate’s advanced NOP
sled generator. Section 1.2 outlines some of the technigges to
make the other sections polymorphic, and we employ thesietac
in our engine design.

The combination of these engines makes the shellcode ngt onl
impossible to model but also allows the exploit instancelemd
in with normal network traffic. Every section of the shelleochn
be made polymorphic, leaving only the blending section eggdo
as demonstrated in Figure 3. Here, we have added bytes icio ea
of padding sections of the shellcode samples, so that wiaekesi
together, the shellcode shows the ACM SIGSAC logo. Each ifow o
the three spectral images shown in Figure 3 represehit2-fyte
fully working shellcode sample that was tested and confirmed to
execute successfully.

The polymorphic capabilities employed by ADMmutate, which
uses two layers of ciphering on the payload using 16-bit @and
keys, allows the payload to be scattered acrespace and thus
avoids being detected by signature detectors. The paddutmps
can carry an arbitrary byte combination since the explagtexo
the left of the section and triggers immediately before theca-
tion flow ever passes into the padding section. “Normal-iogk
n-grams, placed within this padding section, can thus allogs t

T
il !

Figure 3: Spectral images. (a) A single CLET mutated exploit
is stacked row-wise 100 times (note the vertical bands). Nex
to it, CLET’s polymorphic blending ability leaves a padding
area open for arbitrary filler bytes which are never reached n
the execution. We fill it with the ACM logo. (b) CLET'’s de-
coder and exploit is hidden by ADMMutate, leaving only the
blending bytes exposed. The repeating columns representeah
[RETADDR] section, which is shown morphed in (c) using the
random offset method.

shellcode to blend into normal traffic — slipping by statiatiiDS
methods as well. It is also non-trivial to model the blendiytes
section; one simply takes as input a distribution model ad f
every byte feature, multiply it with the length of the section to
find how many of these bytes to use. The section is then filled
up with accordingly with the appropriate number of bytesdach
0x00...0xFF value, then this section imndomly permutedfor
example, rearranging the order of the bytes). This al@mgtire-
vents the derivation of signatures. Statistically spegikihe sec-
tion has not changed since all of the bytes are still presetitdir
corresponding frequencies. We implemented this techniigoer
engine and report results later in the section.

For this particular demonstration, we have chosen a paddiog
tion of size100 bytes, out of a total shellcode size®if2 bytes. Of
course, this section and the entire shellcode sample camldrged.
The only change that needs to be made is to increment thesvalue
in the [RETADDR] section to “aim a little higher” into memory to
compensate for the larger shellcode.

The [RETADDR] section is the series of repeated columns seen
to the right of the padding section in Figure 3(a) and (b) —a®ot
the periodicity. As mentioned above, theETADDR] is not easily
modeled. This portion normally has variable length, is rhlga
and is both platform and vulnerability dependent. This roilits
feature is demonstrated in Figure 3(c) where we have muthged
[RETADDR] section by aiming the instruction pointer at the center
of the NOP sled and adding a random byte offset of approxisnate
50 bytes in each of the repeated return addresses. This gives us
about100™ possible unique sequences for tiReADDR] section,
wherem is the number of times the target address is repeated. The
base of the exponent (100) can be larger or smaller, depgmdin
how large the NOP sled section is. The only real weakness &e se
from ADMMutate is a white column, representingtdyte salient
artifact generated by the engine, which is too small to usesg-
nature or statistical model.

100 150

(a)

Figure 4. adm-+clet engine. (a) 1-gram distribution (b) 3-gam
scatter. Comparing this to Figure (7), we can see that this en
gine is equally difficult to model.

200 250 300

(b)

In terms of statistical features, Figure 4(a) showsltiggam dis-
tribution of the ADMmutate decoder section of the above eagi
which was calculated by finding the averabyte histogram of
these decoders, then normalizing it by dividing by the varéa
along each dimension.

Dividing by the variance normalizes the values so that waiabt
their discriminative scores. For example, if a feature issistently
present, it has low variance. Therefore, dividing by itSamace will
increase the prominence of that feature. Conversely, dtufe ex-
hibits very high variance, then its reliability in stattstl modeling
is correspondingly low. From Figure 4(a), we see that thefd-i
tle to no signal from thé-byte distribution. Figure 4(b) shows the
3-gram scatter of these 100 decoders, showing us the range of
grams present. As we can see, fagrams, it is a full spectrum
spread. If3-space is saturated, then s@ispace since it is a sub-
space within3-space. Having the decoder bytes spread actess

100 100 150 200 250 300 350 400

(a) (b)

Figure 5: Our combined adm-+clet engine executing a blending
attack. Image (a) shows target distribution, while image (b
shows distance to target given padding section size.

150 250 0 50

whereZ is the identity matrix. Statistical IDS systems such as
PayL [41] employ the Mahalanobis distance classifier. Weseho
our estimates in the same manner.

Figure 5(b) shows the engine’s blending attack convergimine
target distribution. The Y-axis shows the Mahalanobisatise as
a function of the size of the blending section. For each size,
generate a new malcode sample with a blend section of that siz
Next, we fill the section with bytes generated using the nettlie
outlined at the start of this section, then calculatelitmyte distri-
bution of the shellcode with these new bytes in place and fied t
Mahalanobis distance to the target distribution using Eqnd.

We see that a padding section of around 200 bytes is needed to
blend an executable shellcode sample generated from oimesng
into the given target distribution, under our chosen thosskalue.

In our example, we have given our engine the correct targt-di
bution. In practice, the target distribution will have todmsimated

in some way. We included this demo only to demonstrate the po-
tential of combining many different attack vectors into g@me
engine. Our blending attack is not meant to be the most addanc
we refer the reader to related work on this topic [17].

We could also make use binary to text encryptiomo transform
the decoder portion of the shellcode into a string that cteif
only printable characters by using techniques such as the omo-
vided in ShellForge engine [6]. This technique could impertive
blending strength of the engine with relatively little ireptenta-
tion effort. In addition, there are other techniques thdt aliow
the shellcode survive sanitization functions suct asupper ()
andt ol ower ().

4. EXPLORING N-SPACE

We have so far focused our attention primarily on understend
and extending existing engines and techniques. This settio
vestigates the extent to which polymorphic code exists-8pace.
More specifically, givem-space, we hava®™ possible strings. We
want to explore the entirety of this space and find all of the se
guences that “behave” like polymorphic code. Since corpiet
this search is intractable for large(e.g.,n > 4), we restrict our
attention to byte strings of lengtt0 in order to make our search
feasible. From the structure of the decoder, we know thauitm
contain two componentg1) a modification operatiore(g.,add,
sub, xor, etc), and(2) some form of a loop componeetg.,

j mpz, that sweeps the cipher across the payload. Figure 1 shows
that real full decoders are longer and more complex tharetbies-

ple requirements. For example, they contain maintenanee- op
ations such as clearing registers, multiple cipher opamati and
some exotic code to calculate the location of the executalile
believe, however, that our restrictions retain the mosicedioper-

space means we have some freedom to perform blending attacksations for examining decoding behavior.

since it means the engine can generate decoders which dpnot a
pear “too binary.” We implemented a blending attack funciiato
our adm+clet engine.

Figure 5 displays a simulation of a blending attack using our
engine. We first artificially generate a target distributishown
in Figure 5(a). We created a distribution from a mixture atth
Gaussians with centroids 86 (ASCII character “7”),77 (ASCII
character “M”) andLO9 (ASCII character “m”) in order to simulate
the network traffic distribution of a server hosting manyacleext
transfers. We also added some binary noise to account faryin
transfers €.g.,images and video). Each centroid has a variance of
15. Next, we implemented the Mahalanobis distance classifie

Mahdist(x, p|Z) = (x —) £ (x —) (6)
Here, 1 is the 1-byte target distribution, and we s&t = 0.17

Our restricted 1 0-byte examination reduces the search space to
280 strings. This problem remains intractable if we plan to ex-
plore the space one unigque string at a time. StartingOat00
0x00...0x00}, testing to see if it exhibits polymorphic behav-
ior, proceeding td0x00 0x00...0x01}, testing that string, and
so on until we reacfOxFF OxFF...0xFF} represents a signifi-
cant dedication of time and resources with little reasoruggsst
that such a complete procedure conveys substantially meesmm
ingful data than a more intelligent and judiciously direttearch.
Instead, we make use of genetic algorithms [33] to perforen th
search in a directed manner by choosing to explore areasexere
isting polymorphic code resides as a form of local searchsafe
isfy these requirements, we define a function that accepptang as
input and determines whether that string represents x86 toat
exhibits polymorphic behavior.

4.1 Decoder Detector

We designed our “decoder detector” and implemented it as-a pr
cess monitoring tool within the Valgrind emulation envinoent.
Valgrind’s [27] binary supervision enables us to add insieata-
tion to a process without modifying its source code or atigthe
semantics of the process’s operations. Most importantdygrihd
provides support for examining memory accesses, thus iakpus
to track what parts of memory a process touches during execut
Our tool detects “self-modifying code,” which we define asleo
that modifies bytes within a small distance of itself. We niest
our attention to instruction sequences that modify codaiwitwo
hundred bytes of itself in either direction in memory — thsit i
we sandwich the code within two NOP sleds of two hundred bytes
each. The GA-search framework compiles and executes arbuffe
overflow exploit in the emulation environment and checksdioy
polymorphic behavior.

The following polymorphic behaviors are of interest: we de-
fine self—writeas writing to a memory location within two hundred
bytes of the executing instruction. We defiself—-modifyas read-
ing from a memory location within two hundred bytes and then,
within the next four instructions, performing a write to teme lo-
cation, simulating the behavior of in-place modificatioregiions
effected via instructions such a®r, add, sub. Of course,
some polymorphic techniques may not replace code in—plade,
any such examples further saturatspace.

4.2 Genetic Algorithms

Genetic algorithms is a classic optimization techniquenfrl
and have proved most useful in problems with a large seaiatesp
domain and where closed formed solutions are not availatdié o
rectly optimizeable. Instead, various solutions are regmeed in
coded string form and evaluated. A function is used to dateem
the “fitness” of the string. GA algorithms combine fit cand@tato
produce new strings over a sequence of epochs. In each gpech,
search evaluates a pool of strings, and the best stringssarkta
produce the next generation according to s@welution strategy
For a more detailed discussion, we refer the reader to [33].

The fitness function used for our GA search framework is the
decoder detector described above. We score saffhwrite op-
eration al and eachself-modifyoperation a3. The higher score
for the latter operation reflects our interest in identifyimstruc-
tion sequences that represent g, add, sub-style decoder
behavior. The sum of the behavior scores dfdabyte string de-
fines its fitness. Any string with a non-zero score therefatetits
polymorphic behavior.

We relax our GA optimization constraint since we do not need t
find the “best” decoder. Instead, we have a low limit for pobym
phic behavior and will admit any string that passes thatsthotl
into the population. We used a dynamic threshold for mininaem
ceptable polymorphic behavior &% of the averagepolymorphic
score of the previously found sequences; we bootstrappedani
overall minimum score o6. The threshold was used in order to
ignore strings which performed very few self-modificatipmge
wanted to capture strings that exhibited a significant arnadin
polymorphic behaviorife., it encapsulated some form of a loop
constructy. We stored all unique strings that met the polymorphic
criteria in what we term theandidate decoder poolWe observed
that the average fitness value reached into the hundredsadéies
hundred epochs.

*We used a four second runtime limit in our Valgrind decoder de
tector tool as we periodically find strings that perform iitérself
modifying loops.

Genetic algorithms perform intelligent searching by liestrg
their attention to searching the space surrounding egiseimples.
Therefore, this form of local search needs quality starpogi-
tions to achieve reasonable results. We seeded our seagtteen
with two decoder strings extracted frddellForge[6] and roughly
45,000 strings from Metasploit [26] in order to obtain a golastri-
bution of starting positions. We implemented a standards@érch
framework using some common evolution strategies, lisezd:h

1. I ncr emrent : The lowest significant byte is incremented by
one modulo 255, with carry. We use this technique after find-
ing one decoder to then undertake a local search of the sur-
rounding space.

. Mut at e: A random number of bytes within the string are
changed randomly. Useful for similar reasons, except we
search in a less restricted neighborhood.

. Bl ock swap: A random block of bytes within one string
is randomly swapped with another random block from the
samestring. This technique helps move blocks of instruc-
tions around.

. Cross breed: Arandom block of bytes within one string
is randomly swapped with another random block fram
other string. This technique helps combine different sets of
instructions.

. Rot at e: The elements of the string are rotated to the left
position-wise by some random amount with a wrap-around.
This is to put the same instructions in different order.

. Pure random A new purely random string is generated.
This adds variation to the pool and help prevent the search
from getting stuck on local max. It is used mainly to intro-
duce some entropy into the population and is not useful by
itself since the likelihood of finding executable x86 cod#&wi
self modification and an inner loop at random is low.

For each sequence, we automatically generate a new progeam t
writes the string into a character buffer between two NOBsste#
200 bytes each. The program then redirects execution imtb th
buffer, effectively simulating a buffer overflow attack. \ileen
retrieve the fitness score of that string from the decodezatiet,
evaluate it, and continue with the search according to thegss
described above. An alternative search procedure woulahper

VALGRIND
| Decoder Detector
(Gets fitness score)

Insert into decoder
pool

d Decoder
Pool

Evolution tactics

Mutate - Cross Breed -
Increment - Block Rotate -
Pure Random

Y

Select
Sequence(s)
I

v

Generate New
Sequence

y

Write test program

Jump execution
into buffer

L]

Figure 6: Decoder search engine flow chartwe construct our
library of decoders using a feedback loop that creates candate de-
coders, confirms that they exhibit sufficient decoding behder, and
generates more samples from them.

terize the actuat86 instruction set into a genetic algorithm search
package and dynamically write decoders. This is the subjemir
ongoing work. This technique bears a strong similarity takvo
done by Markatost al. [31]. Whereas they implemented their tool
as a detector, dynamically filtering network content thitotlge de-
tector to search for the presence of decryption engines se®ur
decoder detector in an offline manner where we generaterthgst
ourselves in order to precompute a set of byte strings thébnpe
self-modification.

4.3 GA-Search results

This evaluation aims to assess the hypothesis that the afass
self-modifying code spans-space where is the length of the de-
coder sequence. Our GA-search framework found routytndymil-

sults show that there is a significant degree of variance éncagle
that performs operations that we can associate with selfyggon
routines.

4.4 Results Discussion

Our results show that the span of polymorphic code likelghea
acrossn-space. The challenge of signature—based detection is to
model a space on the order@{2%™) signatures to catch potential
attacks hidden by polymorphism. To cover thirty-byte dersde-
quiresO(22*°) potential signatures, for comparison there exist an
estimated2®® atoms in the universe. We would much sooner run
out of atoms than attackers run out of decoders. Currenagign
schemes work only because of advances in rapid isolatiogemd
eration of signatures. This strategy may work for the shenint

lion unique sequences after several weeks of searching and show&owever, our work indicates that defenders cannot capherént-

no signs of diminishing returns. The results that we derhvans
that the class ofi-byte self-modifying code not only spansspace
but saturates it as well. First let us look at the (roundedame
and variances of the generated sample podlosbyte sequences,
shown in decimal for each reading:

Mean: {90, 66, 145, 153, 139, 127, 123, 138, 134, 126}
Standard deviation{72, 71, 86, 78, 80, 84, 86, 82, 75, 76}

The mean exists near the centeme$pace (in this case,-space
is a vector of 10 entries each of value 128). The high variance
along each dimension shows that the samples are widelyesedtt
Statistical IDS detectors typically operate under the eggion

(GA samples, normalized mean 1 -gram disvib

(a)

Figure 7: Results. (a)l-gram distribution - note the uniform
byte distribution. (b) 3-gram scatter plot - each dot represents
a 3-gram, note the3-space saturation.

(b)

that the class of malcode being modeled exhibit a certagmam
distribution. This “byte-spectrum” can be modeled and usetk-
sign a classifier to separate malcode from normal traffic=(1
in the case of PayL [40] and = 3,4, 5,6, 7 in the case of Ana-

tiative from the attacker under this reactive defenseegsatSome-
what troubling is the additional implication that regasfief what

a normal model of traffic for a particular site may be, theristex

a certain probability that a range of decoders would falhimithe
span of that normal model because sequences which exhipit po
morphic behavior span most afspace.

5. RELATED WORK

Countering attacks and malcode is a hard problem. Spinellis
showed that identification of bounded length metamorphik igi
NP-complete [37] by decomposing the problem into one of lgrap
isomorphism. In addition, Foglet al.[17] showed that finding a
polymorphic blending attack is also an NP-complete problem
TRAFFIC CONTENT ANALYSIS

Snort [36] is a widely deployed open-source signature-thdse
tector. Exploring how to automatically generate explojnsitures
has been the focus of a great deal of research [22, 35, 28424, 4
43, 25, 2]. To generate a signature, most of these systehes eit-
amine the content or characteristics of network traffic etrumment
the host to identify malicious input. Host—based approadhier
traffic through an instrumented version of the applicatmdétect
malcode. If confirmed, the malcode is dissected to dynafgical
generate a signature to stop similar future attacks.

Abstract Payload Execution (APE) [38] treats packet cardsn
machine instructions. SigFree [42] adopts similar techesy In-
struction decoding of packets can identify gled or sequence of
instructions in an exploit whose purpose is to guide the @nog
counter to the exploit code. Kruget al. [23] detect polymorphic
worms by learning a control flow graph for the worm bina@pn-
vergent static analysif8] also aims at revealing the control flow of
a random sequence of bytes.

Statistical content anomaly detection is another avenuee-of
search, and PayL [40] models thegram distributions of normal

gram [21]).We examined our generated samples to see if such atraffic using the Mahalanobis distance as a metric to gaugadh

signal existed. For each sequence in our sample pool, wewtemp
the 1-byte distribution, then find the average for all sequences,
malized by dividing by the variances along each dimensisiwel
did in Section 3. Figure 7(a) shows the averageytes distribu-
tion. We can see that the sample pool contains no distinghish
distribution but rather is closer to white noise (with theegtion

of the {x00} and {xFF} values, which are likely to be padding
artifacts). For3-space, Figure 7(b) shows tl3egram scatter plot
of all 3-grams extracted from all the candidates in the pool. This
plot shows that, foB-grams, the space is well saturated. Since it
is a subspace df-space,2-space also saturated. Tpescore of
these samples was close t®0. This result can be expected as
“polymorphic code” is less constrained than the full decedee
have worked with in the previous sections. Neverthelessreu

mality of incoming packets. Anagram [21] caches known benig
n-grams extracted from normal content in a fast hash mapamd c
pares ratios of seen and unseen grams to determine normality
COUNTERING POLYMORPHISM

Recent work [39] calls into question the ultimate utilityexfploit-
based signatures, and researchvolmerability—specifigrotection
techniques [11, 7, 18] explores methods for defeating ésptie-
spite differences between instances of their encoded féha.un-
derlying idea relies on capturing the characteristics efwhlnera-
bility (such as a conjunction of equivalence relations anght of
jump addresses that lead to the vulnerability being exedci€ui
et al. [12] combine dataflow analysis and protocol or data format
parsing to construct network or file system level “data pestho
filter input instances related to a particular vulnerailit

Brumley et al. [7] supply an initial exploration of some of the
theoretical foundations ofulnerability—based signature&/ulner-
ability signatures help classify an entire set of exploftts rather
than a particular exploit instance. As an illustration & difficulty
of creating vulnerability signatures, Crandell al. [11] discuss
generating high quality vulnerability signatures via anpémal
study of the behavior of polymorphic and metamorphic matcod
The authors present a vulnerability model that explicitysiders
that malcode can be arbitrarily mutated. They outline tificdity
of identifying enough features of an exploit to generalibewt a
specific vulnerability. For example, the critical featusdsan ex-
ploit may only exist in a few or relatively small number of intp
tokens, and if the attacked application is using a binaryomal,
telltale byte values indicating an attack may be common br ot
erwise unextraordinary values. For example, the Slammapix
essentially contains a single “flag” value @k4. For other pro-
tocols, detecting that the exploit contained the string THT or
some URL typically does not provide enough evidence to begin
blocking arbitrary requests — or if it does, our analysisicates
that such exploits can be arbitrarily mutated, thus vasitygasing
the signature database and the processing time for beiffjc.tr

One way to counter the presence of the engine we propose in
Section 3 is to use an anomaly detection (AD) sensor to slusat s
pect traffic (that is, traffic that does not match normal orteligted
content) to a heavily instrumented replica to confirm thesega
initial classification. In fact, Anagnostaket al. [2] propose such
an architecture, called a “shadow honeypot.” A shadow hpoey
is an instrumented replica host that shares state with auptioth
application and receives copies of messages sent to a piaauc
application — messages that a network anomaly detectiopcom
nent deems abnormal. If the shadow confirms the attack,atese
a network filter for that attack and provides positive conéition
to the anomaly detector. If the detector misclassified th#fidr
the only impact will be slower processing of the requestogitine
shadow shares full state with the production applicatidr)e in-
tuition behind this approach is that the normal content mimtea
site or organization is regular and well-defined relativéhi® al-
most random distribution representative of possible polyhic
exploit instances. If content deemed normal is put on thiepath
for service and content deemed abnormal is shunted to aljeavi
protected copy for vetting, then we can reliably detect exphri-
ants without heavily impacting the service of most normqliests.

Since network traffic may look similar enough across sites; p
trained blending attacks such as the ones we explored ipBet
pose a real threat. Future statistical IDS techniques dhiaie
measures to hide the profiles of the normal content from the at
tacker. If we can force the attacker to guess where to aintaisla
then perhaps we can turn the complexityne$pace to our favor.

6. CONCLUSIONS

Our empirical results demonstrate the difficulty of modgloly-
morphic behavior. We briefly summarized the achievementheof
shellcoder community in making their code polymorphic are e
amined ways to improve some of these techniques. We presente
analytical methods that can help assess the capabilitjgsiyhor-
phic engines and applied them to some state-of-the-arheagiVe
explained why signature—based modeling works in some easks
confirmed that the viability of such approaches matchesrthe i
itive belief that polymorphism will eventually defeat tleamethod-
ologies. The strategy of modeling malicious behavior leadsn
unending arms race with an attacker. Alternatively, wHisting
normal content or behavior patterns (perhaps in randomizs
in order to defend against blending attacks) might ultinyabe

safer than blacklisting arbitrary and highly varied maligs behav-
ior or content.

7.
(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES
A LEPHONE. Smashing the Stack for Fun and Prdfhrack
7, 49-14 (1996).
ANAGNOSTAKIS, K. G., SDIROGLOU, S., AKRITIDIS, P.,
XINIDIS, K., MARKATOS, E.,AND KEROMYTIS, A. D.
Detecting Targeted Attacks Using Shadow Honeypots. In
Proceedings of the4!* USENIX Security Symposium.
(August 2005).

BARATLOO, A., SINGH, N., AND TsAI, T. Transparent
Run-Time Defense Against Stack Smashing Attacks. In
Proceedings of the USENIX Annual Technical Conference
(June 2000).

BARRANTES, E. G., ACKLEY, D. H., FORREST S.,
PALMER, T. S., SEFANOVIC, D., AND ZovI, D. D.
Randomized Instruction Set Emulation to Distrupt Binary
Code Injection Attacks. IProceedings of the0'” ACM
Conference on Computer and Communications Security
(CCS)(October 2003).

BHATKAR, S., DUVARNEY, D. C.,AND SEKAR, R.
Address Obfuscation: an Efficient Approach to Combat a
Broad Range of Memory Error Exploits. Rroceedings of
the12t* USENIX Security Symposiugaugust 2003),

pp. 105-120.

BionDI, P. Shellforge Project, 2006.
http://www.secdev.org/projects/shellforge/.

BRUMLEY, D., NEWSOME, J., NG, D., WANG, H., AND
JHA, S. Towards Automatic Generation of
Vulnerability-Based Signatures. Proceedings of the IEEE
Symposium on Security and Priva@p06).

CHINCHANI, R.,AND BERG, E. V. D. A Fast Static
Analysis Approach to Detect Exploit Code Inside Network
Flows. InProceedings of tha'" International Symposium
on Recent Advances in Intrusion Detection (RAID)
(September 2005), pp. 284-304.

COSTA, M., CROWCROFT J., CASTRO, M., AND
RowsTRON A. Vigilante: End-to-End Containment of
Internet Worms. IrProceedings of the Symposium on
Systems and Operating Systems Principles (SQS&bpber
2005).

CowaN, C., Ry, C., MAIER, D., HINTON, H., WALPOLE,
J., BaKKE, P., BEATTIE, S., QRIER, A., WAGLE, P.,AND
ZHANG, Q. Stackguard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. IRroceedings of
the USENIX Security Sympositr998).

CRANDALL,J.R., &, Z., Wu, S. F.,AND CHONG, F. T.
On Deriving Unknown Vulnerabilities from Zero-Day
Polymorphic and Metamorphic Worm Exploits. In
Proceedings of thé2!* ACM Conference on Computer and
Communications Security (CC@ovember 2005).

Cul, W., PEINADO, M., WANG, H. J.,AND LOCASTOQ,

M. E. ShieldGen: Automated Data Patch Generation for
Unknown Vulnerabilities with Informed Probing. In
Proceedings of the IEEE Symposium on Security and Privacy
(May 2007).

DETRISTAN, T., ULENSPIEGEL T., MALCOM, Y., AND
VON UNDERDUK, M. S. Polymorphic Shellcode Engine
Using Spectrum Analysi®hrack 11 61-9 (2003).

EREN, S. Smashing the Kernel Stack for Fun and Profit.
Phrack 11 60-6 (2003).

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

ETOH, J. GCC Extension for Protecting Applications From
Stack-smashing Attacks. In
http://www.trl.ibm.com/projects/security/scpune 2000).
FERRIE, P.,AND SZOR, P. Zmist Opportunitiesht t p:

/Il pferrie.tripod. conf papers/zm st. pdf,
2005.

FOGLA, P.,AND LEE, W. Evading network anomaly
detection systems: Formal reasoning and practical
techniques. IlProceedings of thé3!* ACM Conference on
Computer and Communications Security (CCR)06),

pp. 59-68.

JosHi, A., KING, S. T., DUNLAP, G. W.,AND CHEN,

P. M. Detecting Past and Present Intrusions through
Vulnerability-Specific Predicates. Proceedings of the
Symposium on Systems and Operating Systems Principles
(SOSP)October 2005).

K2. ADMmutate documentation, 2003.
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.

Kc, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V.
Countering Code-Injection Attacks With Instruction-Set
Randomization. IfProceedings of th&0" ACM Conference
on Computer and Communications Security (CE&)tober
2003), pp. 272-280.

KE WANG, JANAK J. PAREKH, S. J. S. Anagram: A
Content Anomaly Detector Resistant To Mimicry Attack. In
Proceedings of the” International Symposium on Recent
Advances in Intrusion Detection (RAI[)006).

Kim, H.-A., AND KARP, B. Autograph: Toward
Automated, Distributed Worm Signature Detection. In
Proceedings of the USENIX Security Confere(®04).
KRUGEL, C., KIRDA, E., MuTZ, D., ROBERTSON W.,

AND VIGNA, G. Polymorphic Worm Detection Using
Structural Information of Executables. Rroceedings of the
8" International Symposium on Recent Advances in
Intrusion Detection (RAID]September 2005), pp. 207-226.
LIANG, Z., AND SEKAR, R. Fast and Automated
Generation of Attack Signatures: A Basis for Building
Self-Protecting Servers. Rroceedings of the2t* ACM
Conference on Computer and Communications Security
(CCS)(November 2005).

LocasTo, M. E., WANG, K., KEROMYTIS, A. D., AND
STOLFO, S. J. FLIPS: Hybrid Adaptive Intrusion
Prevention. IrProceedings of the'™ International
Symposium on Recent Advances in Intrusion Detection
(RAID) (September 2005), pp. 82—-101.
METASPLOITDEVELOPEMENTTEAM. Metasploit Project,
2006. http://www.metasploit.com.

NETHERCOTE N., AND SEWARD, J. Valgrind: A Program
Supervision Framework. IBlectronic Notes in Theoretical
Computer Scienc€003), vol. 89.

NEWSOME, J., KARP, B., AND SONG, D. Polygraph:
Automatically Generating Signatures for Polymorphic
Worms. InProceedings of the IEEE Symposium on Security
and Privacy(May 2005).

NEWSOME, J.,AND SONG, D. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation o
Exploits on Commodity Software. IRroceedings of the
12" Symposium on Network and Distributed System
Security (NDSS)February 2005).

OBscou. Building IA32 "Unicode-Proof’ Shellcodes.
Phrack 11 61-11 (2003).

[31] POLYCHRONAKIS, M., ANAGNOSTAKIS, K. G., AND
MARKATOS, E. P. Network-level polymorhpic shellcode
detection using emulation. Detection of Intrusions and
Malware and Vulnerability Assessment (DIM{&D06).
Rix. Writing IA-32 Alphanumeric Shellcode®hrack 11
57-15 (2001).

RUSSELL, S.,AND NORVIG, P.Atrtificial Intelligence: A
Modern ApproachPrentice Hall, 2002.

SIDIROGLOU, S., GOVANIDIS, G.,AND KEROMYTIS,

A. D. A Dynamic Mechanism for Recovering from Buffer
Overflow Attacks. InProceedings of the'™ Information
Security Conference (ISC¥eptember 2005), pp. 1-15.
SINGH, S., ESTAN, C., VARGHESE G.,AND SAVAGE, S.
Automated Worm Fingerprinting. IRroceedings of
Symposium on Operating Systems Design and
Implementation (OSDI2004).

SNORT DEVELOPMENTTEAM. Snort Project.
http://www.snort.org/.

SPINELLIS, D. Reliable identification of bounded-length
viruses is NP-completéEEE Transactions on Information
Theory 491 (January 2003), 280-284.

ToTH, T., AND KRUEGEL, C. Accurate Buffer Overflow
Detection via Abstract Payload Execution.Rroceedings of
the 5" International Symposium on Recent Advances in
Intrusion Detection (RAIDJOctober 2002), pp. 274-291.
WANG, H. J., QJo, C., SMON, D. R.,AND
ZUGENMAIER, A. Shield: Vulnerability-Driven Network
Filters for Preventing Known Vulnerability Exploits. In
Proceedings of the ACM SIGCOMM Confererfdeigust
2004), pp. 193-204.

WANG, K., CRETU, G.,AND STOLFO, S. J. Anomalous

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Payload-based Worm Detection and Signature Generation. In

Proceedings of the'” International Symposium on Recent
Advances in Intrusion Detection (RAIBeptember 2005),
pp. 227-246.

WANG, K., AND STOLFO, S. J. Anomalous Payload-based
Network Intrusion Detection. IRroceedings of thg'"
International Symposium on Recent Advances in Intrusion
Detection (RAID)September 2004), pp. 203-222.

WANG, X., PaN, C.-C., Liu, P.,AND ZHuU, S. SigFree: A
Signature-free Buffer Overflow Attack Blocker. In
Proceedings of the5!* USENIX Security Symposium
(2006), pp. 225-240.

XU, J., NNG, P., KL, C., ZHAI, Y., AND BOOKHOLT, C.
Automatic Diagnosis and Response to Memory Corruption
Vulnerabilities. InProceedings of thé2!* ACM Conference
on Computer and Communications Security (CCS)
(November 2005).

Y EGNESWARAN, V., GIFFIN, J. T., BARFORD, P.,AND

JHA, S. An Architecture for Generating Semantics-Aware
Signatures. IfProceedings of theé4'™ USENIX Security
Symposiun2005).

[41]

[42]

[43]

[44]

