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Abstract. The introduction of self-healing capabilities to software systems could
offer a way to alter the current, unfavorable imbalance in the software security
arms race. Consequently, self-healing software systems have emerged as a re-
search area of particular interest in recent years. Motivated by the inability of
traditional techniques to guarantee software integrity and availability, especially
against motivated human adversaries, self-healing approaches are meant to com-
plement existing approaches to security.
In this paper, we provide a first attempt to characterize self-healing software sys-
tems by surveying some of the existing work in the field. We focus on systems that
effect structural changes to the software under protection, as opposed to block-
level system reconfiguration. Our goal is to begin mapping the space of software
self-healing capabilities. We believe this to be a necessary first step in explor-
ing the boundaries of the research space and understanding the possibilities that
such systems enable, as well as determining the risks and limitations inherent in
automatic-reaction schemes.
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1 Introduction

Self-healing capabilities have begun to emerge as an exciting and potentially valuable
weapon in the software security arms race. Although much of the work to date has
remained confined to the realm of academic publications and prototype-building, we
believe that it is only a matter of time before deployed systems begin to incorporate
elements of automated reaction and self healing. Consequently, we believe it is impor-
tant to understand what self-healing systems are, why they evolved in the first place,
and how they operate. Given the infancy of the area as a research focus, we only have
a relatively small and, given the potential application scope of self-healing techniques,
highly diverse sample set to draw upon in defining this space. Despite this, we believe
that some high-level common characteristics of self-healing software systems can be
discerned from the existing work.

What, exactly, is a self-healing system? For the purposes of our discussion, a self-
healing software system is a software architecture that enables the continuous and au-
tomatic monitoring, diagnosis, and remediation of software faults. Generally, such an
architecture is composed of two high-level elements: the software service whose in-
tegrity and availability we are interested in improving, and the elements of the system
that perform the monitoring, diagnosis and healing. The self-healing components can



be viewed as a form of middleware — although, in some systems, such a separation is
difficult to delineate.

Self-healing systems evolved primarily as a result of the failure of other techniques,
whether in isolation or combination, to provide an adequate solution to the problem of
software reliability. More specifically, self-healing techniques try to strike a balance be-
tween reliability, assurance, and performance (with performance generally in an inverse
relationship to the first two). An important difference between self-healing and the tra-
ditional fault-tolerant architectures and techniques is that the former try to identify and
eliminate (or at least mitigate) the root cause of the fault, while the latter generally only
bring the system to a state from which it can resume execution. Thus, fault-tolerant
systems can be viewed as primarily geared against rarely occurring failures.

The diversity of techniques for effecting self-healing reflects both the relative im-
maturity of the field and the large scope of failure and threat models such systems
must cope with. Most work to date has focused on a narrow class of faults and/or the
refinement of a specific detection or mitigation technique. Although comprehensive
frameworks have been proposed [1, 2], none has been fully implemented and demon-
strated to date. Although we expect this picture to remain the same for the foreseeable
future, more comprehensive techniques and systems will emerge as we achieve a better
understanding of the capabilities and limitations of existing proposed approaches.

Finally, we wish to distinguish between block-level system reconfiguration-based
healing, and lower-level structural modification-based healing techniques. The former
treat software as a black box with some configurable parameters, and focus on rear-
ranging the way the system components interact with each other. The latter depend
on specific, “low-level” techniques to detect, mitigate and mask/correct defects in the
software. As a starting point, we focus on the latter approach, both because of our
familiarity with this space and because of the use of such structural-modification tech-
niques as the building elements for system-reconfiguration approaches. To the extent
that software becomes componentized, we believe that these two high-level approaches
are likely to converge in terms of tools and techniques used.

In the remainder of this paper, we will expand on the main three questions we posed
at the beginning of this section: what are self-healing systems, why have they emerged,
and how they operate, using specific examples from the literature.

2 Self-healing Systems: What

At a high level, self-healing software techniques are modeled after the concept of an
Observe Orient Decide Act (OODA) feedback loop, as shown in Figure 1.

The high-level intuition is that, if proactive or runtime protection mechanisms are
too expensive to use in a blanket manner, they should instead be used in a targeted man-
ner. Identifying where and how to apply protection is done by observing the behavior
of the system in a non-invasive manner. The goal of this monitoring is to detect the
occurrence of a fault and determine its parameters, e.g., the type of fault, the input or
sequence of events that led to the it, the approximate region of code where the fault
manifests itself, and any other information that may be useful in creating fixes.
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Fig. 1. General architecture of a self-healing system. The system monitors itself for indications
of anomalous behavior. When such behavior is detected, the system enters a self-diagnosis mode
that aims to identify the fault and extract as much information as possible with respect to its
cause, symptoms, and impact on the system. Once these are identified, the system tries to adapt
itself by generating candidate fixes, which are tested to find the best target state.

Following identification, the system will need to create one or more possible fixes
tailored to the particular instance of the fault. The nature of these fixes depends on
types of faults and the available protection mechanisms. Potential fixes to software
faults include snapshot-rollback, input filtering, increased monitoring or isolation for
the vulnerable process, selective application of any runtime protection mechanism, and
others.

Each candidate fix produced by the system may then be tested to verify its efficacy
and impact on the application (e.g., in terms of side effects or performance degradation).
This testing can take several forms, including running pre-defined test-suites, replaying
previously seen traffic (including the input that triggered the fault), etc. If an acceptable
fix is produced, the system is updated accordingly. This can be done through established
patch-management and configuration-management mechanisms, or any other suitable
mechanism.

Note that different fixes, or fixes of different accuracy/performance levels, may be
successively applied as the system spends more time analyzing a fault. For example, the
initial reaction to a failure may be a firewall reconfiguration. After further analysis, the
system may produce a software patch or a content filter that blocks the specific input
that caused the fault. Finally, the system may then replace the specific content filter
with a generalized signature, obtained through signature generalization [3], dynamic
analysis of the targeted software [4], or other means.



3 Self-healing Systems: Why

Despite considerable work in fault tolerance and reliability, software remains notori-
ously buggy and crash-prone. The current approach to ensuring the security and avail-
ability of software consists of a mix of different techniques:

– Proactive techniques seek to make the code as dependable as possible, through
a combination of safe languages (e.g., Java [5]), libraries [6] and compilers [7, 8],
code analysis tools and formal methods [9–11], and development methodologies.

– Debugging techniques aim to make post-fault analysis and recovery as easy as
possible for the programmer that is responsible for producing a fix.

– Runtime protection techniques try to detect the fault using some type of fault
isolation such as StackGuard [12] and FormatGuard [13], which address specific
types of faults or security vulnerabilities.

– Containment techniques seek to minimize the scope of a successful exploit by
isolating the process from the rest of the system, e.g., through use of virtual machine
monitors such as VMWare or Xen, system call sandboxes such as Systrace [14],
or operating system constructs such as Unix chroot(), FreeBSD’s jail facility, and
others [15, 16].

– Byzantine fault-tolerance and quorum techniques rely on redundancy and di-
versity to create reliable systems out of unreliable components [1, 17, 18].

These approaches offer a poor tradeoff between assurance, reliability in the face
of faults, and performance impact of protection mechanisms. In particular, software
availability has emerged as a concern of equal importance as integrity.

The need for techniques that address the issue of recovering execution in the pres-
ence of faults is reflected by recent emergence of a few novel research ideas [19, 20].
For example, error virtualization [19, 21] operates under the assumption that there ex-
ists a mapping between the set of errors that could occur during a program’s execution
(e.g., a caught buffer overflow attack, or an illegal memory reference exception) and the
limited set of errors that are explicitly handled by the program’s code. Thus, a failure
that would cause the program to crash is translated into a “return with an error code”
from the function in which the fault occurred (or from one of its ancestors in the stack).
These techniques, despite their novelty in dealing with this pressing issue, have met
much controversy, primarily due to the lack of guarantees, in terms of altering program
semantics, that can be provided. Masking the occurrence of faults will always carry this
stigma since it forces programs down unexpected execution paths. However, we believe
that the basic premise of masking failures to permit continued program execution is
promising.

In general, we believe that a new class of reactive protection mechanisms need to be
added to the above list. Some techniques that can be classified as reactive include Intru-
sion Prevention Systems (IPS) and automatically generated content-signature blockers,
e.g., [22]. Most such systems have focused on network-based prevention, augmenting
the functionality of firewalls. However, a number of trends make the use of such packet
inspection technologies unlikely to work well in the future:



– Due to the increasing line speeds and the more computation-intensive protocols
that a firewall must support (such as IPsec), firewalls tend to become congestion
points. This gap between processing and networking speeds is likely to increase, at
least for the foreseeable future; while computers (and hence firewalls) are getting
faster, the combination of more complex protocols and the tremendous increase in
the amount of data that must be passed through the firewall has been and likely will
continue to out-pace Moore’s Law [23].

– The complexity of existing and future protocols makes packet inspection an expen-
sive proposition, especially in the context of increasing line speeds. Furthermore,
a number of protocols are inherently difficult to process in the network because of
lack of knowledge that is readily available at the endpoints (etc. FTP and RealAudio
port numbers).

– End-to-end encryption, especially of the on-demand, opportunistic type effectively
prevents inspection-based systems from looking inside packets, or even at packet
headers.

– Finally, worms and other malware have started using polymorphism or metamor-
phism [24] as cloaking techniques. The effect of these is to increase the analysis
requirements, in terms of processing cycles, beyond the budget available to routers
or firewalls.

All these factors argue for host-based reactive protection mechanisms.

4 Self-healing Systems: How

Most defense mechanisms usually respond to an attack by terminating the attacked
process. Even though it is considered “safe”, this approach is unappealing because it
leaves systems susceptible to the original fault upon restart and risks losing accumulated
state.

Self-healing mechanisms complement approaches that stop attacks from succeed-
ing by preventing the injection of code, transfer of control to injected code, or misuse of
existing code. Approaches to automatically defending software systems have typically
focused on ways to proactively or at runtime protect an application from attack. Ex-
amples of these proactive approaches include writing the system in a “safe” language,
linking the system with “safe” libraries [6], transforming the program with artificial
diversity, or compiling the program with stack integrity checking [12]. Some defense
systems also externalize their response by generating either vulnerability [4, 25, 26] or
exploit [3, 27–30] signatures to prevent malicious input from reaching the protected
system.

Starting with the technique of program shepherding [31], the idea of enforcing the
integrity of control flow has been increasingly researched. Program shepherding val-
idates branch instructions to prevent transfer of control to injected code and to make
sure that calls into native libraries originate from valid sources. Control flow is often
corrupted because input is eventually incorporated into part of an instruction’s opcode,
set as a jump target, or forms part of an argument to a sensitive system call. Recent
work focuses on ways to prevent these attacks using tainted dataflow analysis [4,22,32].



Abadi et al. [33] propose formalizing the concept of Control Flow Integrity (CFI), ob-
serving that high-level programming often assumes properties of control flow that are
not enforced at the machine level. CFI provides a way to statically verify that execution
proceeds within a given control-flow graph (the CFG effectively serves as a policy). The
use of CFI enables the efficient implementation of a software shadow call stack with
strong protection guarantees. However, such techniques generally focus on integrity
protection at the expense of availability.

The acceptability envelope, a region of imperfect but acceptable software systems
that surround a perfect system, as introduced by Rinard [34] promotes the idea that
current software development efforts might be misdirected. Rinard explains that certain
regions of a program can be neglected without adversely affecting the overall availabil-
ity of the system. To support these claims, a number of case studies are presented where
introducing faults such as an off-by-one error does not produce unacceptable behavior.
This work supports the claim that most complex systems contain the necessary frame-
work to propagate faults gracefully and the error toleration allowed (or exploited) by
some self-healing systems expands the acceptability envelope of a given application.

4.1 Self-healing Techniques

Some first efforts at providing effective remediation strategies include failure-oblivious
computing [20], error virtualization [19,21], rollback of memory updates [29,35], crash-
only software [36], and data-structure repair [37]. The first two approaches may cause a
semantically incorrect continuation of execution (although the Rx system [38] attempts
to address this difficulty by exploring semantically safe alterations of the program’s
environment).

TLS Oplinger and Lam [35] employ hardware Thread-Level Speculation to improve
software reliability. They execute an application’s monitoring code in parallel with the
primary computation and roll back the computation “transaction” depending on the
results of the monitoring code.

Failure-Oblivious Computing Rinard et al. [39] developed a compiler that inserts code
to deal with writes to unallocated memory by virtually expanding the target buffer. Such
a capability aims to provide a more robust fault response rather than simply crashing.
The technique presented by Rinard et al. [39] is subsequently introduced in a modified
form as failure-oblivious computing [20]. Because the program code is extensively re-
written to include the necessary checks for every memory access, the system incurs
overheads ranging from 80% up to 500% for a variety of different applications. Failure-
oblivious computing specifically targets memory errors.

Data-structure Repair One of the most critical concerns with recovering from software
faults and vulnerability exploits is ensuring the consistency and correctness of program
data and state. An important contribution in this area is that of Demsky and Rinard [37],
which discusses mechanisms for detecting corrupted data structures and fixing them to
match some pre-specified constraints. While the precision of the fixes with respect to
the semantics of the program is not guaranteed, their test cases continued to operate



when faults were randomly injected. Similar results are shown by Wang et al. [40]:
when program execution is forced to take the “wrong” path at a branch instruction,
program behavior remains the same in over half the times.

Rx In Rx [38], applications are periodically checkpointed and continuously monitored
for faults. When an error occurs, the process state is rolled back and replayed in a new
“environment”. If the changes in the environment do not cause the bug to manifest,
the program will have survived that specific software failure. However, previous work
[41, 42] found that over 86% of application faults are independent of the operating
environment and entirely deterministic and repeatable, and that recovery is likely to be
successful only through application-specific (or application-aware) techniques.

Error Virtualization Error virtualization [19, 21] assumes that portions of an applica-
tion can be treated as a transaction. Functions serve as a convenient abstraction and
fit the transaction role well in most situations [19]. Each transaction (vulnerable code
slice) can be speculatively executed in a sandbox environment. In much the same way
that a processor speculatively executes past a branch instruction and discards the mis-
predicted code path, error virtualization executes the transaction’s instruction stream,
optimistically “speculating” that the results of these computations are benign. If this
microspeculation succeeds, then the computation simply carries on. If the transaction
experiences a fault or exploited vulnerability, then the results are ignored or replaced
according to the particular response strategy being employed. The key assumption un-
derlying error virtualization is that a mapping can be created between the set of errors
that could occur during a program’s execution and the limited set of errors that the
program code explicitly handles. By virtualizing errors, an application can continue ex-
ecution through a fault or exploited vulnerability by nullifying its effects and using a
manufactured return value for the function where the fault occurred.

Modeling executing software as a transaction that can be aborted has been examined
in the context of language-based runtime systems (specifically, Java) [43,44]. That work
focused on safely terminating misbehaving threads, introducing the concept of “soft ter-
mination”. Soft termination allows threads to be terminated while preserving the stabil-
ity of the language runtime, without imposing unreasonable performance overheads. In
that approach, threads (or codelets) are each executed in their own transaction, apply-
ing standard ACID semantics. This allows changes to the runtime’s (and other threads’)
state made by the terminated codelet to be rolled back. The performance overhead of
that system can range from 200% up to 2,300%.

One approach that can be employed by error virtualization techniques is the one
described by Locasto et al. [45], where function-level profiles are constructed during
a training phase that can, in turn, be used to predict function return values. While this
technique is useful for predicting appropriate return values, especially in the absence of
return type information, it suffers from the same problems as error virtualization, i.e., it
is oblivious to errors.

ASSURE ASSURE [46] is an attempt to minimize the likelihood of a semantically
incorrect response to a fault or attack. ASSURE proposes the notion of error virtualiza-
tion rescue points. A rescue point is a program location that is known to successfully



propagate errors and recover execution. The insight is that a program will respond to
malformed input differently than legal input; locations in the code that successfully
handle these sorts of anticipated input “faults” are good candidates for recovering to a
safe execution flow. ASSURE can be understood as a type of exception handling that
dynamically identifies the best scope to handle an error.

DIRA DIRA [29] is a technique for automatic detection, identification and repair of
control-hijacking attacks. This solution is implemented as a GCC compiler extension
that transforms a program’s source code adding heavy instrumentation so that the result-
ing program can perform these tasks. The use of checkpoints throughout the program
ensures that corruption of state can be detected if control sensitive data structures are
overwritten. Unfortunately, the performance implications of the system make it unus-
able as a front-line defense mechanism.

Vigilante Vigilante [4] is a system motivated by the need to contain rapid malcode.
Vigilante supplies a mechanism to detect an exploited vulnerability (by analyzing the
control flow path taken by executing injected code) and defines a data structure (Self-
Certifying Alert) for exchanging information about this discovery. A major advantage
of this vulnerability-specific approach is that Vigilante is exploit-agnostic and can be
used to defend against polymorphic worms.

A problem that is inherent with all techniques that try to be oblivious to the fact
that an error has occurred is the ability to guarantee session semantics. Altering the
functionality of the memory manager often leads to the uncovering of latent bugs in the
code [47].

5 Self-healing Systems: Future Directions

Given the embryonic state of the research in self-healing software systems, it should
come as no surprise that there are significant gaps in our knowledge and understand-
ing of such systems’ capabilities and limitations. In other words, this is an extremely
fertile area for further research. Rather than describe in detail specific research topics,
we outline three general research thrusts: fault detection, fault recovery/mitigation, and
assurance.

Fault Detection One of the constraining factors on the effectiveness of self-healing
systems is their ability to detect faults. Thus, ways to improve fault detection at lower
memory and computation cost will always be of importance. One interesting direction
of research in this topic concerns the use of hardware features to improve fault detection
and mitigation [48]. Another interesting area of research is the use of collections of
nodes that collaborate in the detection of attacks and faults by exchanging profiling
or fault-occurrence information [49]. Although such an approach can leverage the size
and inherent usage-diversity of popular software monocultures, it also raises significant
practical issues, not the least of which is data privacy among the collaborating nodes.

We also believe that the next generation of self-healing defense mechanisms will re-
quire a much more detailed dynamic analysis of application behavior than is currently



done, possibly combined with a priori behavior profiling and code analysis techniques.
This will be necessary to detect application-specific semantic faults, as opposed to the
“obvious” faults, such as application crashes or control-hijack attacks, with which ex-
isting systems have concerned themselves to date. Profiling an application can allow
self-healing systems to “learn” common behavior [45]. The complementary approach
is to use application-specific integrity policies, which specify acceptable values for (as-
pects of) the application’s internal runtime state, to detect attacks and anomalies [50].

Fault Recovery/Mitigation To date, most systems have depended on snapshot/recovery,
often combined with input filtering. The three notable exceptions are error virtualiza-
tion, failure-oblivious computing, and data-structure repair. The former two techniques
can be characterized as “fault masking”, while the last uses learning to correct possibly
corrupt data values.

The technical success of self-healing systems will depend, to a large extent, on their
ability to effectively mitigate or recover from detected faults, while ensuring system
availability. Thus, research on additional fault-recovery/masking/mitigation techniques
is of key importance, especially when dealing with faults at different (higher) seman-
tic levels. Similar to fault detection, two high-level approaches seem promising: pro-
filing applications to identify likely “correct” ways for fault recovery [46], and using
application-specific recovery policies that identify steps that the system must undertake
to recover from different types of faults [50].

Assurance Finally, to gain acceptance in the real world, self-healing systems and tech-
niques must provide reasonable assurances that they will not cause damage in the course
of healing an application, and that they cannot be exploited by an adversary to attack
an otherwise secure system. This is perhaps the biggest challenge faced by automated
defense systems in general. Self-healing software systems of the type we have been dis-
cussing in this paper may need to meet an even higher standard of assurance, given the
intrusiveness and elevated privileges they require to operate. Although to a large extent
acceptance is dictated by market perceptions and factors largely outside the technical
realm, there are certain measures that can make self-healing systems more palatable to
system managers and operators. In particular, transparency of operation, the ability to
operate under close human supervision (at the expense of reaction speed), “undo” func-
tionality, and comprehensive fix-testing and reporting capabilities all seem necessary
elements for a successful system. Although some of these elements primarily involve
system engineering, there remain several interesting and unsolved research problems,
especially in the area of testing.

6 Conclusions

We have outlined some of the recent and current work on self-healing software systems,
describing the origins and design philosophy of such systems. We believe that self-
healing systems will prove increasingly important in countering software-based attacks,
assuming that the numerous research challenges (and opportunities), some of which we
have outlined in this paper, can be overcome.
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