
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Kostas G. Anagnostakis · Michael B. Greenwald · Sotiris Ioannidis · Angelos D.
Keromytis

COVERAGE: Detecting and Reacting to Worm Epidemics Using
Cooperation and Validation

Abstract Cooperative defensive systems communicate and
cooperate in theirresponseto worm attacks, but determine
the presence of a worm attack solely on local information.
Distributedworm detection and immunization systems track
suspicious behavior at multiple cooperating nodes to deter-
minewhethera worm attack is in progress. Earlier work has
shown that cooperative systems can respond quickly to day-
zero worms, while distributed detection systems allow de-
tectors to be more conservative (i.e. paranoid) about poten-
tial attacks because they manage false alarms efficiently.

In this paper we present our investigation into the com-
plex tradeoffs in such systems between communication costs,
computation overhead, accuracy of the local tests, estima-
tion of viral virulence, and the fraction of the network in-
fected before the attack crests. We evaluate the effective-
ness of different system configurations in various simula-
tions. Our experiments show that distributed algorithms are
better able to balance effectiveness against worms and vi-
ruses with reduced cost in computation and communication
when faced with false alarms. Furthermore, cooperative, di-
stributed systems seem more robust against malicious partic-
ipants in the immunization system than earlier cooperative
but non-distributed approaches.

Kostas G. Anagnostakis
Institute for Infocomm Research,
21 Heng Mui Keng Terrace, Singapore 119613
E-mail: kostas@i2r.a-star.edu.sg

Michael B. Greenwald
Bell Labs, Lucent Technologies, Inc.,
600-700 Mountain Ave., Murray Hill, NJ 07974, USA
E-mail: greenwald@research.bell-labs.com

Sotiris Ioannidis
Computer Science Department,
Stevens Institute of Technology,
Hoboken, NJ 07030, USA
E-mail: si@cs.stevens.edu

Angelos D. Keromytis
Department of Computer Science,
Columbia University,
1214 Amsterdam Ave. New York, NY 10027, USA
E-mail: angelos@cs.columbia.edu

1 Introduction

Increasing innovation among attackers, the increasing pene-
tration of broadband Internet service and persistent vulner-
abilities in host software systems have led to new classes
of rapid and scalable mechanized attacks on the informa-
tion infrastructure. Leveling the playing field requires scal-
able, automated responses to malicious code that can react in
the short propagation windows evident with network worms
such as Slammer [13]. Traditional approaches have relied on
signatures, manual containment and quarantine (e.g.,[48]),
and while tools are improving, reliance on identifying sig-
natures and other improvements in detection processes is by
itself insufficient. What is needed to complete the defensive
technology portfolio is a scalable, distributed, adaptivere-
sponse mechanism, based on cooperative behavior amongst
a set of responding nodes. Since naı̈ve cooperative behaviors
might introduce new risks, including fragility in the face of
poor or maliciously-generated information, particular atten-
tion must be paid to robustness in the cooperative strategy.

The problem of detecting, quarantining and recovering
from zero-day viruses1 is made easier if local detectors are
allowed more room for error. If we err on the side of allow-
ing false alarms, then detectors can be cautious (paranoid!)
and conservatively flag anything that looks suspicious, and
depend on cooperative corroboration to determine whether
the attack is real or not. For this strategy to be effective,
though, requires the entire anti-virus system to handle false
alarms quickly and cheaply and still respond rapidly to real
virus attacks.

Handling individual false alarms is not sufficient, how-
ever; by allowing more false alarms we increase the prob-
ability that the system will be called upon to manage mul-
tiple potentialviral attacks taking place simultaneously. Si-
multaneous attacks complicate the anti-virus response be-

1 In this paper we use the term “virus”, in an extremely broad man-
ner, to refer to any epidemic-like attack communicated overthe net-
work. We use this term, regardless of whether the virus is an active
worm that attacks a system even without the unwitting involvement of
a legitimate user or a passive virus, that is embedded in a document or
email, that requires (unintentional) user assistance to become active.

cause increasing the defense against one virus involves ei-
ther decreasing the defense against another virus or incur-
ring higher costs (if the system can afford any further anti-
virus costs). Simultaneous attacks may occur because of mul-
tiple zero-day viruses [36], or because early-stage false-al-
arms are not yet distinguishable from real virus attacks, or
because of the resurgence of old viruses. Old viruses are still
potentially virulent, since a measurable fraction of hostsdo
not upgrade or patch to eliminate security bugs, as the per-
sistence of Code Red and other worms has demonstrated. A
good analysis of the persistence of Blaster is given in [6],
which shows that tens of thousands of instances of the virus
remain active a full year after the initial outbreak. More sur-
prisingly, 73%–85% of infected class-C subnets were not de-
tected as infected during the first Blaster outbreak.

These observations expose several significant problems
that must be dealt with. Any node that responds to a potential
virus carries a cost: a node has finite resources and therefore
can only actively engage a limited number of viruses at a
time. Deciding to counter one virus entails ignoring some
other virus. In the absence of cost, the best response to a po-
tential virus attack is to flood the network as rapidly as possi-
ble with information to detect and counter the virus, causing
as many cooperating agents to respond at once. The main
question is simply whether the response is quick enough to
stifle the virus. In the presence of a cost model, however, we
still need to respond quickly, but no more quickly than nec-
essary. A false alarm, whether malicious or unintended, can
trigger a DoS attack by the response mechanism itself.

In this paper, we investigate tradeoffs in global, distribu-
ted response mechanisms that must respond quickly to real
viruses and do not over-react to a high rate of false alarms.
These systems should be efficient in terms of bandwidth
and global computation. Moreover, the response mechanism
must be robust against malicious agents spreading false in-
formation and be able to manage its resources even when
many distinct viruses are active at any time. This approach is
orthogonal to, and can augment, any proposals for the detec-
tion of and recovery from zero-day viruses. It has the added
advantage of also performing well in the face of false alarms
resulting from malicious behavior or failed detectors.

We focus here on an algorithm called COVERAGE (for
COoperative Virus Response AlGorithm), whose core ideas
were originally introduced in [3]. This algorithm takes into
consideration shared information about the observed rate of
infection for each virus, verifying that new reports are com-
patible with a node’s own empirical observations, and de-
termines (probabilistically) which viruses to respond to.We
evaluate its effectiveness through large-scale simulation. We
discuss also, although to a lesser extent, tradeoffs in a similar
cooperative (but non-distributed) approach, called NRL03,
described in [51], which differentiates between slow and fast-
spreading viruses.

In our previous work, we determined that our basic co-
operative and distributed approach was effective, but only
in the sense of measuring the ability of the two approaches
to detect and respond to viruses of different infection rates,

as well as their resistance to malicious nodes that spread
misinformation. Here, we offer refined algorithms over the
earlierCOVERAGE work, and, using a more detailed model
we begin to examine the three-way tradeoff between com-
munication costs, computation overhead, and the percent-
age of the network that gets infected before the reaction
mechanism manages to limit the virus propagation. When
evaluating alternative approaches in this model, we deter-
mine that COVERAGE always has much lower scanning
costs; whether in the cases of slowly-propagating viruses,
fast worms, or in the presence of malicious nodes inject-
ing false alarms.COVERAGEhas significantly lower commu-
nication cost when dealing with false alarms. Furthermore,
the distributed approaches (bothCOVERAGEand our refined
version) can trade off higher communication cost to to de-
tect and react to slow-propagating viruses more quickly than
the purely cooperative NRL03. Both NRL03 and theCOV-
ERAGE variants can use increased communication costs to
perform better against fast worms, but the distributed ap-
proaches incur much higher communication costs than the
NRL03 system. We believe this to be an unavoidable conse-
quence of their robustness against false alarms. Independent
work [9] has pointed out that the randomized approach of
COVERAGE makes it difficult to devise virus propagation
strategies that exploit the particular topology and exchange
models of other collaborative virus defenses to hide their
spread.

2 System Model

In this section, we describe our model of how viruses, swi-
tches/routers, hosts and our detection mechanism behave.

Modeling VirusesWe use a fairly simple model to describe
the behavior of potential attackers (viruses) that we consider
in our work. After infecting a node, a virus attempts to in-
fect other nodes; it may attempt to only infect a (small) fixed
number of other nodes, or exhibit a greedier behavior. For
our purposes, the distinction between the two types is sim-
ply in the probability of detection of a probe or attack by a
detector. A virus may exhibit high locality of infection (i.e.,
probing and attacking nodes based on network-topological
criteria, such as “adjacent” IP addresses), or could use a ran-
dom (or seemingly random) targeting mechanism,e.g.,using
a large hit-list, or some pseudo-random sequence for picking
the next address to attack. We expect that viruses that exhibit
high locality are more difficult to detect using an Internet-
wide distributed detection mechanism, but easier to do so on
a local basis. We completely characterize a virus by the rate
at which it attempts to infect other nodes and by the fraction
of local attempts it makes. All attacks on susceptible nodes
are successful, and in our simulation a virus never attempts
to attack a non-existent node. As a result, our simulated vi-
ruses are more virulent than equally aggressive viruses in the
real world. We make no assumptions about the infection vec-
tor: although perhaps the more “interesting” cases are those

where the virus is able to automatically subvert a machine or
application, our model does not preclude human interaction
in the infection process (e.g.,mail viruses as attachments).

Furthermore, we only assume that, once detected, there
is some detection and/or response “module” associated with
each virus — we do not investigate its details: the mecha-
nism may be as simple as a content filter. There is some cost
(in terms of CPU, memory, impact on legitimate communi-
cations,etc.) associated with each of these modules, which
requires the prioritization of the various threats (viruses) in
terms of allocating resources for detection and response.

Detection of Zero Day Worms and VirusesAlthough our al-
gorithm is orthogonal to and agnostic about the method(s)
with which new (zero day) viruses are detected, we briefly
discuss different techniques and how they may interact with
COVERAGE. A zero-day virus detector consists of roughly
three components. First, we must detect anomalous behav-
ior. The behavior may range from specific activities (e.g.,
port scans, system/application crashes, incorrect password
attempts) to statistical changes (e.g.,increased network traf-
fic, slow response time, variation in system call signatures,
number of TCP connections in TIME-WAIT). Second, the
transmission vector must be identified (finding a set of net-
work packets whose arrival seems to herald the onset of the
anomalous behavior). Third, a detectable “signature” of the
traffic must be generated so that hosts can scan for, and fil-
ter out, the potentially offending traffic. It is important to
note that a “signature” in our model is not necessarily sim-
ply a pattern of bits to match inside a packet — it can be any
profile that detects anomalous behavior, ranging from packet
inspection to longer term multi-packet behavior.

Perhaps the most promising approach is that of monitor-
ing the number of packets aimed at the unused portion of
an organization’s address space, as was suggested in [29]. In
that work, it was shown that with as few as 4 such probes,
it is possible to infer the existence of a new virus aimed at
a previously untargeted service/port. A similar approach is
proposed in [81], where sudden changes in the traffic statis-
tics maintained on a per source IP address and per desti-
nation port number indicate a high-visibility event, such as
a scanning worm. Similar works have proposed measuring
the entropy of traffic (e.g., in terms of distinct source IP
addresses seen) as an indication of unusual activity. These
mechanisms act as early warnings, alerting administrators
and perhaps automatically reconfiguring a firewall to assume
a more defensive posture. However, without corroboration
with outside sources (e.g., through COVERAGE) they can
be manipulated by an attacker to generate false positive re-
ports. It is also worth noting that these mechanisms can only
give a rough fingerprint of a new virus’s activity, such as the
targeted service/port—thus, they can be fairly accurate about
the presence of an attack, but inaccurate about mapping spe-
cific packets to the attack, as would be the case with a virus
targeting a protocol such as HTTP.

A second, more accurate but also more expensive (com-
putationally, as well as in terms of necessary infrastructure)

mechanism for detecting viruses is through use of properly
instrumented honeypots or virtual machines, as is done in
[62,35], or through payload analysis [32,63] that can yield
a potential virus signature. Finally, anomaly detection tech-
niques, such as those proposed in [7], can indicate the pres-
ence of packet payloads that do not conform to the typical
contents of packets for a particular service (e.g.,binary con-
tent containing a buffer overflow payload uploaded to a web
server).

These mechanisms identify different points in the zero-
day virus detection space, trading off between the likelihood
of false positives, the time needed to collect enough evidence
before raising an alarm, and the expense of testing whether
an alarm should go off.

These observations are taken into consideration by the
COVERAGE algorithm to balance the cost of detection (e.g.,
coordination, scanning as well as collateral damage that may
be caused by false alarms) and the ability to respond effec-
tively to virus attacks.

Network TopologyOur simulation topology is dictated by
our assumptions about the vulnerabilities and capabilities of
network nodes with respect to virus attacks. We assume that,
as a general rule, routers/switches are less likely to be in-
fected by a virus, and thus that only hosts are susceptible to
infection.

Here, we assume that the only nodes in our system ca-
pable of scanning packet sequences for potential viruses are
end-hosts or last-hop routers. While considerable advantage
can be gained by exploiting the great levels of traffic aggre-
gation seen in routers closer to the network core, it is un-
likely that such nodes can actively scan for viruses without
significantly affecting their performance.

Thus, our model of the network topology consists en-
tirely of a collection ofsubnets(LANs) containing a num-
ber of hosts. Each subnet connects to the global network
through a singlerouter. All routers are connected together
in a single cloud where each router can address and forward
packets to each other directly. End-hosts can only see their
traffic, while routers can inspect all traffic to or from their
associated LAN. It is likely that some organizations contain
multiple subnets that frequently communicate among them-
selves. Therefore we collect together several subnets intoa
domain. A domain captures particular communication pat-
terns but has no structural impact on the topology for simu-
lation.

State of NodesWe assume that the distribution of COVER-
AGE agents is uniform across the population of nodes; for
example, all nodes may be running an agent, in the same way
that a large number of PCs run some kind of anti-virus soft-
ware these days. A node in our environment can be in one of
three states with respect to a virus:susceptible, protected, or
immune. A susceptible node can be either infected or unin-
fected. Susceptible nodes will become infected if subjected
to an attack. Protected nodes may be infected or uninfected,
but only if the detection module does not have the ability to

detect and disinfect an infected machine. A protected node
will not become infected as long as the protection mecha-
nism (typically, a module that screens packets or email) is
in place. An immune node does not have the vulnerability
exploited by the virus.

OperationsA COVERAGE agent can monitor traffic and,
for each virus, it can either ignore the virus or perform one
or more of the following operations: collect and exchange
information about a virus,scanfor the presence of a virus
(actually, scan for the presence of patterns of network traf-
fic used as a “signature” for that virus), orfilter viruses (by
dropping one or more packets that are part of a virus sig-
nature). We assume that there is a cost inherent in checking
for virus signatures. That is, a node cannot be actively “on
the lookout” for an arbitrary number of viruses without ad-
versely affecting its performance. (Some experimental mea-
surements of such real-world limits are given in [4]). Edge-
routers are more likely to be constrained by high packet
rates, and therefore limited in the amount of scanning they
can perform. Hosts can afford to scan for more viruses with-
out interfering with their (lower) packet rate, but, on the
other hand, have work other than packet forwarding to per-
form. In either case there is an upper bound on the number
of viruses a node can scan for.

We assume that nodes periodically exchange informa-
tion about viral infections. Although the per-virus cost of
such an exchange is low, we assume that the number of
knownplus potential day-zeroviruses exceeds the amount of
information that can be reasonably exchanged at any given
time. Thus, actively exchanging information about a virus
incurs a cost, albeit lower than scanning. Note that faulty
or otherwise malicious nodes (e.g.,nodes controlled by the
virus) may lie in the information they provide as part of these
exchanges.

Routers can additionally scan for suspicious behavior on
all traffic to or from their LAN (and drop when necessary).
We further assume that if a router detects a rampant viral in-
fection for a virus that has an associated disinfectant compo-
nent, the router can invoke a disinfection operation (perhaps
alerting an administrator) on all the nodes in its LAN.

Model of Anti-virus EpidemicEach node participating in the
anti-virus response must make certain decisions:(a) the rate
at which it polls other local nodes for virus information,(b)
the rate at which it polls other remote nodes, chosen at ran-
dom, for virus information,(c) whether for each virus to col-
lect information about it,(d), whether to include that infor-
mation in virus exchange packets, and(e) whether to scan
for the virus (collecting the results of those scans as part of
the local information for that virus).

3 Cooperative Virus Response

COVERAGE tries to balance the cost of scanning and filter-
ing packets for a specific virus against the benefit of detect-
ing, other, real viruses in several ways. First, COVERAGE

models the virulence of viruses and ranks them in virulence
order. With probability proportional to their virulence, COV-
ERAGE decides in rank order whether to actively scan for
the virus or not. COVERAGE stops scanning for more vi-
ruses once the scanning schedule consumes the entire scan-
ning budget available. Second, each COVERAGE agent ex-
changes information about the state of a virus with other co-
operating agents in order to construct a model of the virus
and determine whether incoming reports are empirically con-
sistent with the observed state of the network. Third, COV-
ERAGE agents determine their polling rate to maximize the
probability of seeing enough viruses to confirm the current
local estimate of the virus state, while reducing the probabil-
ity that communication will add no new knowledge to either
of the participants. We now describe the algorithm in more
detail.

3.1 COVERAGE algorithm

Agent communication. Each COVERAGE agent polls other
agents, selected randomly. Assuming that only a small frac-
tion of the nodes are reporting false information, a randomly
selected node is more likely to be trustworthy than a node
that actively contacts us — a small number of malicious
nodes may try to flood the rest of the network. At each poll,
the sender reads the response and updates its local state vari-
ables to track the operation of the cooperative response mech-
anism and the status of the network in terms of observed
attacks.

First, it records whether the remote agent is actively scan-
ning. This allows the agent to estimate the fraction of agents
in the network that are actively scanning for a particular
virus. Second, it updates estimates of possible infectionse.g.,
the fraction of infected nodes for each virus. We distinguish
two types of estimates: direct and remote. Direct estimates
are updated based on whether each remote agent has directly
observed an attack (either to itself or, if a router, to a node
in its LAN). Remote estimates are updated based on the
fraction of infected nodes as estimated by the remote agent
(the “direct” estimates of the remote agent). Direct measure-
ments performed by the local node are absolutely trustwor-
thy — there is no issue of false positives. The direct mea-
surements of agents that we poll (which become our remote
estimates) are next in trustworthiness. Remote estimates of
agents who we poll are more suspect, and information re-
ported by agents who contact us are the most suspicious of
all. However, we can validate any information reported to us
— if someone reports that a particular virus is attacking 25%
of the Internet at the moment, then if we poll 20 agents at
random (and assuming uniform distribution of COVERAGE
agents across the node population), then with 80% probabil-
ity we would expect to find that between 3 and 7 of those
agents had directly seen an attack in the last measurement
interval. Values outside that range would cast doubt on the
remote estimate.

Finally, in this paper we ignore the details of how COV-
ERAGE nodes authenticate themselves to each other. How-

ever, we note that even strong authentication is not sufficient
for our system. If a COVERAGE agent is taken over by a
malicious attacker, then the attacker can (presumably) still
authenticate itself and discover which nodes arenot scan-
ning for a particular virus, and use that information when
choosing targets. To defend against such a vulnerability in
COVERAGE , we propose (but have not yet implemented
or experimented with) a simple defense. When polling, the
identity of the target agent is not important — just the fact
that we chose it randomly, and it did not choose us. And,
while we are interested in the statistics of the sample as a
whole, we need not link a particular set of direct measure-
ments to a particular IP address. Consequently, each agent
stores a randomly selected response from the last measure-
ment interval (the local measurements are one of the can-
didates that may be selected), and returns that random se-
lection in response to any COVERAGE poll, for the direct
measurements and scan list only. (The cumulative counters
are still stored and reported accurately). The poller stillre-
ceives an accurate response — just perhaps from a different
IP address than the one it polled, and perhaps slightly older
than expected. This adds a level of indirection to the polling
process.

Periodic updates. At regular intervals each COVER-
AGE agent updates its state based on the information re-
ceived since the last update. To track the progress of the in-
fection each COVERAGE agent maintains a smoothed his-
tory for each type of estimate (direct and remote), each as ex-
ponentially decaying averages with varying time constants,
to approximate recent infection rate, past rate, and back-
ground rate.

Using these estimates, an agent can compute the fraction
of nodes believed to be infected as well as the growth of the
infection, assuming exponential growth2.

If we assume that each infected node infects roughly
α nodes in a given timestep, and that a fractionp⋆ of all
nodes are infected at present,t0, then we’d expect that att
timesteps in the past, we would have seen a fractionp⋆(1 +
α)−t infected nodes in our sample. For each virus we are
observing, we can fit our observations at timestept0 − t to
a growth curvep⋆(1 + α)−t. We can use a least square fit to
find the best values ofp⋆ andα.

In practice, however, at the early stages of the virus, the
fraction of infected nodes in a sample will jump wildly. The
pattern will only emerge after a relatively large number of
timesteps. Rather than recording a large number of samples,
and expensively curve fitting the full set of observations, we
instead use exponentially decaying averages with different
time constants. Each observed fraction,f , is incorporated
into thejth averageaj , by aj = (1 − wj)aj + wjf . If the
current fraction of infected nodes isp⋆, and the process were

2 We assume all growth is exponential for the purpose of deciding
whether to trigger a reaction. We believe that linear-growth viruses can
be detected by humans, and need not be countered by an automatic,
distributed, algorithm. If our assumption is incorrect andgrowth is,
in practice, sub-exponential then we recover naturally because we ob-
serve a decrease inα and gradually back-off as the predicted “viru-
lence” of the virus drops.

We start with the computation of the mean square error

MSE =

3
∑

j=1

(

wjp
⋆ 1 + α

α + wj

− aj

)2

Grouping the equation for MSE byp⋆,

(p⋆)2

(

(1 + α)2
3
∑

j=1

(

wj

α + wj

)2
)

−p
⋆

(

2(1 + α)

3
∑

j=1

wjaj

α + wj

)

+

3
∑

j=1

a
2
j

we get the derivative,

MSE′ = 2(1 + α)2p⋆

3
∑

j=1

(

wj

α + wj

)2

− 2(1 + α)

3
∑

j=1

wjaj

α + wj

Setting the derivative equal to 0, we find the idealp
⋆ in terms ofα

p
⋆ =

2(1 + α)
∑

3

j=1

wjaj

α+wj

2(1 + α)2
∑

3

j=1

(

wj

α+wj

)2

p
⋆ =

∑

3

j=1

wjaj

α+wj

(1 + α)
∑3

j=1

(

wj

α+wj

)2

Fig. 1 Deriving p
⋆ from α to minimize MSE between observedaj ’s

and expected values ofaj ’s assuming exponential growth.

exactly exponential, then at timet0 we’d expect each ideal
a⋆

j to contain:

a⋆
j =

∞
∑

i=1

(1 − wj)
i−1wj

p⋆

(1 + α)i−1

a⋆
j = wjp

⋆

∞
∑

i=1

(

(1 − wj)
i−1

(1 + α)i−1

)

a⋆
j = wjp

⋆

∞
∑

i=0

(

(1 − wj)

1 + α

)i

a⋆
j = wjp

⋆ 1

1 −

(1−wj)
1+α

a⋆
j = wjp

⋆ 1 + α

wj + α

If we maintain three decaying averages, one with a large
wj to capture recent history, one with a smallwj to get the
background level, and one with an intermediatewj , then we
can compute the mean square error between our actual ob-
servedaj and the expecteda⋆

j assuming that growth was
exponential with baseα and current populationp⋆ of the
network. We can then choose theα and p⋆ that minimize
the mean square error between our observations and the ex-
pected values ofaj .

We have

p
⋆ =

∑3

j=1

wjaj

α+wj

(1 + α)
∑3

j=1

(

wj

wj+α

)2

Plugging this back into the equation for MSE, we get:

MSE =







(1 + α)
∑

3

j=1

wjaj

α+wj

(1 + α)
∑3

j=1

(

wj

wj+α

)2







2
(

3
∑

j=1

(

wj

α + wj

)2
)

−

2(1 + α)
∑

3

j=1

wjaj

α+wj

(1 + α)
∑3

j=1

(

wj

α+wj

)2

(

3
∑

j=1

wjaj

α + wj

)

+

3
∑

j=1

a
2
j

MSE =

(

∑3

j=1

wjaj

α+wj

)2

∑3

j=1

(

wj

α+wj

)2
−

2
∑3

j=1

wjaj

α+wj

∑3

j=1

(

wj

α+wj

)2

3
∑

j=1

wjaj

α + wj

+

3
∑

j=1

a
2
j

MSE =

(

∑

3

j=1

wjaj

α+wj

)2

− 2
(

∑

3

j=1

wjaj

α+wj

)2

∑

3

j=1

(

wj

α+wj

)2
+

3
∑

j=1

a
2
j

MSE =

3
∑

j=1

a
2
j −

(

∑3

j=1

wjaj

α+wj

)2

∑3

j=1

(

wj

α+wj

)2

Fig. 2 Equations to derive value ofα that minimizes MSE between observedaj ’s and expected values ofaj ’s assuming exponential growth.

The mean square error is (we drop the constant factor of
1/3 for clarity)

MSE =

3
∑

j=1

(

wjp
⋆ 1 + α

wj + α
− aj

)2

Note that given a fixedα we can easily compute thep⋆

that minimizes the MSE, as this is a quadratic equation in
p⋆. Figure 1 gives this derivation, and we see that

p⋆ =

∑3
j=1

wjaj

α+wj

(1 + α)
∑3

j=1

(

wj

α+wj

)2

At this point, we have two alternative numerical tech-
niques for computingα. First, we can plug our value ofp⋆

back into the equation for the MSE, and find the value of
α that minimizes the MSE (see Figure 2). Second, alterna-
tively, we can (numerically) find the optimalα for a given
p⋆, and then analytically find the optimalp⋆ for the newα,
and iterate until the MSE stops decreasing. In theory these
should be equivalent; however the second approach seems to
work better in practice (mostly because it is easier to avoid
local minima, and also to stay within regions where the com-
putation converges).

Given estimates ofp⋆
d andαd, we can calculate theviru-

lence, vd, of a virus as the estimated number of timesteps
needed by the virus to infect the entire network. We can
solve for the number of steps,vd, it takes forp⋆

d(1+αd)
vd =

1.

p⋆
d(1 + αd)

vd = 1. log(p⋆
d) + vd log(1 + αd) = 0

vd log(1 + αd) = − log(p⋆
d)

vd =
− log(p⋆

d)

log(1 + αd)

Note that we independently calculate virulence for global
and local growth, in order to identify attacks that are non-
uniformly distributed throughout the network. Using the same
method as above the agent also computesαr, p⋆

r and vr

based on the remote estimates.

Scanning/filtering. Given the estimates an agent can
decide whether it needs to scan for a given virus. There is a
basic, low level of scanning for every virus. When a virus be-
comes active the scanning rate may increase. In the general
case, the agent can sort viruses in order of their virulencevd

and decide whether to scan for each virus, in turn, stopping
when the scanning budget is filled. (In our simulation, we
only scan viruses whosevd is belowthreshold.)

To maintain a basic, low level of scanning for every virus,
every agent measures the fractionfscanning of nodes in the
network that are actively scanning for a given virus based on
information exchanged with other nodes. If this fraction is
below a thresholdftarget (around 2-5%) and the node has
enough resources for scanning, it activates with probabil-
ity ftarget − fscanning, and disables scanning in a similar
way if too many nodes seem to be active. To avoid turning
“blind” to certain viruses because of a fraction of malicious
nodes falsely reporting that they are actively scanning, nodes
need to aim forftarget + fmalicious, wherefmalicious is the
maximum tolerable fraction of malicious nodes. Although
this increases scanning cost, nodes can trade-off this costfor
higher communication costs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120 140 160

time (minutes)

fraction of scanning nodes|worm 0
fraction of scanning nodes| worm 1

fraction of infected nodes|worm 1

1e-05

0.0001

0.001

0.01

0.1

20 40 60 80 100 120 140 160

time (minutes)

fraction of active infected nodes| worm 1

Fig. 3 Fractions of infected hosts and scanning nodes over time (top), and fraction of actively infected nodes (bottom).

An inactive agent,A, may also start scanning seemingly
low-virulence viruses, ifenough otheragents claim the virus
is virulent, andA finds that the fraction of scanning nodes
is too low to detect virus activity in a single timestep at the
current polling rate. The test is whethern (simply the frac-
tion of agents that were polled and found to be scanning in
the last interval) is less than twice the estimated fractionof
infected hosts (e.g.,if n < 2p⋆

r). Similarly, if the agent is ac-
tive butn > p⋆

r then it decides to stop. The agent also stops
scanning ifαr approaches 0. This ensures that the fraction of
scanning agents is bounded if there is insignificant progress
for a given infection or if the infection is small compared to
the number of actively scanning agents. Such heuristics are
essential for controlling the behavior of the algorithm, keep-
ing the response mechanism “ahead” of the virus but also
limiting the damage and cost when malicious agents spread
false information.

A small number of agents need to be watching for each
dormant virus. The number of active scanners monitoring a
virus may be more than warranted by the level of virus ac-
tivity. An agent detecting this will stop monitoring the virus.
If the agent finds that it now has ample room within its scan-
ning budget to consider another virus, it chooses another
virus to monitor uniformly at random from the (large) virus
database. The agent may choose a virus that almost no one
else is scanning for — in which case it will stay on the scan-
ning list for a long time, and be inspected by the agent as
long as there are not too many virulent virii. If the new virus
is dormant, but enough people are already looking at it, then
the agent will drop it, and randomly choose another.

Polling rate. An agent communicates with other agents
within the same domain at a constant, high rate, as the cost

of intra-domain communication is assumed to be very small.
Inter-domain communication is generally more expensive;
agents therefore need to adapt the rate of polling remote
agents, avoiding excessive communication unless necessary
for countering an attack. When there is no virus activity,
agents poll at a pre-configured minimum rate (at least an or-
der of magnitude lower than the rate for intra-domain com-
munication). An agent periodically adapts the remote polling
rate if vr is less than a given threshold. The new rate is set
so that the agent polls1/(p⋆

r)
2 remote agents in each update

interval, unless this rate exceeds a pre-configured maximum
rate. This is used to increase the polling rate when the re-
mote estimate indicates that an attack is imminent (but not
yet reflected in the direct estimate). If the more recent direct
estimatepd[n] is non-zero, then the polling rate is increased
so that at least a few samples can be collected in each update
interval. Finally, if the estimated virus populationp⋆

r is small
and the estimated virus growth rate is close to zero, the agent
throttles back its remote polling rate to the minimum rate.

These adjustments are always performed on the polling
side. We avoid changing the state or behavior of the polled
agent to reduce the risks associated with malicious agents.
Otherwise, they could spread misinformation and raise false
alarms more effectively by increasing their own communi-
cation rate.

3.2 COVERAGE behavior

To give a rough sense of how the COVERAGE algorithms
described above behave, Figure 3 displays a single example
run of the COVERAGE algorithm against a single simulated

virus called “worm 1”. We show the activity of the virus
(the number of nodes that were ever infected in their life-
time) on the top figure, and the currently infected nodes on
the bottom figure), as well as the response of COVERAGE
(both the number of agents scanning for “worm 1”, as well
as the number of agents scanning for a dormant virus “worm
0”). (Section 4 describes how we approximate a heavy load
on the COVERAGE agents by using a simulation parameter
threshold — each agent is too busy to consider any vi-
ruses unless they are likely to take over the entire network
within threshold measurement intervals.)

One can see the initial stage of the infection and the re-
sponse of the algorithm: the virus manages to infect roughly
10% of the hosts; cooperation between COVERAGE agents
results in a rapid activation of filtering on roughly 75% of the
network effectively eliminating the virus. Soon after stop-
ping the attack, the COVERAGE agents on uninfected parts
of the network deactivate scanning/filtering. However, Fig-
ure 3 (bottom) shows, a small number of hosts remains in-
fected and undiscovered, resulting in another three episodes
where COVERAGE agents are activated (each episode with
a smaller fraction of agents activated) to defend against a se-
condary outbreak. Although a tiny fraction of infected nodes
remains undiscovered, it does not cause any further harm
and COVERAGE gives users time to patch up their systems.
The scanning for dormant “worm 0” continues, except dur-
ing the most virulent part of the outbreak, where the number
dips as resources are marshaled to defend against “worm 1”.

4 Simulation Results

To simplify the analysis of COVERAGE and to meaning-
fully include the non-adaptive NRL03, we restrict the sim-
ulation to a single virus. We model the impact of multiple
active viruses by assuming that each node is already very
busy handling other viruses. To represent the load imposed
by other viruses, we specify a threshold under which a virus
will not have high enough priority to be scheduled in the
scanning budget. If many viruses are active then the thresh-
old will be a small number, such as 20. (Recall that the viru-
lence is a measure of how many measurement intervals it
will take before the virus has covered theentire Internet.
Normally, when the network is not under any attack, then
a node is likely to scan or filter a virus, even if its virulence
is only 100 or 1000.) Unless the current virus is poised to
conquer the entire net at its current rate of growth from its
current coverage withinthreshold intervals, it will not
have high enough priority to be scheduled in the scanning
budget. In our simulations, we only consider cases where the
net is already under such a heavy attack that scanning nodes
ignore any virii that are not poised to control the entire net-
work within small thresholds of 5 or 20. (These correspond
to times from 10 seconds to 2 minutes).

To better understand the performance of COVERAGE,
we limit our simulation to a simple, relatively small network
of 100,000 edge-routers, each connected to 8 hosts, with 50

edge-routers in each of 2,000 domains. We also consider
the performance of our version ofCOVERAGE in relation to
NRL03 [51], another cooperative algorithm, which makes
different tradeoffs thanCOVERAGE. NRL03 uses coopera-
tive peer-to-peer strategies to respond to large-scale Inter-
net virus attacks. The model involves a number offriend
nodes, which work together by exchanging information to
warn of suspicious virus-like network behavior. The larger
the number of friends, the more rapidly NRL can respond
to virus attacks — and the higher the communication costs.
As in COVERAGE, a small fraction of nodes is assumed to
be scanning for a given virus. When the virus is detected,
the node broadcasts the alert to its friends. When a node re-
ceives such an alert, it increments an alert counter, and prop-
agates the alert to its set of friends when this counter reaches
a threshold.

For the COVERAGE algorithm, we set the local-domain
polling interval to 1.8 seconds , the maximum and minimum
remote polling intervals to 6 seconds and 1.8 seconds re-
spectively. For both algorithms we assume that 4% of the
edge-routers are permanently scanning for the virus.

Our analysis uses three metrics. First, we model the suc-
cess of the attack by integrating the number of infected nodes
over time. This is only relevant in the case of a real virus
attack. Second, we consider the number of edge-routers ac-
tively scanning/filtering this virus. This is a measure of the
computational overhead of the response mechanism. Our third
metric, the total number of messages sent, measures the com-
munication cost.

We measure the progress of infections of differing vir-
ulence and the success of the response mechanism as the
integral over time of the fraction of infected nodes. Because
we claim that COVERAGE is better able to balance multi-
ple viral attacks and NRL03 makes no such claim, we con-
servatively model COVERAGE dealing with other viral out-
breaks, but optimistically let NRL03 assume that this is the
only virus in the Internet. The results for COVERAGE and
NRL03 with different parameters are shown in Figure 4. (It
may seem counter-intuitive that the more virulent viruses
cover less of the network; however, recall that we are in-
tegrating over time and that the faster worms, while they
spread faster are also detected and disinfected faster). COV-
ERAGE reacts more slowly than NRL03 for fast worms in
our setting — where NRL03 handles a single virus, and
COVERAGE faces many aggressive virii. Consequently, the
virus takes a larger initial toe-hold in the network under
COVERAGE, and is active slightly longer before being clean-
ed up. Because of this toe-hold, COVERAGE performs rel-
atively worse in our setting than NRL03 for fast worms. On
the other hand, even when handicapped under our model it
still detects the slow viruses before NRL03. The slower re-
sponse by COVERAGE in the case of fast worms has been a
deliberate design choice in an attempt to make the algorithm
robust against false information from potentially malicious
nodes.

The default configuration of COVERAGE varies the com-
munication rate between roughly .016 rounds of messages

virus infection rate (infections per minute)
0 1 2 3 4 5 6 7 8 9 10

in
fe

ct
io

n
in

te
gr

al

0

1

2

3

4

5

6

7

8

9

NRL03
friends=8

NRL03
friends=16

COVERAGE
thresh=5

COVERAGE
thresh=20

Fig. 4 Integral of infected hosts over timevs.virus infection rate. The
integral is divided by the elapsed time and expressed as a percentage.
(100 implies that all nodes were infected all of the time.)

virus infection rate
0 1 2 3 4 5 6 7 8 9 10

m
ax

. f
ra

ct
io

n
of

 in
fe

ct
ed

 h
os

ts

0

0.05

0.1

0.15

0.2

0.25

NRL03
friends=8

NRL03
friends=16

COVERAGE
5.5 msg/sec

COVERAGE
3.3 msg/sec

COVERAGE
1.6 msg/sec

COVERAGE
0.8 msg/sec

Fig. 5 Maximum fraction of infected hostsvs. virus infection rate
when under attack.

per second and roughly .055 per second. (In each round a
COVERAGEnode will vary the number of remote notes it
sends to based on the current estimate of virulence and cov-
erage. The total number of messages will be the number of
rounds per second times the average number of remote nodes
it contacts.) Figure 5 shows the effect of increasing the max-
imum allowable rate that COVERAGE communicates with
remote nodes. We plot the high water mark of viral attacks
as a function of the virus infection rate for different maxi-
mum communication rates in COVERAGE. We can see that
a moderate increase in communication rates3 in COVER-
AGE allows it to stop the virus with a lower high water mark
than NRL — even with friends = 16. (Figure 8 shows that,
for highly active worms, the default configuration of COV-
ERAGE has communication costs comparable (within 20%)

3 The communication costs for COVERAGE scale with the viru-
lence and number of active viruses, and are thus more scalable than
NRL — still, we are investigating ways of conveying the necessary
polling information more efficiently during quiet periods.

to NRL with friends=8, and half the communication costs of
NRL with friends = 16.)

virus infection rate (infections per minute)
0 1 2 3 4 5 6 7 8 9 10

sc
an

ni
ng

 c
os

t

0

10

20

30

40

50

60

70

80

90

100

NRL03
friends=8

NRL03
friends=16

COVERAGE
thresh=5

COVERAGE
thresh=20

Fig. 6 Scanning activity (percentage of scanning nodes)vs.virus in-
fection rate when under attack.

% of malicious nodes
0 1 2 3 4

m
ax

. f
ra

ct
io

n
of

 s
ca

nn
in

g
ro

ut
er

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NRL03
friends=8
FP=20/min

NRL03
friends=8
FP=2/min

NRL03
friends=16
FP=20/min

NRL03
friends=16
FP=2/min

COVERAGE
thresh=5
FP=20/min

COVERAGE
thresh=20
FP=20/min

Fig. 7 Maximum fraction of false scanning routers with malicious
nodes and false alarms. We consider two kinds of malicious nodes:
one that generates 2 false positives per minute, and one thatgenerates
20 per minute.

Figures 6 and 7 show the fraction of nodes scanning
for a virus as a function of the virulence of the virus and
the fraction of malicious (or faulty) nodes. Malicious nodes
may be simply faulty, or may be controlled by an adversary
(e.g., infected nodes). Such nodes may then be spreading
false information, in an attempt to misdirect COVERAGE.
Possible goals include attempting to hide a virus outbreak,
or causing COVERAGE to waste resources. Alternatively,
(perhaps more commonly), the “malicious nodes” may sim-
ply be virus detection mechanisms that generate false posi-
tives. The figures for COVERAGE are more pessimistic than
for NRL, because in NRLeveryedge-router is scanning for
the virus (obviously impractical for a large set of viruses),
and the graphs report only those nodes that are activelyfil-
tering the virus. The COVERAGE plots report the fraction
of nodes that even scan for the virus at all. A smaller num-
ber (unreported here) are filtering for the virus. Nevertheless,

virus infection rate (infections per minute)
0 1 2 3 4 5 6 7 8 9 10

of

 m
es

sa
ge

s
pe

r
no

de
 p

er
 m

in
ut

e

0

10

20

30

40

50

60

70

80

90

100

NRL03
friends=16

NRL03
friends=8

COVERAGE
thresh=5

COVERAGE
thresh=20

Fig. 8 Communication costvs. virus infection rate when under at-
tack.

% of malicious nodes
0 1 2 3 4

of

 m
es

sa
ge

s
pe

r
no

de
 p

er
 m

in
ut

e

1

10

100

1000

10000

NRL03
friends=8
FP=20/min

NRL03
friends=8
FP=2/min

NRL03
friends=16
FP=20/min

NRL03
friends=16
FP=2/min

COVERAGE
thresh=5
FP=20/min

COVERAGE
thresh=20
FP=20/min

Fig. 9 The impact of malicious routers and false alarms on commu-
nication cost.

the pessimistic (“worst-case”) results for COVERAGE rep-
resent far lower scanning costs than the optimistic (“best-
case”) results for NRL03. (Even reducing the malice (i.e.
dropping the false positive rate by a factor of 10, down to 2-
per-minute) of the malicious nodes can still trigger filtering
in a large fraction of the NRL03 nodes). COVERAGE man-
ages to control the virus with a much smaller set of scanning
nodes, and it similarly detects false alarms with fewer nodes
triggered to scan or filter.

Figures 8 and 9 demonstrate that the communication costs
for COVERAGE in the face of false alarms is much lower
than for NRL03 — understandably because COVERAGE
correctly identifies the suspicious behavior asfalsealarms.
For slow-growth viruses, COVERAGE requires significantly
more communication to convince cooperating peers that a
virus attackis underway. However, this extra cost conveys a
benefit: COVERAGE detects slow-growth viruses long be-
fore NRL03 is able to. For fast worms, communication costs
are generally comparable — NRL requires considerably more
communication when Friends = 16, but it should be noted
that NRL03 controls the infection more rapidly than COV-
ERAGE in these cases. For COVERAGE to control fast worms
as effectively as NRL03 would require even higher commu-
nication costs.

The impact of false alarms on performance in detecting a
real attack is illustrated more clearly in Figure 10. The false
alarms and reports from malicious nodes confuse COVER-
AGE’s picture of the real attack. Each line in the graph rep-
resents a different level of virulence of a virus attack. We see
that, for each of the lines, the high water mark of the attack
grows almost linearly with the number of malicious nodes.
Roughly double the number of nodes are infected when 4%
of the nodes are malicious compared to a system without any
malicious nodes. Roughly twice, again, as many are infected
when 10% (more than double) the nodes are malicious. We
see that until the per-node infection rate approaches 5 infec-
tions per minute, the number of infected nodes is roughly
comparable to the number of malicious nodes. Each mali-
cious node, then, allows on average only a single additional

% of malicious nodes
0 2 4 6 8 10 12 14

m
ax

. f
ra

ct
io

n
of

 in
fe

ct
ed

 n
od

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 infection rate=10/min

infection rate=5/min

infection rate=2.5/min

infection rate=1.25/min

Fig. 10 Impact of false alarms and malicious nodes on detection per-
formance.

node to get infected by the real virus. Malicious nodes can
thus do very little to distract COVERAGE from fighting the
real attack. Even under more aggressive attacks, it takes a
large number of malicious nodes reporting false alarms in
order to distract COVERAGE in a significant manner.

5 Related Work

Computer viruses have been studied extensively over the last
several decades. Cohen was the first to define and describe
computer viruses in their present form. In early work [18], he
gave a theoretical basis for the spread of computer viruses.

The strong analogy between biological and computer vi-
ruses [28] led Kephartet al. [31] to investigate the propaga-
tion of computer viruses based on epidemiological models.
They extend the standard epidemiological model by plac-
ing it on a directed graph, and use a combination of analy-
sis and simulation to study its behavior. They conclude that
if the rate at which defense mechanisms detect and remove
viruses is sufficiently high, relative to the rate at which vi-
ruses spread, they can prevent widespread virus propagation.

Miretskiy et al. [46] describe a filesystem layer designed
specifically for efficient virus scanning and removal.

In [68], the authors describe the risk to the Internet due to
the ability of attackers to quickly gain control of vast num-
bers of hosts. They argue that controlling a million hosts can
have catastrophic results because of the potential to launch
distributed denial of service (DDoS) attacks and access any
sensitive information that is present on those hosts. Their
analysis shows how quickly attackers can compromise hosts
using “dumb” worms and how “better” worms can spread
even faster. They also envision a Cyber “Center for Disease
Control” (CCDC) for identifying outbreaks, rapidly analyz-
ing pathogens, fighting the infection, and proactively devis-
ing methods of detecting and resisting future attacks. Our
work focuses on the strategies of distribution and deploy-
ment of detectors and antidotes produced by such a CCDC.
In subsequent work [67], the same authors show how a worm
using pre-compiled lists of IP addresses known to be vulner-
able can infect one million hosts in half a second. Antonatos
et al. [5] propose using address randomization through ag-
gressive use of DHCP to make the hitlist information stale.

Chen and Ji show that reasonable estimates of the vul-
nerable application’s distribution across the network canbe
made dynamically by a worm, which can adjust its spread-
ing parameters to optimize infection rate [15]. Other work
has shown that worms can make detection of compromised
hosts harder by using simple, distributed but coordination-
free mechanisms that stop their spreading (turning infected
hosts into “sleeper agents”) once the epidemic has reached
its apex [42].

Leavitt [34] discusses the threat of worms aimed at mo-
bile phones, describing some of the first malware of this
type. Zhouet al. [87] discuss worms that spread over peer-
to-peer networks, exploiting the richer (and arbitrary) topolo-
gies to achieve accurate targetting and fast propagation. Man-
nan and van Oorschot [44] describe worms spreading over
instant-messaging networks, and propose user throttling and
disconnecting users with the largest contact lists as ways of
controling such epidemics.

The CodeRed worm [12] was analyzed extensively in
[89]. The authors of that work conclude that even though
epidemic models can be used to study the behavior of Inter-
net worms, they are not accurate enough because they cannot
capture some specific properties of the environment these
operate in: the effect of human countermeasures against worm
spreading (i.e., patching, filtering, disconnecting,etc.), and
the slowing down of the worm infection rate due to the worm’s
impact on Internet traffic and infrastructure. They derive a
new general Internet worm model calledtwo-factor worm
model, which they then validate in simulations that match
the observed CodeRed data available to them. Their analy-
sis seems to be supported by the data on CodeRed propaga-
tion by Mooreet al. [47] and by Songet al. [65] (the latter
distinguished between different worms that were active si-
multaneously). Similar analyses on the SQL “Slammer” (or
Sapphire) worm [13] and for Witty worm are available [64,
61]. More recent analyses [88] show that it is possible to

predict the overall vulnerable population size using Kalman
filters early in the propagation cycle of a worm, allowing for
detection of a fast-spreading worm when only 1% or 2% of
vulnerable computers on the network have been infected. [6]
shows that worms are surprisingly persistent, showing that
Blaster remains active on tens of thousands of PCs a year
after the initial outbreak. An analysis of Blaster and SoBig
network traces is given by Dubendorferet al. [25].

CodeRed inspired several countermeasure technologies,
such as La Brea [39], which attempts to slow the growth of
TCP-based worms by accepting connections and then block-
ing on them indefinitely, causing the corresponding worm
thread to block. Unfortunately, worms can avoid this mech-
anisms by probing and infecting asynchronously. Under the
connection-throttling approach [80,71], each host restricts
the rate at which connections may be initiated. If adopted
universally, such an approach would reduce the spreading
rate of a worm by up to an order of magnitude, without af-
fecting legitimate communications.

These systems are effective only against scanning worms
(not topological, or “hit-list” worms), and rely on the as-
sumption that most scans will result in non-connections. As
such, they are susceptible to false positives, either acciden-
tally (e.g.,when a host is joining a peer-to-peer network such
as Gnutella, or during a temporary network outage) or on
purpose (e.g.,a malicious web page with many links to im-
ages in random/not-used IP addresses). Furthermore, it may
be possible for several instances of a worm to collaborate in
providing the illusion of several successful connections,or
to use a list ofknown repliersto blind the anomaly detector.

Another algorithm for finding fast-spreading worms us-
ing 2-level filtering based on sampling from the set of dis-
tinct source-destination pairs is described by Venkataraman
et al.[72]. Whyteet al.[79] propose correlating DNS queries
and replies with outgoing connections from an enterprise
network to detect anomalous behavior. The main intuition is
that connections due to random-scanning (and, to a degree,
hit-list) worms will not be preceded by DNS transactions.
This approach can be used to detect other types of malicious
behavior, such as mass-mailing worms and network recon-
naissance.

Kim and Karp [32] describe an algorithm for correlating
packet payloads from different traffic flows, toward deriving
a worm signature, by using a simple portscan-based traffic
flow classifier to limit the amount of traffic that needs to be
considered. Earlybird [63] presents a more practical algo-
rithm for doing payload sifting, and correlates these with a
range of unique sources generating infections and destina-
tions being targeted. Another similar approach, aimed pri-
marily at DoS traffic, is described by Matrawyet al. [45].
However, polymorphic and metamorphic worms [69] remain
a challenge; Spinelis [66] shows that it is an NP-hard prob-
lem. Buttercup [53] attempts to detect polymorphic buffer
overflow attacks by identifying the ranges of the possible re-
turn memory addresses for existing buffer overflow vulner-
abilities. Unfortunately, this heuristic cannot be employed
against some of the more sophisticated overflow attack tech-

niques [54]. Furthermore, the false positive rate is very high,
ranging from0.01% to 1.13%. Vigna et al. [73] discuss a
method for testing detection signatures against mutationsof
known vulnerabilities to determine the quality of the detec-
tion model and mechanism. Polygraph [49] attempts to de-
tect polymorphic exploits by identifying common invariants
among the various attack instances, such as return addresses,
protocol framing and poor obfuscation. Wanget al.[76] pro-
pose applying such content-sifting techniques within clus-
ters of traffic, as created with header-based multi-dimensional
flow clustering. In many cases, this will improve the purity
of signature pools. Wang and Stolfo [78] use byte distri-
butions (1-gram frequencies) in payloads to identify traffic
that deviates from normal (based on training). While very
efficient, this technique is vulnerable to worms that know,
or can determine (e.g.,through passive monitoring), the ex-
pected normal distribution for a site and morph their attack
(“blend”) payload accordingly [27]. One approach to coun-
tering such mimicry efforts is to use probabilistic (random-
ized) payload modeling, preventing the adversary from know-
ing which traffic characteristics are being modeled [77]. Un-
fortunately, learning signatures without corroboration in an
adversarial environment (i.e.,when the attacker can provide
inputs of his choice to the learning engine) is a difficult prob-
lem, fraught with several risks [17,50].

Polychronakiset al. [55] use emulation to accurately de-
tect (potentially zero-day) polymorphic decryptors, albeit at
relatively low network speeds. Bruschiet al.[10] use control-
flow graph matching for detecting metamorphic viruses. Other
work attempts to automatically reconstruct a worm’s con-
trol flow from the captured attack payload [33,16]. Cran-
dall et al. [22] discuss the problem of generating quality
vulnerability-specific signatures via an empirical study of
the behavior of poly- and meta-morphic malcode. They out-
line the difficulty of identifying enough features of an ex-
ploit to generalize about a specific vulnerability. Focusing
on the behavior of malcode seems to be a more promising
approach. Some work has been done to generate anomaly-
based signatures for web servers [60].

HoneyStat [23] runs sacrificial services inside a virtual
machine, and monitors memory, disk, and network events to
detect abnormal behavior. For some classes of attacks (e.g.,
buffer overflows), this can produce highly accurate alerts
with relatively few false positives, and can detect zero-day
worms. Although the system only protects against scanning
worms, “active honeypot” techniques [85] may be used to
make it more difficult for an automated attacker to differen-
tiate between HoneyStats and real servers. FLIPS (Feedback
Learning IPS) [41] is a similar hybrid approach that incorpo-
rates a supervision framework in the presence of suspicious
traffic. Instruction-set randomization is used to isolate attack
vectors, which are used to train the anomaly detector. Liang
and Sekar [38] and Xuet al.[83] concurrently propose using
address space randomization to drive the detection of mem-
ory corruption vulnerabilities and create a signature to block
further exploits of this type. One danger with such systems
is that an attacker may be able to “train” them to consider

an otherwise innocent byte stream as an attack, by including
it in a series of real, mutating attacks [17]. This allows the
attacker to convert a vulnerability into a self-inflicted DoS
attack, if the system does not carefully analyze the suspi-
cious inputs.

Shadow honeypots [2] combine the best features found
in anomaly detectors and honeypots to create an applica-
tion aware network intrusion detection system. The anomaly
detectors differentiate between trusted and untrusted traffic;
trusted traffic is processed normally whilst untrusted traffic
is forwarded to a protected (“shadow”) instance of the ap-
plication. The system provides an elegant way to deal with
false positives, since all requests are processed albeit some
incur additional latency.

The key idea of the Rx system [57] is to checkpoint
the execution of a process in anticipation of system errors.
When an error is encountered, execution is rolled back and
replayed, but with the process’s environment changed in a
way that does not violate the API’s its code expects. This
procedure is repeated with different environment alterations
until execution proceeds past the detected error point. This
procedure is a clever way to avoid the semantically incorrect
fixes of failure oblivious computing and error virtualization.

The authors of [24] propose to enhance NIDS alerts us-
ing host-based IDS information. Nemean [86] is an archi-
tecture for generating semantics-aware signatures, whichare
signatures aware of protocol semantics (as opposed to generic
byte strings).

Rajabet al. [58] show that a distributed worm monitor
can detect non-uniform scanning worms two to four times
as fast as a centralized telescope, and that knowledge of the
vulnerability density of the population can further improve
detection time.

Reference [48] describes a design space of worm con-
tainment systems using three parameters: reaction time, con-
tainment strategy, and deployment scenario. The authors use
a combination of analytic modeling and simulation to de-
scribe how each of these design factors impacts the dynam-
ics of a worm epidemic. Their analysis suggests that there
are significant gaps in containment defense mechanisms that
can be employed, and that considerably more research (and
better coordination between ISPs and other entities) is needed.
Their analysis focuses exclusively on containment mecha-
nisms (i.e., network filtering), which they consider the only
viable defense mechanism. We believe that other types of
automated defense mechanisms will eventually be invented,
if only because containment mechanisms can severely im-
pact service availability.

Shield [75] is a mechanism for pushing to workstations
vulnerability-specific, application-aware filters expressed as
programs in a simple language. These programs roughly mir-
ror the state of the protected service, allowing for more intel-
ligent application of content filters, as opposed to simplistic
payload string matching.

Wanget al. [74] presented encouraging results for slow-
ing down the spread of viruses. The authors simulated the
propagation of virus infections through certain types of net-

works, coupled with partial immunization. Their findings
show that even with low levels of immunization, the infec-
tion slows down significantly. Those experiments looked at
a single virus. Our work investigates the detection of mul-
tiple viruses when there is noa priori knowledge of which
viruses may attack.

One approach for detecting new email viruses was de-
scribed by Bhattacharyyaet al. [7], which keeps track of
email attachments as they are exchanged between users via
a set of collaborating email servers that forward a subset of
their data to a central data warehouse and correlation server.
Only attachments with a high frequency of appearance are
deemed suspicious; furthermore, the email exchange pat-
terns among users are used to create models of normal be-
havior. Deviation from such behavior (e.g.,a user sending a
particular attachment to a large number of other users at the
same site, to which she has never sent email before) raises
an alarm. Information about dangerous attachments can be
sent to the email servers, which then filter these out. One in-
teresting result is that their system only need be deployed to
a small number of email servers, such that it can examine a
miniscule amount of email traffic (relative to all email ex-
changed on the Internet) — they claim 0.1% — before they
can determine virus outbreaks and be able to build good user
behavior models. A similar technique, tracking attachments
through the network, is described by Xiong [82]. An attempt
to apply behavior-based detection at the network layer for
worm detection is discussed by Elliset al.[26]. A high-level
architecture for building behavior profiles for hosts in the
absence of a persistent identity is described by Allmanet al.
[1].

Locastoet al. [40] propose coordinating the sharing of
IDS alerts for detecting worm attacks and portscanning across
administrative domains. A similar approach is presented by
Li et al. [37]. Parekhet al. [52] describe several methods for
privacy-preserving correlation of payloads across multiple
sensors to identify attacks. Malan and Smith correlate traces
of system calls (in terms of frequency distributions) across
different machines to detect abnormal behavior [43]. Chee-
tancheriet al.[14] experimentally investigate the parameters
of a cooperating alert sharing protocol coupled with distri-
buted sequential hypothesis testing to generate global alarms
about distributed attacks. Briesenmeister and Porras [9] use
formal methods and a model of collaborative worm defenses
to create propagation strategies that prevent such defenses
from reaching global consensus. They conclude that ran-
domized algorithms offer one approach toward foiling this
strategy, citing COVERAGE as a specific example.

Vigilante [20,21] proposes the concept of Self-Certifying
Alerts, which are exchanged between hosts as a result of a
newly detected attack. The recipient can verify the validity
of the alert and use an appropriate protection mechanism.
Vigilante supplies a mechanism to detect an exploited vul-
nerability (by analyzing the control flow path taken by ex-
ecuting injected code) and defines a data structure (Self-
Certifying Alert) for exchanging information about this dis-
covery. A major advantage of this vulnerability-specific ap-

proach is that Vigilante is exploit-agnostic and can be used
to defend against polymorphic worms. Porraset al. [56] ar-
gue that hybrid defenses using complementary techniques
(in their case, connection throttling at the domain gateway
and a peer-based coordination mechanism), can be much
more effective against worms.

Reference [70] proposes the use of “predator” viruses
that spread in much the same way malicious viruses do but
try to eliminate their designated “victim” viruses. The au-
thors show that predators can be made to perform their tasks
without flooding the network and consuming all available
resources. However, designers of predators would have to
find their own exploits (or safeguard exploits for future use),
which is not an attractive proposition. Furthermore, many re-
cent worms have been closing the hole they exploited, after
infecting a machine.

DOMINO [84] is an overlay system for cooperative in-
trusion detection. The system is organized in two layers,
with a small core of trusted nodes and a larger collection
of nodes connected to the core. The experimental analysis
demonstrates that a coordinated approach has the potential
of providing early warning for large-scale attacks while re-
ducing potential false alarms. The system described in [11]
similarly uses a DHT-based overlay network to automati-
cally correlate all relevant information.

There are two key differences between DOMINO-like
systems and COVERAGE. First, COVERAGE provides much
broader coverage in terms of collecting data from differ-
ent sites, while DOMINO is restricted to monitoring unused
address-space (which could be avoided by a smart attacker).
Second, COVERAGE considers all participants to be un-
trusted, avoiding the introduction of a trusted core overlay
as this kind of infrastructure could be easily attacked by a
worm (i.e., in the early stages of the infection).

Cookeet al. [19] describe an architecture for identifying
already compromised hosts that are part of a botnet. Their
approach uses monitoring of common communication chan-
nels used to disseminate control directives to bots (such as
IRC), as well as other traffic-based detection heuristics. An-
other IRC-based detection algorithm is described by Bink-
ley and Singh [8]. Ramachandranet al. [59] monitor the
DNS-blackhole reconnaissance, used by the bot controllers
to identify whether specific bots can send spam, for identi-
fying likely bots.

Reference [88] describes an architecture and models for
an early warning system, where the participating nodes and
routers propagate alarm reports towards a centralized sitefor
analysis. The question of how to respond to alerts is not ad-
dressed, and, similar to DOMINO, the use of a centralized
collection and analysis facility is weak against worms at-
tacking the early warning infrastructure.

The earliest work on cooperative response mechanisms
is that of Nojiri et al. [51]. They present a cooperative re-
sponse algorithm where edge-routers share attack reports
with a small set of other edge-routers. Edge-routers update
their alert level based on the shared attack reports and de-
cide whether to enable traffic filtering and blocking for a

particular attack. Analysis by Kannanet al. [30] has shown
that cooperative response algorithms can improve contain-
ment, even when a minority of firewalls cooperate(for ex-
ample, even when fewer than 10% of the firewalls cooper-
ate, a cooperative scheme can provide 95% containment —
even in the face of hundreds of malicious firewalls). That
work, however promising, does not directly relate to our
work. They are more concerned with a single fast virus —
the analysis focuses on a single virus (consequently under-
playing the cost of over-aggressive response), has a weaker
model of “malicious” firewalls (malicious firewalls merely
stay silent, but do not mislead through false alarms), and
does not explore the benefits of allowing more lattitude in
generating false alarms.

6 Conclusions and Future Plans

We have described an algorithm, named COVERAGE, that
allows cooperating agents to share information about the
spread of malicious virus in the Internet and use this infor-
mation for controlling the behavior of detection and filter-
ing resources. The algorithm operates without fully trusting
such information, so as to limit the damage of false alarms
injected by malicious or faulty nodes. Our solution is based
on the idea of carefully sampling of global state to validate
claims made by individual participants. Simulation results
confirm that this method is effective in limiting the damage
of virus attacks, and that it is robust against attacks by mali-
cious participants.

Our approach is motivated by the belief that for day-
zero virus detectors to be maximally effective, they need
the latitude to be paranoid and flag even mildly suspicious
behavior as a possible attack. Consequently, we focus on
how how well defensive systems can deal with frequent false
alarms, and whether they can sensibly allocate resources to
cover many simultaneous attacks. In this respect, COVER-
AGE performs well. When compared against a similar ap-
proach, the NRL03 algorithm [51], COVERAGE exhibits a
lower cost in terms of scanning for worms due to its resource-
aware approach. Furthermore, it has a lower communication
cost in the presence of false alarms and fast worms, and can
detect and react to slow-propagating worms better. However,
the price COVERAGE pays for screening for false alarms is
that it may not react as quickly to fast worms. The price it
pays for reacting to slow worms more quickly is higher com-
munication overhead than NRL03 for slow worms.

AcknowledgementsThis work was supported in part by
the National Science Foundation under grants CT CNS-06-
27473, ITR CNS-04-26623, DUE-04-17085, and CCR-03-
31584.

References

1. Allman, M., Blanton, E., Paxson, V.: An Architecture for Devel-
oping Behavioral History. In: Proceedings of the8th Information

Security Conference (ISC) (2005)
2. Anagnostakis, K., Sidiroglou, S., Akritidis, P., Xinidis, K.,

Markatos, E., Keromytis, A.D.: Detecting Targetted Attacks Us-
ing Shadow Honeypots. In: Proceedings of the14th USENIX
Security Symposium, pp. 129–144 (2005)

3. Anagnostakis, K.G., Greenwald, M.B., Ioannidis, S., Keromytis,
A.D., Li, D.: A Cooperative Immunization System for an Untrust-
ing Internet. In: Proceedings of the11th IEEE Internation Con-
ference on Networking (ICON), pp. 403–408 (2003)

4. Anagnostakis, K.G., Greenwald, M.B., Ioannidis, S., Miltchev, S.:
Open Packet Monitoring on FLAME: Safety, Performance and
Applications. In: Proceedings of the4th International Working
Conference on Active Networks (2002)

5. Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.:
Defending against Hitlist Worms using Network Address Space
Randomization. In: Proceedings of the ACM Workshop on Rapid
Malcode (WORM), pp. 30–40 (2005)

6. Bailey, M., Cooke, E., Jahanian, F., Watson, D., Nazario,J.: The
Blaster Worm: Then and Now. IEEE Security & Privacy3(4),
26–31 (2005)

7. Bhattacharyya, M., Schultz, M.G., Eskin, E., Hershkop, S., Stolfo,
S.J.: MET: An Experimental System for Malicious Email Track-
ing. In: Proceedings of the New Security Paradigms Workshop
(NSPW), pp. 1–12 (2002)

8. Binkley, J.R., Singh, S.: An Algorithm for Anomaly-basedBotnet
Detection. In: Proceedings of Steps to Reducing Unwanted Traffic
on the Internet Workshop (SRUTI), pp. 43–48 (2006)

9. Briesenmeister, L., Porras, P.A.: Automatically Deducing Propa-
gation Sequences that Circumvent a Collaborative Worm Defense.
In: Proceedings of the25th International Performance Comput-
ing and Communications Conference (Workshop on Malware),
pp. 587–592 (2006)

10. Bruschi, D., Martignoni, L., Monga, M.: Detecting Self-mutating
Malware Using Control-Flow Graph Matching. In: Proceedings
of the 3rd International Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), pp. 129–143
(2006)

11. Cai, M., Hwang, K., Kwok, Y.K., Song, S., Chen, Y.: Collabora-
tive Internet Worm Containment. IEEE Security & Privacy Mag-
azine3(3), 25–33 (2005)

12. CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting
Buffer Overflow in IIS Indexing Service DLL.
http://www.cert.org/advisories/CA-2001-19.html (2001)

13. Cert Advisory CA-2003-04: MS-SQL Server Worm.
http://www.cert.org/advisories/CA-2003-04.
html (2003)

14. Cheetancheri, S.G., Agosta, J.M., Dash, D.H., Levitt, K.N., Rowe,
J., Schooler, E.M.: A Distributed Host-based Worm Detection
System. In: Proceedings of the SIGCOMM Workshop on Large-
Scale Attack Defense (LSAD) (2006)

15. Chen, Z., Ji, C.: A Self-Learning Worm Using Importance Scan-
ning. In: Proceedings of the ACM Workshop on Rapid Malcode
(WORM), pp. 22–30 (2005)

16. Chinchani, R., Berg, E.V.D.: A Fast Static Analysis Approach to
Detect Exploit Code Inside Network Flows. In: Proceedings of
the8th International Symposium on Recent Advances in Intrusion
Detection (RAID), pp. 284–304 (2005)

17. Chung, S.P., Mok, A.K.: Allerge Attack Against Automatic Sig-
nature Generation. In: Proceedings of the9th International Sym-
posium on Recent Advances in Intrusion Detection (RAID), pp.
61–80 (2006)

18. Cohen, F.: Computer Viruses: Theory and Practice. Computers &
Security6, 22–35 (1987)

19. Cooke, E., Jahanian, F., McPherson, D.: The Zombie Roundup:
Understanding, Detecting, and Disrupting Botnets. In: Proceed-
ings of the8th Information Security Conference (ISC) (2005)

20. Costa, M., Crowcroft, J., Castro, M., Rowstron, A.: Can We Con-
tain Internet Worms? In: Proceedings of the3rd Workshop on Hot
Topics in Networks (HotNets) (2004)

21. Costa, M., Crowcroft, J., Castro, M., Rowstron, A.: Vigilante:
End-to-End Containment of Internet Worms. In: Proceedingsof
the Symposium on Systems and Operating Systems Principles
(SOSP) (2005)

22. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On Deriving Un-
known Vulnerabilities from Zero-Day Polymorphic and Metamor-
phic Worm Exploits. In: Proceedings of the12th ACM Confer-
ence on Computer and Communications Security (CCS), pp. 235–
248 (2005)

23. Dagon, D., Qin, X., Gu, G., Lee, W., Grizzard, J., Levine,J.,
Owen, H.: HoneyStat: Local Worm Detection Using Honepots.
In: Proceedings of the7th International Symposium on Recent
Advances in Intrusion Detection (RAID), pp. 39–58 (2004)

24. Dreger, H., Kreibich, C., Paxson, V., Sommer, R.: Enhancing the
Accuracy of Network-based Intrusion Detection with Host-based
Context. In: Proceedings of the Conference on Detection of Intru-
sions and Malware & Vulnerability Assessment (DIMVA) (2005)

25. Dubendorfer, T., Wagner, A., Hossmann, T., Plattner, B.: Flow-
Level Traffic Analysis of the Blaster and Sobig Worm Outbreaks
in an Internet Backbone. In: Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA) (2005)

26. Ellis, D.R., Aiken, J.G., Attwood, K.S., Tenaglia, S.D.: A Behav-
ioral Approach to Worm Detection. In: Proceedings of the ACM
Workshop on Rapid Malcode (WORM), pp. 43–53 (2004)

27. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Poly-
morphic Blending Attacks. In: Proceedings of the15th USENIX
Security Symposium, pp. 241–256 (2006)

28. Goel, S., Bush, S.F.: Biological Models of Security for Virus Prop-
agation in Computer Networks. USENIX;login: 29(6), 49–56
(2004)

29. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast Portscan
Detection Using Sequential Hypothesis Testing. In: Proceedins of
the IEEE Symposium on Security and Privacy (2004)

30. Kannan, J., Subramanian, L., Stoica, I., Katz, R.H.: Analyzing Co-
operative Containment of Fast Scanning Worms. In: Proceedings
of Steps to Reducing Unwanted Traffic on the Internet Workshop
(SRUTI), pp. 17–23 (2005)

31. Kephart, J.O.: A Biologically Inspired Immune System for Com-
puters. In: Artificial Life IV: Proceedings of the Fourth Interna-
tional Workshop on the Synthesis and Simulation of Living Sys-
tems, pp. 130–139. MIT Press (1994)

32. Kim, H., Karp, B.: Autograph: Toward Automated, Distributed
Worm Signature Detection. In: Proceedings of the13th USENIX
Security Symposium, pp. 271–286 (2004)

33. Krugel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Poly-
morphic Worm Detection Using Structural Information of Exe-
cutables. In: Proceedings of the8th International Symposium
on Recent Advances in Intrusion Detection (RAID), pp. 207–226
(2005)

34. Leavitt, N.: Mobile Phones: The Next Frontier for Hackers? IEEE
Computer38(4) (2005)

35. Levine, J.G., Grizzard, J.B., Owen, H.L.: Using Honeynets to Pro-
tect Large Enterprise Networks. IEEE Security & Privacy2(6),
73–75 (2004)

36. Levy, E.: Approaching Zero. IEEE Security & Privacy2(4), 65–66
(2004)

37. Li, Z., Chen, Y., Beach, A.: Towards Scalable and Robust Di-
stributed Intrusion Alert Fusion with Good Load Balancing.In:
Proceedings of the1st Workshop on Large-Scale Attack Defence
(LSAD), pp. 115–122 (2006)

38. Liang, Z., Sekar, R.: Fast and Automated Generation of Attack
Signatures: A Basis for Building Self-Protecting Servers.In: Pro-
ceedings of the12th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 213–222 (2005)

39. Liston, T.: Welcome To My Tarpit: The Tactical and Strategic
Use of LaBrea.http://www.threenorth.com/LaBrea/
LaBrea.txt (2001)

40. Locasto, M., Parekh, J., Stolfo, S., Keromytis, A., Malkin, T.,
Misra, V.: Collaborative Distributed Intrusion Detection. Tech.
Rep. CUCS-012-04, Columbia University Department of Com-
puter Science (2004)

41. Locasto, M., Wang, K., Keromytis, A., Stolfo, S.: FLIPS:Hybrid
Adaptive Intrusion Prevention. In: Proceedings of the8th Sympo-
sium on Recent Advances in Intrusion Detection (RAID) (2005)

42. Ma, J., Voelker, G.., Savage, S.: Self-Stopping Worms. In: Pro-
ceedings of the ACM Workshop on Rapid Malcode (WORM), pp.
12–21 (2005)

43. Malan, D.J., Smith, M.D.: Host-Based Detection of Worms
through Peer-to-Peer Cooperation. In: Proceedings of the ACM
Workshop on Rapid Malcode (WORM), pp. 72–80 (2005)

44. Mannan, M., van Oorschot, P.C.: On Instant Messaging Worms,
Analysis and Countermeasures. In: Proceedings of the ACM
Workshop on Rapid Malcode (WORM), pp. 2–11 (2005)

45. Matrawy, A., van Oorschot, P.C., Somayaji, A.: Mitigating Net-
work Denial-of-Service Through Diversity-Based Traffic Man-
agement. In: Proceedings of the3rd International Conference on
Applied Cryptography and Network Security (ACNS), pp. 104–
121 (2005)

46. Miretskiy, Y., Das, A., Wright, C.P., Zadok, E.: Avfs: AnOn-
Access Anti-Virus File System. In: Proceedings of the13th

USENIX Security Symposium, pp. 73–88 (2004)
47. Moore, D., Shanning, C., Claffy, K.: Code-Red: a case study on

the spread and victims of an Internet worm. In: Proceedings of the
2nd Internet Measurement Workshop, pp. 273–284 (2002)

48. Moore, D., Shannon, C., Voelker, G., Savage, S.: Internet Quar-
antine: Requirements for Containing Self-Propagating Code. In:
Proceedings of22nd Annual Joint Conference of IEEE Computer
and Communication societies (INFOCOM) (2003)

49. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically Gen-
erating Signatures for Polymorphic Worms. In: Proceedingsof the
IEEE Security & Privacy Symposium, pp. 226–241 (2005)

50. Newsome, J., Karp, B., Song, D.: Paragraph: Thwarting Signa-
ture Learning by Training Maliciously. In: Proceedings of the9th

International Symposium on Recent Advances in Intrusion Detec-
tion (RAID), pp. 81–105 (2006)

51. Nojiri, D., Rowe, J., Levitt, K.: Cooperative response strategies for
large scale attack mitigation. In: Proceedings of the3rd DARPA
Information Survivability Conference and Exposition (2003)

52. Parekh, J.J., Wang, K., Stolfo, S.J.: Privacy-Preserving Payload-
Based Correlation for Accurate Malicious Traffic Detection. In:
Proceedings of the1st Workshop on Large-Scale Attack Defence
(LSAD), pp. 99–106 (2006)

53. Pasupulati, A., Coit, J., Levitt, K., Wu, S., Li, S., Kuo,J., Fan, K.:
Buttercup: On Network-based Detection of Polymorphic Buffer
Overflow Vulnerabilities. In: Proceedings of the Network Opera-
tions and Management Symposium (NOMS), pp. 235–248, vol. 1
(2004)

54. Pincus, J., Baker, B.: Beyond Stack Smashing: Recent Advances
in Exploiting Buffer Overflows. IEEE Security & Privacy2(4),
20–27 (2004)

55. Polychronakis, M., Anagnostakis, K.G., Markatos, E.: Network-
Level Polymorphic Shellcode Detection Using Emulation. In: Pro-
ceedings of the3rd International Conference on Detection of In-
trusions and Malware & Vulnerability Assessment (DIMVA), pp.
54–73 (2006)

56. Porras, P., Briesemeister, L., Levitt, K., Rowe, J., Ting, Y.C.A.: A
Hybrid Quarantine Defense. In: Proceedings of the ACM Work-
shop on Rapid Malcode (WORM), pp. 73–82 (2004)

57. Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: Treating Bugs as
Allergies – A Safe Method to Survive Software Failures. In: Pro-
ceedings of the Symposium on Systems and Operating Systems
Principles (SOSP) (2005)

58. Rajab, M.A., Monrose, F., Terzis, A.: On the Effectiveness of Di-
stributed Worm Monitoring. In: Proceedings of the14th USENIX
Security Symposium, pp. 225–237 (2005)

59. Ramachandran, A., Feamster, N., Dagon, D.: Revealing Botnet
Membership Using DNSBL Counter-Intelligence. In: Proceedings
of Steps to Reducing Unwanted Traffic on the Internet Workshop
(SRUTI), pp. 49–54 (2006)

60. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.A.: Using
Generalization and Characterization Techniques in the Anomaly-
based Detection of Web Attacks. In: Proceedings of the13th

Symposium on Network and Distributed System Security (NDSS)
(2006)

61. Shannon, C., Moore, D.: The Spread of the Witty Worm. IEEE
Security & Privacy2(4), 46–50 (2004)

62. Sidiroglou, S., Keromytis, A.D.: A Network Worm VaccineAr-
chitecture. In: Proceedings of the IEEE Workshop on Enterprise
Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE), Workshop on Enterprise Security, pp. 220–225 (2003)

63. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm
fingerprinting. In: Proceedings of the6th Symposium on Operat-
ing Systems Design & Implementation (OSDI) (2004)

64. The Spread of the Sapphire/Slammer Worm.
http://www.silicondefense.com/research/worms/slammer.php
(2003)

65. Song, D., Malan, R., Stone, R.: A Snapshot of Global Internet
Worm Activity. Tech. rep., Arbor Networks (2001)

66. Spinellis, D.: Reliable identification of bounded-length vi-
ruses is NP-complete. IEEE Transactions on Information
Theory 49(1), 280–284 (2003). DOI doi:10.1109/TIT.2002.
806137. URLhttp://www.dmst.aueb.gr/dds/pubs/
jrnl/2002-ieeetit-npvirus/html/npvirus.html

67. Staniford, S., Moore, D., Paxson, V., Weaver, N.: The TopSpeed
of Flash Worms. In: Proceedings of the ACM Workshop on Rapid
Malcode (WORM), pp. 33–42 (2004)

68. Staniford, S., Paxson, V., Weaver, N.: How to Own the Internet
in Your Spare Time. In: Proceedings of the USENIX Security
Symposium, pp. 149–167 (2002)

69. Ször, P., Ferrie, P.: Hunting for Metamorphic. Tech. rep., Syman-
tec Corporation (2003)

70. Toyoizumi, H., Kara, A.: Predators: Good Will Mobile Codes
Combat against Computer Viruses. In: Proceedings of the New
Security Paradigms Workshop (NSPW), pp. 13–21 (2002)

71. Twycross, J., Williamson, M.M.: Implementing and testing a virus
throttle. In: Proceedings of the 12th USENIX Security Sympo-
sium, pp. 285–294 (2003)

72. Venkataraman, S., Song, D., Gibbons, P.B., Blum, A.: New
Streaming Algorithms for Fast Detection of Superspreaders. In:
Proceedings of the12th ISOC Symposium on Network and Di-
stributed Systems Security (SNDSS), pp. 149–166 (2005)

73. Vigna, G., Robertson, W., Balzarotti, D.: Testing Network-based
Intrusion Detection Signatures Using Mutant Exploits. In:Pro-
ceedings of the11th ACM Conference on Computer and Com-
munications Security (CCS), pp. 21–30 (2004)

74. Wang, C., Knight, J.C., Elder, M.C.: On Computer Viral Infec-
tion and the Effect of Immunization. In: Proceedings of the 16th
Annual Computer Security Applications Conference, pp. 246–256
(2000)

75. Wang, H.J., Guo, C., Simon, D.R., Zugenmaier, A.: Shield:
Vulnerability-Driven Network Filters for Preventing Known Vul-
nerability Exploits. In: Proceedings of the ACM SIGCOMM Con-
ference, pp. 193–204 (2004)

76. Wang, J., Hamadeh, I., Kesidis, G., Miller, D.J.: Polymorphic
Worm Detection and Defense: System Design, Experimental
Methodology, and Data Resources. In: Proceedings of the1st

Workshop on Large-Scale Attack Defence (LSAD), pp. 169–176
(2006)

77. Wang, K., Parekh, J., Stolfo, S.J.: ANAGRAM: A Content-Based
Anomaly Detector Resistant to Mimicry Attack. In: Proceedings
of the9th International Symposium on Recent Advances in Intru-
sion Detection (RAID), pp. 226–248 (2006)

78. Wang, K., Stolfo, S.J.: Anomalous Payload-based Network Intru-
sion Detection. In: Proceedings of the7th International Sym-
posium on Recent Advances in Intrusion Detection (RAID), pp.
201–222 (2004)

79. Whyte, D., Kranakis, E., van Oorschot, P.: DNS-based Detection
of Scanning Worms in an Enterprise Network. In: Proceedingsof
the12th ISOC Symposium on Network and Distributed Systems
Security (SNDSS), pp. 181–195 (2005)

80. Williamson, M.: Throttling Viruses: Restricting Propagation to
Defeat Malicious Mobile Code. Tech. Rep. HPL-2002-172, HP
Laboratories Bristol (2002)

81. Wu, J., Vangala, S., Gao, L., Kwiat, K.: An Effective Architec-
ture and Algorithm for Detecting Worms with Various Scan Tech-
niques. In: Proceedings of the Network and Distributed System
Security (NDSS) Symposium, pp. 143–156 (2004)

82. Xiong, J.: ACT: Attachment Chain Tracing Scheme for Email
Virus Detection and Control. In: Proceedings of the ACM Work-
shop on Rapid Malcode (WORM), pp. 11–22 (2004)

83. Xu, J., Ning, P., Kil, C., Zhai, Y., Bookholt, C.: Automatic Di-
agnosis and Response to Memory Corruption Vulnerabilities. In:
Proceedings of the12th ACM Conference on Computer and Com-
munications Security (CCS), pp. 222–234 (2005)

84. Yegneswaran, V., Barford, P., Jha, S.: Global IntrusionDetec-
tion in the DOMINO Overlay System. In: Proceedings of NDSS
(2004)

85. Yegneswaran, V., Barford, P., Plonka, D.: On the Design and Use
of Internet Sinks for Network Abuse Monitoring. In: Proceedings
of the7th International Symposium on Recent Advances in Intru-
sion Detection (RAID), pp. 146–165 (2004)

86. Yegneswaran, V., Giffin, J.T., Barford, P., Jha, S.: An Architecture
for Generating Semantics-Aware Signatures. In: Proceedings of
the14th USENIX Security Symposium, pp. 97–112 (2005)

87. Zhou, L., Zhang, L., Sherry, F.M., Immorlica, N., Costa,M.,
Chien, S.: A First Look at Peer-to-Peer Worms: Threats and De-
fenses. In: Proceedings of the4th International Workshop on
Peer-To-Peer Systems (IPTPT) (2005)

88. Zou, C.C., Gao, L., Gong, W., Towsley, D.: Monitoring andEarly
Warning for Internet Worms. In: Proceedings of the10th ACM
International Conference on Computer and Communications Se-
curity (CCS), pp. 190–199 (2003)

89. Zou, C.C., Gong, W., Towsley, D.: Code Red Worm Propagation
Modeling and Analysis. In: Proceedings of the 9th ACM Con-
ference on Computer and Communications Security, pp. 138–147
(2002)

Author Biographies

Dr. Kostas Anagnostakis is a Principal Investigator on soft-
ware and systems security at the Institute for Infocomm Re-
search (I2R) in Singapore. He holds a Ph.D. degree in Com-
puter and Information Science from the University of Penn-
sylvania, USA, a Master’s degree from the same school and
a B.Sc. in Computer Science from the University of Crete.
His main areas of interest are in distributed systems security,
networking, performance evaluation, and in problems that
lie at the intersection between computer science and eco-
nomics.

Michael Greenwald is a Research Computer Scientist at
Alcatel-Lucent Bell Laboratories and an Adjunct Assistant
Professor of Computer and Information Science at the Uni-
versity of Pennsylvania. Michael received his PhD degree in
Computer Science from Stanford University, and his Bach-
elors (in Mathematics) from MIT. One of his research inter-
ests is in techniques that enhance cooperation, coordination,
adaptability, and availability in distributed systems.

Sotiris Ioannidis received his Ph.D. in Computer Science
from the University of Pennsylvania, Philadelphia, PA, in

2005. He received his M.S. in Computer Science from the
University of Rochester, NY, in 1997 and his B.S. in Math-
ematics from the University of Crete, Heraclion, Greece, in
1996. Currently he is a Research Scholar in the Computer
Science Department of Stevens Institute of Technology. His
research interests are in host and network security, operating
and distributed systems, and security policies in large sys-
tems.

Angelos Keromytis is an Associate Professor of Com-
puter Science at Columbia University. He received his Mas-
ters and PhD from the University of Pennsylvania, and his
Bachelors (all in Computer Science) from the University
of Crete, in Greece. His research interests include network
and system survivability, authorization and access control,
and large-scale systems security. A full CV can be found at
http://www.cs.columbia.edu/∼angelos/cv.html

