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Abstract Cooperative defensive systems communicate andntroduction
cooperate in theiresponsdo worm attacks, but determine

the presence of a worm attack solely on local informatiofhcreasing innovation among attackers, the increasingpen
Distributedworm detection and immunization systems tracation of broadband Internet service and persistent vulne
suspicious behavior at multiple cooperating nodes to detgpjijities in host software systems have led to new classes
minewhethera worm attack is in progress. Earlier work hagf rapid and scalable mechanized attacks on the informa-
shown that cooperative systems can respond quickly to d&yn infrastructure. Leveling the playing field requiresisc
zero worms, while distributed detection systems allow dgple, automated responses to malicious code that canmeact i
tectors to be more conservativiee( paranoid) about poten- the short propagation windows evident with network worms
tial attacks because they manage false alarms efficiently. sch as Slammer [13]. Traditional approaches have relied on
In this paper we present our investigation into the comsignatures, manual containment and quaraning ,(48]),
plex tradeoffs in such systems between communication,coatsl while tools are improving, reliance on identifying sig-
computation overhead, accuracy of the local tests, estinmatures and other improvements in detection processes is by
tion of viral virulence, and the fraction of the network initself insufficient. What is needed to complete the defemsiv
fected before the attack crests. We evaluate the effectiteehnology portfolio is a scalable, distributed, adaptize
ness of different system configurations in various simulaponse mechanism, based on cooperative behavior amongst
tions. Our experiments show that distributed algorithnes aa set of responding nodes. Since naive cooperative bekavio
better able to balance effectiveness against worms and might introduce new risks, including fragility in the facé o
ruses with reduced cost in computation and communicatipaor or maliciously-generated information, particuldent
when faced with false alarms. Furthermore, cooperative, tion must be paid to robustness in the cooperative strategy.
stributed systems seem more robust against maliciougparti The problem of detecting, quarantining and recovering

ipants in the immunization system than earlier cooperatifi@m zero-day virusésis made easier if local detectors are

but non-distributed approaches.
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allowed more room for error. If we err on the side of allow-
ing false alarms, then detectors can be cautious (pargnoid!
and conservatively flag anything that looks suspicious, and
depend on cooperative corroboration to determine whether
the attack is real or not. For this strategy to be effective,
though, requires the entire anti-virus system to handkefal
alarms quickly and cheaply and still respond rapidly to real
virus attacks.

Handling individual false alarms is not sufficient, how-
ever; by allowing more false alarms we increase the prob-
ability that the system will be called upon to manage mul-
tiple potentialviral attacks taking place simultaneously. Si-
multaneous attacks complicate the anti-virus response be-

1 In this paper we use the term “virus”, in an extremely broaghma
ner, to refer to any epidemic-like attack communicated dkernet-
work. We use this term, regardless of whether the virus iscinea
worm that attacks a system even without the unwitting ineotent of
a legitimate user or a passive virus, that is embedded in andewt or
email, that requires (unintentional) user assistance ¢orbe active.



cause increasing the defense against one virus involvesasi-well as their resistance to malicious nodes that spread
ther decreasing the defense against another virus or inauisinformation. Here, we offer refined algorithms over the
ring higher costs (if the system can afford any further antarliercoveRAGE work, and, using a more detailed model
virus costs). Simultaneous attacks may occur because ef g begin to examine the three-way tradeoff between com-
tiple zero-day viruses [36], or because early-stage false-munication costs, computation overhead, and the percent-
arms are not yet distinguishable from real virus attacks, age of the network that gets infected before the reaction
because of the resurgence of old viruses. Old viruses édre stiechanism manages to limit the virus propagation. When
potentially virulent, since a measurable fraction of hakis evaluating alternative approaches in this model, we deter-
not upgrade or patch to eliminate security bugs, as the perine that COVERAGE always has much lower scanning
sistence of Code Red and other worms has demonstrated.oats; whether in the cases of slowly-propagating viruses,
good analysis of the persistence of Blaster is given in [@ast worms, or in the presence of malicious nodes inject-
which shows that tens of thousands of instances of the viiing false alarmscOvERAGEhas significantly lower commu-
remain active a full year after the initial outbreak. More-sunication cost when dealing with false alarms. Furthermore,
prisingly, 73%—85% of infected class-C subnets were not dée distributed approaches (batbveErRAGEand our refined
tected as infected during the first Blaster outbreak. version) can trade off higher communication cost to to de-
These observations expose several significant problet@gt and react to slow-propagating viruses more quickly tha
that must be dealt with. Any node that responds to a potentia@ purely cooperative NRLO3. Both NRLO3 and thev-
virus carries a cost: a node has finite resources and thereféRAGE variants can use increased communication costs to
can only actively engage a limited number of viruses atRgrform better against fast worms, but the distributed ap-
time. Deciding to counter one virus entails ignoring som@roaches incur much higher communication costs than the
other virus. In the absence of cost, the best response to al§BL03 system. We believe this to be an unavoidable conse-
tential virus attack is to flood the network as rapidly as pos$luence of their robustness against false alarms. Independe
ble with information to detect and counter the virus, cagsinvork [9] has pointed out that the randomized approach of
as many cooperating agents to respond at once. The nfafdVERAGE makes it difficult to devise virus propagation
question is simply whether the response is quick enoughsi$ategies that exploit the particular topology and exgean
stifle the virus. In the presence of a cost model, however, W@dels of other collaborative virus defenses to hide their
still need to respond quickly, but no more quickly than nespread.
essary. A false alarm, whether malicious or unintended, can
trigger a DoS attack by the response mechanism itself.

In this paper, we investigate tradeoffs in global, distribl2 System Model
ted response mechanisms that must respond quickly to real
viruses and do not over-react to a high rate of false alarnis this section, we describe our model of how viruses, swi-
These systems should be efficient in terms of bandwidithes/routers, hosts and our detection mechanism behave.
and global computation. Moreover, the response mechanism

must b_e robust against malicious agents spreading false%de"ng VirusesWe use a fairly simple model to describe
formation and be able to manage its resources even WhgB pehavior of potential attackers (viruses) that we atersi
many distinct viruses are active at any time. This appreschy our work. After infecting a node, a virus attempts to in-
orthogonal to, and can augment, any proposals for the detges other nodes: it may attempt to only infect a (small) fixed
tion of and recovery from zero-day viruses. It has the addgflmper of other nodes, or exhibit a greedier behavior. For
advantage of also performing well in the face of false alarmgg, purposes, the distinction between the two types is sim-
resulting from malicious behavior or failed detectors. ply in the probability of detection of a probe or attack by a
We focus here on an algorithm called COVERAGE (fofletector. A virus may exhibit high locality of infectiond.,
COoperative Virus Response AlGorithm), whose core idegfobing and attacking nodes based on network-topological
were originally introduced in [3]. This algorithm takesant criteria, such as “adjacent” IP addresses), or could use-a ra
consideration shared information about the observed fategem (or seemingly random) targeting mechanism,,using
infection for each virus, verifying that new reports are eon |arge hit-list, or some pseudo-random sequence for gickin
patible with a node’s own empirical observations, and dehe next address to attack. We expect that viruses thatiexhib
termines (probabilistically) which viruses to respondWe high locality are more difficult to detect using an Internet-
evaluate its effectiveness through large-scale simulatMe wide distributed detection mechanism, but easier to do so on
discuss also, although to a lesser extent, tradeoffs initesima local basis. We completely characterize a virus by the rate
cooperative (but non-distributed) approach, called NRLOgt which it attempts to infect other nodes and by the fraction
described in [51], which differentiates between slow amstifaof local attempts it makes. All attacks on susceptible nodes
spreading viruses. are successful, and in our simulation a virus never attempts
In our previous work, we determined that our basic cde attack a non-existent node. As a result, our simulated vi-
operative and distributed approach was effective, but oryses are more virulent than equally aggressive virusdeein t
in the sense of measuring the ability of the two approaches=al world. We make no assumptions about the infection vec-
to detect and respond to viruses of different infectiongatdor: although perhaps the more “interesting” cases aresthos




where the virus is able to automatically subvert a machinemechanism for detecting viruses is through use of properly
application, our model does not preclude human interactimstrumented honeypots or virtual machines, as is done in
in the infection process(g.,mail viruses as attachments). [62,35], or through payload analysis [32,63] that can yield

Furthermore, we only assume that, once detected, tharpotential virus signature. Finally, anomaly detectiarhte
is some detection and/or response “module” associated wiihjues, such as those proposed in [7], can indicate the pres-
each virus — we do not investigate its details: the mechence of packet payloads that do not conform to the typical
nism may be as simple as a content filter. There is some cosntents of packets for a particular serviegy(,binary con-
(in terms of CPU, memory, impact on legitimate communient containing a buffer overflow payload uploaded to a web
cations,etc) associated with each of these modules, whicerver).
requires the prioritization of the various threats (vig)s@ These mechanisms identify different points in the zero-
terms of allocating resources for detection and response. day virus detection space, trading off between the likeltho

of false positives, the time needed to collect enough edielen

. ' before raising an alarm, and the expense of testing whether
Detection of Zero Day Worms and Virusééthough our al- n alarm should go off,

gorithm is orthogonal to and agnostic about the method(as) These observations are taken into consideration by the

W.'th wh|ch new (zero Qay) viruses are detecteq, we brief OVERAGE algorithm to balance the cost of detectiem(,
discuss different techniques and how they may interact wi - :
coordination, scanning as well as collateral damage thgt ma

COVERAGE. A zero-_day virus detector consists of roughlge caused by false alarms) and the ability to respond effec-
three components. First, we must detect anomalous beh[a -

ior. The behavior may range from specific activitiesg(, IVely to virus attacks.
port scans, system/application crashes, incorrect padswo ) ] o
attempts) to statistical changesd.,increased network traf- Network TopologyOur simulation topology is dictated by
fic, slow response time, variation in system call signaturedr assumptions about the vulnerabilities and capatsilife
number of TCP connections in TIME-WAIT). Second, th@&etwork nodes with respect to virus attacks. We assume that,
transmission vector must be identified (finding a set of nés & general rule, routers/switches are less likely to be in-
work packets whose arrival seems to herald the onset of fRgted by a virus, and thus that only hosts are susceptible to
anomalous behavior). Third, a detectable “signature” ef tinfection. _
traffic must be generated so that hosts can scan for, and fil- Here, we assume that the only nodes in our system ca-
ter out, the potentially offending traffic. It is importart t Pable of scanning packet sequences for potential viruses ar
note that a “signature” in our model is not necessarily sirfnd-hosts or last-hop routers. While considerable adganta
ply a pattern of bits to match inside a packet — it can be affn be gained by exploiting the great levels of traffic aggre-
profile that detects anomalous behavior, ranging from pack&tion seen in routers closer to the network core, it is un-
inspection to |Onger term mu|ti_packet behavior. IIkerthat such nO.deS Ca-n aCtlvely scan for viruses without
Perhaps the most promising approach is that of monit§@nificantly affecting their performance. .
ing the number of packets aimed at the unused portion of Thus, our model of the network topology consists en-
an organization’s address space, as was suggested inf20{irely of a collection ofsubnetsLANs) containing a num-
that work, it was shown that with as few as 4 such probe2er of host; Each subnet connects to the global network
it is possible to infer the existence of a new virus aimed Htrough a singleouter. All routers are connected together
a previously untargeted service/port. A similar approachin @ single cloud where each router can address and forward
proposed in [81], where sudden changes in the traffic staifgickets to each other directly. End-hosts can only see their
tics maintained on a per source IP address and per dei@ffic, while routers can inspect all traffic to or from their
nation port number indicate a high-visibility event, sugh g@ssociated LAN. Itis likely that some organizations camtai
a scanning worm. Similar works have proposed measurififjiltiple subnets that frequently communicate among them-
the entropy of traffic €.g.,in terms of distinct source IP selves. Therefor_e we collect tog_ether several s_ubn_etsaunto
addresses seen) as an indication of unusual activity. Thég&hain A domain captures particular communication pat-
mechanisms act as early warnings, alerting administraté®&ns but has no structural impact on the topology for simu-
and perhaps automatically reconfiguring a firewall to assundion.
a more defensive posture. However, without corroboration
with outside sourcese(g.,through COVERAGE) they can State of NodedVe assume that the distribution of COVER-
be manipulated by an attacker to generate false positive A&E agents is uniform across the population of nodes; for
ports. It is also worth noting that these mechanisms can omlyample, all nodes may be running an agent, in the same way
give a rough fingerprint of a new virus’s activity, such as thiat a large number of PCs run some kind of anti-virus soft-
targeted service/port—thus, they can be fairly accuradetabware these days. A node in our environment can be in one of
the presence of an attack, but inaccurate about mapping Speee states with respect to a virgsisceptibleprotected or
cific packets to the attack, as would be the case with a virimsmune A susceptible node can be either infected or unin-
targeting a protocol such as HTTP. fected. Susceptible nodes will become infected if subgbcte
A second, more accurate but also more expensive (coto-an attack. Protected nodes may be infected or uninfected,
putationally, as well as in terms of necessary infrastm@)tu but only if the detection module does not have the ability to



detect and disinfect an infected machine. A protected nosh@dels the virulence of viruses and ranks them in virulence
will not become infected as long as the protection mecharder. With probability proportional to their virulenceQ®-
nism (typically, a module that screens packets or email) EBRAGE decides in rank order whether to actively scan for
in place. An immune node does not have the vulnerabilitiie virus or not. COVERAGE stops scanning for more vi-
exploited by the virus. ruses once the scanning schedule consumes the entire scan-
ning budget available. Second, each COVERAGE agent ex-
OperationsA COVERAGE agent can monitor traffic and,changes information about the state of a virus with other co-
for each virus, it can either ignore the virus or perform ongperating agents in order to construct a model of the virus
or more of the following operations: collect and exchanggnd determine whether incoming reports are empirically con
information about a virusscanfor the presence of a virussistent with the observed state of the network. Third, COV-
(actually, scan for the presence of patterns of network tr&fRAGE agents determine their polling rate to maximize the
fic used as a “signature” for that virus), filter viruses (by probability of seeing enough viruses to confirm the current
dropping one or more packets that are part of a virus sigcal estimate of the virus state, while reducing the pribab
nature). We assume that there is a cost inherent in checkifgahat communication will add no new knowledge to either

for virus signatures. That is, a node cannot be actively “@i the participants. We now describe the algorithm in more
the lookout” for an arbitrary number of viruses without addetail.

versely affecting its performance. (Some experimental-mea
surements of such real-world limits are given in [4]). Edge- ]
routers are more likely to be constrained by high packdtl COVERAGE algorithm
rates, and therefore limited in the amount of scanning they o
can perform. Hosts can afford to scan for more viruses withgent communication. Each COVERAGE agent polls other
out interfering with their (lower) packet rate, but, on th@dents, selected randomly. Assuming that only a small frac-
other hand, have work other than packet forwarding to pdion of the nodes are reporting false information, a rangoml
form. In either case there is an upper bound on the numisétected node is more likely to be trustworthy than a node
of viruses a node can scan for. that actively contacts us — a small number of malicious
We assume that nodes periodically exchange infornfd@des may try to flood the rest of the network. At each poll,
tion about viral infections. Although the per-virus cost o€ sender reads the response and updates its local state var
such an exchange is low, we assume that the number@gfes to track the operation of the cooperative responsa-mec
knownplus potential day-zengiruses exceeds the amount oftNism and the status of the network in terms of observed
information that can be reasonably exchanged at any gi\,%t,tpc_ks. ) _ _
time. Thus, actively exchanging information about a virus First, itrecords whether the remote agent is actively scan-
incurs a cost, albeit lower than scanning. Note that faulng- This allows the agent to estimate the fraction of agent
or otherwise malicious nodes.(.,nodes controlled by the in the network that are actively scanning for a particular
virus) may lie in the information they provide as part of thesVirus. Second, it updates estimates of possible infeceans
exchanges. the fraction of infected nodes for each virus. We distinguis
Routers can additionally scan for suspicious behavior 840 types of estimates: direct and remote. Direct estimates
all traffic to or from their LAN (and drop when necessary)are updated based on whether each remote agent has directly
We further assume that if a router detects a rampant viral pleserved an attack (either to itself or, if a router, to a node
fection for a virus that has an associated disinfectant camp its LAN). Remote estimates are updated based on the
nent, the router can invoke a disinfection operation (pashaffaction of infected nodes as estimated by the remote agent

alerting an administrator) on all the nodes inits LAN.  (the “direct” estimates of the remote agent). Direct measur
ments performed by the local node are absolutely trustwor-

Model of Anti-virus EpidemicEach node participating in thethy — there is no issue of false positives. The direct mea-
anti-virus response must make certain decisi@msthe rate surements of agents that we poll (which become our remote
at which it polls other local nodes for virus informatigh) —estimates) are next in trustworthiness. Remote estimétes o
the rate at which it polls other remote nodes, chosen at r@gents who we poll are more suspect, and information re-
dom, for virus information(c) whether for each virus to col- ported by agents who contact us are the most suspicious of
lect information about it(d), whether to include that infor- all. However, we can validate any information reported to us
mation in virus exchange packets, afag whether to scan — if someone reports that a particular virus is attacking 25%
for the virus (collecting the results of those scans as gart@ the Internet at the moment, then if we poll 20 agents at
the local information for that virus). random (and assuming uniform distribution of COVERAGE
agents across the node population), then with 80% probabil-
ity we would expect to find that between 3 and 7 of those
3 Cooperative Virus Response agents had directly seen an attack in the last measurement
interval. Values outside that range would cast doubt on the
COVERAGE tries to balance the cost of scanning and filtelemote estimate.
ing packets for a specific virus against the benefit of detect- Finally, in this paper we ignore the details of how COV-
ing, other, real viruses in several ways. First, COVERAGERAGE nodes authenticate themselves to each other. How-




ever, we note that even strong authentication is not suffici¢Vé Start with the computation of the mean square error

for our system. If a COVERAGE agent is taken over by a 3 l+a 2
malicious attacker, then the attacker can (presumably) sMSE = Z <wjp*a v aj>
authenticate itself and discover which nodes @wéscan- j=1 /

ning for a particular virus, and use that information whe@rou ina the equation for MSE
choosing targets. To defend against such a vulnerability in ping a ‘ W,
COVERAGE , We propose (but have not yet implemented* 2 [ ) 3 w; 2

or experimented with) a simple defense. When polling, tha)” | 1 +a) Z

identity of the target agent is not important — just the fact i=1

that we chose it randomly, and it did not choose us. And, 3 3
while we are interest_ed in the _statistics of the sample as a _p* [ 2(1 +q) Z L Za§
whole, we need not link a particular set of direct measure- Setw pa
ments to a particular IP address. Consequently, each agent o

stores a randomly selected response from the last meastfeget the derivative,

o+ wj

ment interval (the local measurements are one of the can- 3 w \? 3. s
didates that may be selected), and returns that random @6E' = 2(1 + a)’p* Z < . ) —2(1+ ) Z ——L
lection in response to any COVERAGE poll, for the direct o\eTw oot

measurements and scan list only. (The cumulative count
are still stored and reported accurately). The poller s#il
ceives an accurate response — just perhaps from a different 201+ ) )3 | i

gfa%ting the derivative equal to 0, we find the idg&ln terms ofa

| =1 ot
IP address than the one it polled, and perhaps slightly older= 3] :J 2
than expected. This adds a level of indirection to the pgllin ~ 2(1+a)* 37, (aﬁuj)
process. 3 wja,
Periodic updates. At regular intervals each COVER- » _ 2 atw;

AGE agent updates its state based on the information re- 1+a)>? ( w; )2
ceived since the last update. To track the progress of the in- N
fection each COVERAGE agent maintains a smoothed his- . — 7
tory for each type of estimate (direct and remote), each-as £§: 1 Deriving p” from a to minimize MSE between observed's
. - . . - and expected values of’s assuming exponential growth.

ponentially decaying averages with varying time constants
to approximate recent infection rate, past rate, and back-
ground rate. _ _ , _

Using these estimates, an agent can compute the fracﬁc}ﬁcuy EXPO_”e”“aL then at timig we'd expect each ideal
of nodes believed to be infected as well as the growth of tRg t© contain:
infection, assuming exponential growith

If we assume that each infected node infects roughly io1 p*

i = Z(l - wj) Wi (
=1

‘ 1+a)i!

« nhodes in a given timestep, and that a fractignof all “J
nodes are infected at presety, then we'd expect that at
timesteps in the past, we would have seen a fragtioh + e (1 —w;)it
o)~ infected nodes in our sample. For each virus we afe — 7P Z ( >
observing, we can fit our observations at timesiep ¢ to =1 .
a growth curver* (1 + «) ~t. We can use a least square fitto,, e ((T=—w))\"
find the best values of* anda. @ = wp' ) 1+ o

In practice, however, at the early stages of the virus, the =0

(1+a)i-t

fraction of infected nodes in a sample will jump wildly. The,* = wjp*%
pattern will only emerge after a relatively large number o To1- %
timesteps. Rather than recording a large number of sample*s, 1+a
and expensively curve fitting the full set of observations, wt; = wjp*w. T a

J

instead use exponentially decaying averages with differen
time constants. Each observed fractigh,is incorporated
into the jth averages;, by a; = (1 — wj)a; + w; f. If the
current fraction of infected nodesgs, and the process were

If we maintain three decaying averages, one with a large

w; to capture recent history, one with a small to get the
background level, and one with an intermediate then we

2 We assume all growth is exponential for the purpose of degidi Ca&n compute the mean square error between our actual ob-
whether to trigger a reaction. We believe that linear-ghowituses can  serveda,; and the expected; assuming that growth was
ge d%teCtgd tl’y hurqnansf, and need not be countered gda” hajmomékponential with baser and “current populatiop* of the

istributed, algorithm. If our assumption is incorrect wth is, N P
in practice, sub-exponential then we recover naturallyabee we ob- network. We can then choose theand p tha_t minimize
serve a decrease i and gradually back-off as the predicted “viru-the mean square error between our observations and the ex-

lence” of the virus drops. pected values of;.




We have
ZS wja;
* j=1 atw;
B 3 w; 2
(+a) ¥, (24)

Plugging this back into the equation for MSE, we get:
2

3 wia; 3 wia;
VSE — (I+a)d i, atu, i w \’ B 21 +a) >, ety i wias | i o2
- 3 w; ) X o+ w;j 3 w; )2 o+ wj 7
(I+a)d 2, s j=1 (I+a)d i, = 1

2
Z:’T 2% 223 wia; 3 3
MSE =1 o J=1 atw; Z w;a, +Z 2
= — a;
$3 w \? 32 w, P~ atw; L=
i=1 \ atw; j=1 \ atw; J=1 J=1
2 2
ZB wja; ) 23 w;ag 3
j=1 atw; j=1 atw;
MSE =

2

- 2 + E a;
Z.& wj i—1
j=1 \ atw; 1=

Fig. 2 Equations to derive value of that minimizes MSE between observefs and expected values af’s assuming exponential growth.

The mean square error is (we drop the constant factor of vy = — log(p3)
1/3 for clarity) log(1 + aq)
3 2
1
MSE = Z <wjp*£ — aj)
= wj + Note that we independently calculate virulence for global

and local growth, in order to identify attacks that are non-
uniformly distributed throughout the network. Using thenga
Method as above the agent also computesp; and v,
based on the remote estimates.

Note that given a fixedr we can easily compute the
that minimizes the MSE, as this is a quadratic equation
p*. Figure 1 gives this derivation, and we see that

X 23:1 ;"1?5] Scanningf/filtering. Given the estimates an agent can
p = 3 e \2 decide whether it needs to scan for a given virus. There is a
(1+a) Zj:l (aﬁuj ) basic, low level of scanning for every virus. When a virus be-

At this point. we have two alternative numerical techCOMeS active the scanning rate may increase. In the general
. point, w ) case, the agent can sort viruses in order of their virulegce
niques for computingy. First, we can plug our value gf

; ; ! d decide whether to scan for each virus, in turn, stopping
back into the equation for the MSE, and find the value 5 . e . ;
o that minimizes the MSE (see Figure 2). Second, alter Yhen the scanning budget is filled. (In our simulation, we

na- . :

tively, we can (numerically) find the optimal for a given 3th scan.vmfses wh.osei 'S belowthreshqld) ,
p*, and then analytically find the optimat for the newa, To maintain a basic, low IeveI_ of scanning for every virus,
and iterate until the MSE stops decreasing. In theory the2¢ery agent measures the fractiia,niny Of nodes in the
should be equivalent; however the second approach seenf@ivork that are actively scanning for a given virus based on
work better in practice (mostly because it is easier to avdfformation exchanged with other nodes. If this fraction is
local minima, and also to stay within regions where the corRelow a thresholdf;a,4.; (around 2-5%) and the node has
putation converges). enough resources for scanning, it activates with probabil-

Given estimates gf; andag, we can calculate theiru- 1Y fiarget — fscanning, @nd disables scanning in a similar
lence vy, of a virus as the estimated number of timeste¢dy if too many nodes seem to be active. To avoid turning

needed by the virus to infect the entire network. We caRlind” to certain viruses because of a fraction of maligou

solve for the number of stepsy, it takes forp? (1 + ag) "¢ = nodes falsely reporting that they are actively scannindeso
1. need to aim fo':ftarget + fmaliciousa Wherefmalicious is the

) vy ) maximum tolerable fraction of malicious nodes. Although
pa(l+ aq)" = 1.1og(py) + valog(l + aq) =0 this increases scanning cost, nodes can trade-off thigarost

vglog(l + aq) = —log(py) higher communication costs.
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Fig. 3 Fractions of infected hosts and scanning nodes over tinp, @nd fraction of actively infected nodes (bottom).

An inactive agentA, may also start scanning seeminglyf intra-domain communication is assumed to be very small.
low-virulence viruses, iEnough otheagents claim the virus Inter-domain communication is generally more expensive;
is virulent, andA finds that the fraction of scanning nodesigents therefore need to adapt the rate of polling remote
is too low to detect virus activity in a single timestep at thagents, avoiding excessive communication unless negessar
current polling rate. The test is whethesimply the frac- for countering an attack. When there is no virus activity,
tion of agents that were polled and found to be scanningagents poll at a pre-configured minimum rate (at least an or-
the last interval) is less than twice the estimated fraatibn der of magnitude lower than the rate for intra-domain com-
infected hostsd.g.,if n < 2p7). Similarly, if the agent is ac- munication). An agent periodically adapts the remote pglli
tive butn > pr then it decides to stop. The agent also stopate if v, is less than a given threshold. The new rate is set
scanning if,. approaches 0. This ensures that the fraction 86 that the agent polls/(p)? remote agents in each update
scanning agents is bounded if there is insignificant pragresterval, unless this rate exceeds a pre-configured maximum
for a given infection or if the infection is small compared toate. This is used to increase the polling rate when the re-
the number of actively scanning agents. Such heuristics anete estimate indicates that an attack is imminent (but not
essential for controlling the behavior of the algorithmge yet reflected in the direct estimate). If the more recentotlire
ing the response mechanism “ahead” of the virus but alsstimatep,[n] is non-zero, then the polling rate is increased
limiting the damage and cost when malicious agents spresaalthat at least a few samples can be collected in each update
false information. interval. Finally, if the estimated virus populatiphis small

A small number of agents need to be watching for eaéifnd the estimated virus growth rate is close to zero, thetagen
dormant virus. The number of active scanners monitoringlzrottles back its remote polling rate to the minimum rate.
virus may be more than warranted by the level of virus ac- These adjustments are always performed on the polling
tivity. An agent detecting this will stop monitoring thews. side. We avoid changing the state or behavior of the polled
If the agent finds that it now has ample room within its scaagent to reduce the risks associated with malicious agents.
ning budget to consider another virus, it chooses anoti@therwise, they could spread misinformation and raisefals
virus to monitor uniformly at random from the (large) viruglarms more effectively by increasing their own communi-
database. The agent may choose a virus that almost no oaton rate.
else is scanning for — in which case it will stay on the scan-
ning list for a long time, and be inspected by the agent as
long as there are not too many virulent virii. If the new virug.2 COVERAGE behavior
is dormant, but enough people are already looking at it, then
the agent will drop it, and randomly choose another. To give a rough sense of how the COVERAGE algorithms

Polling rate. An agent communicates with other agentdescribed above behave, Figure 3 displays a single example
within the same domain at a constant, high rate, as the cast of the COVERAGE algorithm against a single simulated



virus called “worm 1”. We show the activity of the virusedge-routers in each of 2,000 domains. We also consider
(the number of nodes that were ever infected in their lifthe performance of our version cbVERAGEIN relation to
time) on the top figure, and the currently infected nodes &RL03 [51], another cooperative algorithm, which makes
the bottom figure), as well as the response of COVERAGHiferent tradeoffs thartovERAGE NRLO3 uses coopera-
(both the number of agents scanning for “worm 1", as weilve peer-to-peer strategies to respond to large-scade-Int
as the number of agents scanning for a dormant virus “wormt virus attacks. The model involves a numberfra#nd
0"). (Section 4 describes how we approximate a heavy loaddes, which work together by exchanging information to
on the COVERAGE agents by using a simulation parametgarn of suspicious virus-like network behavior. The larger
t hr eshol d — each agent is too busy to consider any vihe number of friends, the more rapidly NRL can respond
ruses unless they are likely to take over the entire netwdikvirus attacks — and the higher the communication costs.
within t hr eshol d measurement intervals.) As in COVERAGE, a small fraction of nodes is assumed to
One can see the initial stage of the infection and the dee scanning for a given virus. When the virus is detected,
sponse of the algorithm: the virus manages to infect roughtye node broadcasts the alert to its friends. When a node re-
10% of the hosts; cooperation between COVERAGE agemgives such an alert, it increments an alert counter, arg pro
results in a rapid activation of filtering on roughly 75% ofthagates the alert to its set of friends when this counter e=ach
network effectively eliminating the virus. Soon after stopa threshold.
ping the attack, the COVERAGE agents on uninfected parts For the COVERAGE algorithm, we set the local-domain
of the network deactivate scanning/filtering. However- Fig)olling interval to 1.8 seconds , the maximum and minimum
ure 3 (bottom) shows, a small number of hosts remains ¥emote polling intervals to 6 seconds and 1.8 seconds re-
fected and undiscovered, resulting in another three epsodpectively. For both algorithms we assume that 4% of the
where COVERAGE agents are activated (each episode Witige-routers are permanently scanning for the virus.
a smaller fraction of agents activated) to defend againstas  oyr analysis uses three metrics. First, we model the suc-
condary outbreak. Although a tiny fraction of infected n®d&.ess of the attack by integrating the number of infected siode
remains undiscovered, it does not cause any further hagier time. This is only relevant in the case of a real virus
and COVERAGE gives users time to patch up their systemgiack. Second, we consider the number of edge-routers ac-
The scanning for dormant “worm 0" continues, except dufively scanningffiltering this virus. This is a measure d th
ing the most virulent part of the outbreak, where the numbggmputational overhead of the response mechanism. Odr thir

dips as resources are marshaled to defend against “worm dyetric, the total number of messages sent, measures the com-
munication cost.

We measure the progress of infections of differing vir-
4 Simulation Results ulence and the success of the response mechanism as the
integral over time of the fraction of infected nodes. Beeaus

To simplify the analysis of COVERAGE and to meaningwe claim that COVERAGE is better able to balance multi-
fully include the non-adaptive NRLO3, we restrict the simple viral attacks and NRLO3 makes no such claim, we con-
ulation to a single virus. We model the impact of multipl§ervatively model COVERAGE dealing with other viral out-
active viruses by assuming that each node is already vérgaks, but optimistically let NRLO3 assume that this is the
busy handling other viruses. To represent the load impog#ly virus in the Internet. The results for COVERAGE and
by other viruses, we specify a threshold under which a virldRLO3 with different parameters are shown in Figure 4. (It
will not have high enough priority to be scheduled in thehay seem counter-intuitive that the more virulent viruses
scanning budget. If many viruses are active then the threshver less of the network; however, recall that we are in-
old will be a small number, such as 20. (Recall that the virtegrating over time and that the faster worms, while they
lence is a measure of how many measurement intervalspread faster are also detected and disinfected fastev). CO
will take before the virus has covered thatire Internet. ERAGE reacts more slowly than NRLO3 for fast worms in
Normally, when the network is not under any attack, thegur setting — where NRLO3 handles a single virus, and
a node is likely to scan or filter a virus, even if its virulenc€ OVERAGE faces many aggressive virii. Consequently, the
is only 100 or 1000.) Unless the current virus is poised wrus takes a larger initial toe-hold in the network under
conquer the entire net at its current rate of growth from i€§OVERAGE, and is active slightly longer before being clean-
current coverage withim hr eshol d intervals, it will not ed up. Because of this toe-hold, COVERAGE performs rel-
have high enough priority to be scheduled in the scanniagvely worse in our setting than NRLO3 for fast worms. On
budget. In our simulations, we only consider cases where the other hand, even when handicapped under our model it
net is already under such a heavy attack that scanning nosiésdetects the slow viruses before NRLO3. The slower re-
ignore any virii that are not poised to control the entire- nesponse by COVERAGE in the case of fast worms has been a
work within small thresholds of 5 or 20. (These corresporiteliberate design choice in an attempt to make the algorithm
to times from 10 seconds to 2 minutes). robust against false information from potentially maligo

To better understand the performance of COVERAGHRodes.
we limit our simulation to a simple, relatively small networ  The default configuration of COVERAGE varies the com-
of 100,000 edge-routers, each connected to 8 hosts, withrBOnication rate between roughly .016 rounds of messages
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Fig. 5 Maximum fraction of infected hostes. virus infection rate . . . . . .
when under attack. Fig. 7 Maximum fraction of false scanning routers with malicious

nodes and false alarms. We consider two kinds of malicioutesio
one that generates 2 false positives per minute, and ongehatates

per second and roughly .055 per second. (In each round%de" Minute:

COVERAGEnNode will vary the number of remote notes it

sends to based on the current estimate of virulence and cov-Figures 6 and 7 show the fraction of nodes scanning
erage. The total number of messages will be the numberféf a virus as a function of the virulence of the virus and
rounds per second times the average number of remote nagkesfraction of malicious (or faulty) nodes. Malicious nede

it contacts.) Figure 5 shows the effect of increasing the-maxay be simply faulty, or may be controlled by an adversary
imum allowable rate that COVERAGE communicates Witt’e_g” infected nodes). Such nodes may then be spreading
remote nodes. We plot the high water mark of viral attackgise information, in an attempt to misdirect COVERAGE.
as a function of the virus infection rate for different maxipossible goals include attempting to hide a virus outbreak,
mum communication rates in COVERAGE. We can see thgt causing COVERAGE to waste resources. Alternatively,
a moderate increase in communication ratesCOVER- (perhaps more commonly), the “malicious nodes” may sim-
AGE allows it to stop the virus with a lower high water marlgly be virus detection mechanisms that generate false posi-
than NRL — even with friends = 16. (Figure 8 shows thatives. The figures for COVERAGE are more pessimistic than
for highly active worms, the default configuration of COVfor NRL, because in NRleveryedge-router is scanning for
ERAGE has communication costs comparable (within 20%he virus (obviously impractical for a large set of viruses)

3 The communication costs for COVERAGE scale with the vir and the gra_phS report only those nodes that are aclinlre_ly
lence and number of active viruses, and are thus more seatadh ute”ng the virus. The COVERAGE_ plots report the fraction
NRL — still, we are investigating ways of conveying the nazeg Of nodes that even scan for the virus at all. A smaller num-
polling information more efficiently during quiet periods. ber (unreported here) are filtering for the virus. Neveehs)
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Fig. 8 Communication costs. virus infection rate when under at- Fig. 9 The impact of malicious routers and false alarms on commu-

tack. nication cost.
the pessimistic (“worst-case”) results for COVERAGE rep- 0.7 - == infection rate=10/min
resent far lower scanning costs than the optimistic (“best- ~¢ infection rate=S/min

0.6 ——— =90 infection rate=2.5/min
—O0 infection rate=1.25/min

case”) results for NRLO3. (Even reducing the malice (i.e.
dropping the false positive rate by a factor of 10, down to 2-
per-minute) of the malicious nodes can still trigger filbgri

in a large fraction of the NRLO3 nodes). COVERAGE man-
ages to control the virus with a much smaller set of scanning
nodes, and it similarly detects false alarms with fewer sode
triggered to scan or filter.

Figures 8 and 9 demonstrate that the communication costs
for COVERAGE in the face of false alarms is much lower
than for NRLO3 — understandably because COVERAGE 0 2 4 6 8 10 12 u
correctly identifies the suspicious behaviorfalse alarms. % of malicious nodes
For slow-growth viruses, COVERAGE requires significantlyig. 10 Impact of false alarms and malicious nodes on detection per-
more communication to convince cooperating peers thafogmance.
virus attackis underway. However, this extra cost conveys a
benefit: COVERAGE detects slow-growth viruses long be-
fore NRLO3 is able to. For fast worms, communication cosgfpde to get infected by the real virus. Malicious nodes can
are generally comparable — NRL requires considerably mgigs do very little to distract COVERAGE from fighting the
communication when Friends = 16, but it should be notegal attack. Even under more aggressive attacks, it takes a
that NRLO3 controls the infection more rapidly than COMarge number of malicious nodes reporting false alarms in
ERAGE in these cases. For COVERAGE to control fast woghser to distract COVERAGE in a significant manner.
as effectively as NRLO3 would require even higher commu-
nication costs.

The impact of false alarms on performance in detectingpaRelated Work
real attack is illustrated more clearly in Figure 10. Thadal
alarms and reports from malicious nodes confuse COVERemputer viruses have been studied extensively over the las
AGE's picture of the real attack. Each line in the graph regeveral decades. Cohen was the first to define and describe
resents a different level of virulence of a virus attack. \&e scomputer viruses in their present form. In early work [1&], h
that, for each of the lines, the high water mark of the attagave a theoretical basis for the spread of computer viruses.
grows almost linearly with the number of malicious nodes. The strong analogy between biological and computer vi-
Roughly double the number of nodes are infected when 44ses [28] led Kephast al.[31] to investigate the propaga-
of the nodes are malicious compared to a system without aign of computer viruses based on epidemiological models.
malicious nodes. Roughly twice, again, as many are infect€dey extend the standard epidemiological model by plac-
when 10% (more than double) the nodes are malicious. \Wg it on a directed graph, and use a combination of analy-
see that until the per-node infection rate approaches 8§-infeis and simulation to study its behavior. They conclude that
tions per minute, the number of infected nodes is roughiiyjthe rate at which defense mechanisms detect and remove
comparable to the number of malicious nodes. Each maliruses is sufficiently high, relative to the rate at which vi
cious node, then, allows on average only a single additiomases spread, they can prevent widespread virus propagatio

max. fraction of infected nodes




Miretskiy et al. [46] describe a filesystem layer designegredict the overall vulnerable population size using Kaima
specifically for efficient virus scanning and removal. filters early in the propagation cycle of a worm, allowing for
In [68], the authors describe the risk to the Internet due @gtection of a fast-spreading worm when only 1% or 2% of
the ability of attackers to quickly gain control of vast numvulnerable computers on the network have been infected. [6]
bers of hosts. They argue that controlling a million hosts cghows that worms are surprisingly persistent, showing that
have catastrophic results because of the potential to taufdaster remains active on tens of thousands of PCs a year
distributed denial of service (DDoS) attacks and access afier the initial outbreak. An analysis of Blaster and SoBig
sensitive information that is present on those hosts. Thartwork traces is given by Dubendorfetral. [25].
analysis shows how quickly attackers can compromise hosts CodeRed inspired several countermeasure technologies,
using “dumb” worms and how “better” worms can spreasuch as La Brea [39], which attempts to slow the growth of
even faster. They also envision a Cyber “Center for DiseaB€P-based worms by accepting connections and then block-
Control” (CCDC) for identifying outbreaks, rapidly analyzing on them indefinitely, causing the corresponding worm
ing pathogens, fighting the infection, and proactively devithread to block. Unfortunately, worms can avoid this mech-
ing methods of detecting and resisting future attacks. Oamisms by probing and infecting asynchronously. Under the
work focuses on the strategies of distribution and deplogennection-throttling approach [80,71], each host retsri
ment of detectors and antidotes produced by such a CCDRI@& rate at which connections may be initiated. If adopted
In subsequent work [67], the same authors show how a wotmiversally, such an approach would reduce the spreading
using pre-compiled lists of IP addresses known to be vulneate of a worm by up to an order of magnitude, without af-
able can infect one million hosts in half a second. Antonatfecting legitimate communications.
et al. [5] propose using address randomization through ag- These systems are effective only against scanning worms
gressive use of DHCP to make the hitlist information stale(not topological, or “hit-list” worms), and rely on the as-
Chen and Ji show that reasonable estimates of the vslimption that most scans will result in non-connections. As
nerable application’s distribution across the network lsan such, they are susceptible to false positives, either aneid
made dynamically by a worm, which can adjust its spreatklly (e.g.,when a host is joining a peer-to-peer network such
ing parameters to optimize infection rate [15]. Other worlis Gnutella, or during a temporary network outage) or on
has shown that worms can make detection of compromigaatpose €.9.,a malicious web page with many links to im-
hosts harder by using simple, distributed but coordinatioages in random/not-used IP addresses). Furthermore, it may
free mechanisms that stop their spreading (turning infectee possible for several instances of a worm to collaborate in
hosts into “sleeper agents”) once the epidemic has reaclpeadviding the illusion of several successful connectians,
its apex [42]. to use a list oknown repliergo blind the anomaly detector.

Leavitt [34] discusses the threat of worms aimed at mo- Another algorithm for finding fast-spreading worms us-
bile phones, describing some of the first malware of thisg 2-level filtering based on sampling from the set of dis-
type. Zhouet al. [87] discuss worms that spread over peetinct source-destination pairs is described by Venkataram
to-peer networks, exploiting the richer (and arbitrargdio- etal.[72]. Whyteet al.[79] propose correlating DNS queries
gies to achieve accurate targetting and fast propagatian- Mand replies with outgoing connections from an enterprise
nan and van Oorschot [44] describe worms spreading ovetwork to detect anomalous behavior. The main intuition is
instant-messaging networks, and propose user throttlidg dhat connections due to random-scanning (and, to a degree,
disconnecting users with the largest contact lists as whyshit-list) worms will not be preceded by DNS transactions.
controling such epidemics. This approach can be used to detect other types of malicious

The CodeRed worm [12] was analyzed extensively ®ehavior, such as mass-mailing worms and network recon-
[89]. The authors of that work conclude that even thougissance.
epidemic models can be used to study the behavior of Inter- Kim and Karp [32] describe an algorithm for correlating
networms, they are not accurate enough because they camaaket payloads from different traffic flows, toward dergyin
capture some specific properties of the environment thesgorm signature, by using a simple portscan-based traffic
operate in: the effect of human countermeasures againsi witow classifier to limit the amount of traffic that needs to be
spreadingi(e., patching, filtering, disconnectingtc), and considered. Earlybird [63] presents a more practical algo-
the slowing down of the worm infection rate due to the wormithm for doing payload sifting, and correlates these with a
impact on Internet traffic and infrastructure. They derive rmnge of unique sources generating infections and destina-
new general Internet worm model calledo-factor worm tions being targeted. Another similar approach, aimed pri-
model, which they then validate in simulations that mataharily at DoS traffic, is described by Matravey al. [45].
the observed CodeRed data available to them. Their andiowever, polymorphic and metamorphic worms [69] remain
sis seems to be supported by the data on CodeRed propagehallenge; Spinelis [66] shows that it is an NP-hard prob-
tion by Mooreet al. [47] and by Songet al. [65] (the latter lem. Buttercup [53] attempts to detect polymorphic buffer
distinguished between different worms that were active siverflow attacks by identifying the ranges of the possible re
multaneously). Similar analyses on the SQL “Slammer” (¢arn memory addresses for existing buffer overflow vulner-
Sapphire) worm [13] and for Witty worm are available [64abilities. Unfortunately, this heuristic cannot be emggdy
61]. More recent analyses [88] show that it is possible tgainst some of the more sophisticated overflow attack tech-



niques [54]. Furthermore, the false positive rate is veghhi an otherwise innocent byte stream as an attack, by including
ranging from0.01% to 1.13%. Vigna et al. [73] discuss a it in a series of real, mutating attacks [17]. This allows the
method for testing detection signatures against mutabbnsattacker to convert a vulnerability into a self-inflicted ®o
known vulnerabilities to determine the quality of the deteattack, if the system does not carefully analyze the suspi-
tion model and mechanism. Polygraph [49] attempts to dgeus inputs.
tect polymorphic exploits by identifying common invariant ~ Shadow honeypots [2] combine the best features found
among the various attack instances, such as return adsregaeanomaly detectors and honeypots to create an applica-
protocol framing and poor obfuscation. Weetgal.[76] pro-  tion aware network intrusion detection system. The anomaly
pose applying such content-sifting techniques within Clugietectors differentiate between trusted and untrustéfittra
ters of traffic, as created with header-based multi-dinmagi trusted traffic is processed normally whilst untrustedficaf
flow clustering. In many cases, this will improve the puritys forwarded to a protected (“shadow”) instance of the ap-
of signature pools. Wang and Stolfo [78] use byte distrplication. The system provides an elegant way to deal with
butions (1-gram frequencies) in payloads to identify tcafffalse positives, since all requests are processed albai so
that deviates from normal (based on training). While velyicur additional latency.
efficient, this technique is vulnerable to worms that know, The key idea of the Rx system [57] is to checkpoint
or can determineg(g.,through passive monitoring), the exthe execution of a process in anticipation of system errors.
pected normal distribution for a site and morph their attaghen an error is encountered, execution is rolled back and
(“blend”) payload accordingly [27]. One approach to courteplayed, but with the process’s environment changed in a
tering such mimicry efforts is to use probabilistic (randomuay that does not violate the API's its code expects. This
ized) payload modeling, preventing the adversary from kngyiocedure is repeated with different environment altersi
ing which traffic characteristics are being modeled [77]- Unintil execution proceeds past the detected error poins Thi
fortunately, learning signatures without corroboratioran procedure is a clever way to avoid the semantically incorrec
adversarial environmeni €., when the attacker can providefixes of failure oblivious computing and error virtualizati
inputs of his choice to the learning engine) is a difficulttpro  The authors of [24] propose to enhance NIDS alerts us-
lem, fraught with several risks [17, 50]. ing host-based IDS information. Nemean [86] is an archi-
Polychronakiset al.[55] use emulation to accurately detecture for generating semantics-aware signatures, vaneh
tect (potentially zero-day) polymorphic decryptors, dllag¢ signatures aware of protocol semantics (as opposed toigener
relatively low network speeds. Brusatial.[10] use control- byte strings).
flow graph matching for detecting metamorphic viruses. Othe Rajabet al. [58] show that a distributed worm monitor
work attempts to automatically reconstruct a worm’s coman detect non-uniform scanning worms two to four times
trol flow from the captured attack payload [33,16]. Craras fast as a centralized telescope, and that knowledge of the
dall et al. [22] discuss the problem of generating qualityulnerability density of the population can further impeov
vulnerability-specific signatures via an empirical study aletection time.
the behavior of poly- and meta-morphic malcode. They out- Reference [48] describes a design space of worm con-
line the difficulty of identifying enough features of an extainment systems using three parameters: reaction time, co
ploit to generalize about a specific vulnerability. Focgsinainment strategy, and deployment scenario. The authers us
on the behavior of malcode seems to be a more promisiagombination of analytic modeling and simulation to de-
approach. Some work has been done to generate anomaéyibe how each of these design factors impacts the dynam-
based signatures for web servers [60]. ics of a worm epidemic. Their analysis suggests that there

HoneyStat [23] runs sacrificial services inside a virtud@re significant gaps in containment defense mechanisms that
machine, and monitors memory, disk, and network events@an be employed, and that considerably more research (and
detect abnormal behavior. For some classes of attacls ( better coordination between ISPs and other entities) idete
buffer overflows), this can produce highly accurate alerfdieir analysis focuses exclusively on containment mecha-
with relatively few false positives, and can detect zerg-d&isms (.e., network filtering), which they consider the only
worms. Although the system only protects against scanni¥igble defense mechanism. We believe that other types of
worms, “active honeypot” techniques [85] may be used f$/tomated defense mechanisms will eventually be invented,
make it more difficult for an automated attacker to differerif only because containment mechanisms can severely im-
tiate between HoneyStats and real servers. FLIPS (Feedb@@kt service availability.

Learning IPS) [41] is a similar hybrid approach thatincerpo  Shield [75] is a mechanism for pushing to workstations
rates a supervision framework in the presence of suspiciowgnerability-specific, application-aware filters exsed as
traffic. Instruction-set randomization is used to isoldtack programs in a simple language. These programs roughly mir-
vectors, which are used to train the anomaly detector. Liar@y the state of the protected service, allowing for morelint
and Sekar [38] and Xat al.[83] concurrently propose usingligent application of content filters, as opposed to sintiglis
address space randomization to drive the detection of megpayload string matching.

ory corruption vulnerabilities and create a signature tzkl Wanget al. [74] presented encouraging results for slow-
further exploits of this type. One danger with such systerrgy down the spread of viruses. The authors simulated the
is that an attacker may be able to “train” them to consideropagation of virus infections through certain types df ne



works, coupled with partial immunization. Their findinggroach is that Vigilante is exploit-agnostic and can be used
show that even with low levels of immunization, the infecto defend against polymorphic worms. Poredsl. [56] ar-

tion slows down significantly. Those experiments looked gtie that hybrid defenses using complementary techniques
a single virus. Our work investigates the detection of mufin their case, connection throttling at the domain gateway
tiple viruses when there is reo priori knowledge of which and a peer-based coordination mechanism), can be much
viruses may attack. more effective against worms.

One approach for detecting new email viruses was de- Reference [70] proposes the use of “predator” viruses
scribed by Bhattacharyyat al. [7], which keeps track of that spread in much the same way malicious viruses do but
email attachments as they are exchanged between userdryigo eliminate their designated “victim” viruses. The au-

a set of collaborating email servers that forward a subsettbprs show that predators can be made to perform their tasks
their data to a central data warehouse and correlationrserwéthout flooding the network and consuming all available
Only attachments with a high frequency of appearance dgsources. However, designers of predators would have to
deemed suspicious; furthermore, the email exchange péd their own exploits (or safeguard exploits for future Jise
terns among users are used to create models of normal\Wwbich is not an attractive proposition. Furthermore, many r
havior. Deviation from such behavice.).,a user sending a cent worms have been closing the hole they exploited, after
particular attachment to a large number of other users at thtecting a machine.

same site, to which she has never sent email before) raisesDOMINO [84] is an overlay system for cooperative in-
an alarm. Information about dangerous attachments canthesion detection. The system is organized in two layers,
sent to the email servers, which then filter these out. One ith a small core of trusted nodes and a larger collection
teresting result is that their system only need be deplayeddaf nodes connected to the core. The experimental analysis
a small number of email servers, such that it can examinel@monstrates that a coordinated approach has the potential
miniscule amount of email traffic (relative to all email exef providing early warning for large-scale attacks while re
changed on the Internet) — they claim 0.1% — before thelucing potential false alarms. The system described in [11]
can determine virus outbreaks and be able to build good us#nilarly uses a DHT-based overlay network to automati-
behavior models. A similar technique, tracking attachraertally correlate all relevant information.

through the network, is described by Xiong [82]. An attempt There are two key differences between DOMINO-like
to apply behavior-based detection at the network layer feystems and COVERAGE. First, COVERAGE provides much
worm detection is discussed by Elésal.[26]. A high-level broader coverage in terms of collecting data from differ-
architecture for building behavior profiles for hosts in thent sites, while DOMINO is restricted to monitoring unused
absence of a persistent identity is described by Allmiaal. address-space (which could be avoided by a smart attacker).
[1]. Second, COVERAGE considers all participants to be un-

Locastoet al. [40] propose coordinating the sharing ofrusted, avoiding the introduction of a trusted core owerla
IDS alerts for detecting worm attacks and portscanningsact@s this kind of infrastructure could be easily attacked by a
administrative domains. A similar approach is presented Brm (i.e.,in the early stages of the infection).

Li etal.[37]. Parekhet al.[52] describe several methods for  Cookeet al.[19] describe an architecture for identifying
privacy-preserving correlation of payloads across midtipalready compromised hosts that are part of a botnet. Their
sensors to identify attacks. Malan and Smith correlateera@pproach uses monitoring of common communication chan-
of system calls (in terms of frequency distributions) asrosels used to disseminate control directives to bots (such as
different machines to detect abnormal behavior [43]. Chel®C), as well as other traffic-based detection heuristics. A
tancheriet al.[14] experimentally investigate the parametersther IRC-based detection algorithm is described by Bink-
of a cooperating alert sharing protocol coupled with distriey and Singh [8]. Ramachandra al. [59] monitor the
buted sequential hypothesis testing to generate glolrahala DNS-blackhole reconnaissance, used by the bot controllers
about distributed attacks. Briesenmeister and Porrass®] wo identify whether specific bots can send spam, for identi-
formal methods and a model of collaborative worm defensigng likely bots.

to create propagation strategies that prevent such defense Reference [88] describes an architecture and models for
from reaching global consensus. They conclude that ragn early warning system, where the participating nodes and
domized algorithms offer one approach toward foiling thiguters propagate alarm reports towards a centralizefbsite
strategy, citing COVERAGE as a specific example. analysis. The question of how to respond to alerts is not ad-

Vigilante [20, 21] proposes the concept of Self-Certifyingressed, and, similar to DOMINO, the use of a centralized
Alerts, which are exchanged between hosts as a result afalection and analysis facility is weak against worms at-
newly detected attack. The recipient can verify the vafiditacking the early warning infrastructure.
of the alert and use an appropriate protection mechanism. The earliest work on cooperative response mechanisms
Vigilante supplies a mechanism to detect an exploited vus-that of Nojiri et al. [51]. They present a cooperative re-
nerability (by analyzing the control flow path taken by exsponse algorithm where edge-routers share attack reports
ecuting injected code) and defines a data structure (Selith a small set of other edge-routers. Edge-routers update
Certifying Alert) for exchanging information about thissdi their alert level based on the shared attack reports and de-
covery. A major advantage of this vulnerability-specific acide whether to enable traffic filtering and blocking for a



particular attack. Analysis by Kannaat al. [30] has shown Security Conference (ISC) (2005)

that cooperative response algorithms can improve contaid- Anagnostakis, K., Sidiroglou, S., Akritidis, P., Xinggi K.,

ment, even when a minority of firewalls cooperate(for ex- Markatos, E., Keromytis, A.D.. Detecting Targetted Attadus-

ample, even when fewer than 10% of the firewalls cooper- ¢J Shadow Honeypots. - In: Proceedings of the" USENIX
. . . ecurity Symposium, pp. 129-144 (2005)

ate, a cooperative scheme can provide 95% containment 3- anagnostakis, K.G., Greenwald, M.B., loannidis, S.,d¢eytis,

even in the face of hundreds of malicious firewalls). That A.D., Li, D.: A Cooperative Immunization System for an Urstu

work, however promising, does not directly relate to our ing Internet. In: Proceedings of tHd " IEEE Internation Con-

work. They are more concerned with a single fast virus — ference on Networking (ICON), pp. 403-408 (2003)

the analysis focuses on a single virus (consequently undék- Anagnostakis, K.G., Greenwald, M.B., loannidis, S. tbhiev, S.:

lavina the cost of over-agaressive response). has a eakerOpen Packet Monitoring on FLAME: Safety, Performance and
playing v 99 IV P ), W Applications. In: Proceedings of thE” International Working

model of “malicious” firewalls (malicious firewalls merely  conference on Active Networks (2002)
stay silent, but do not mislead through false alarms), ansl Antonatos, S., Akritidis, P., Markatos, E.P., Anagnkistak.G.:

does not explore the benefits of allowing more lattitude in Defending against Hitlist Worms using Network Address $pac
generating false alarms. Randomization. In: Proceedings of the ACM Workshop on Rapid

Malcode (WORM), pp. 30-40 (2005)
6. Bailey, M., Cooke, E., Jahanian, F., Watson, D., NazdrioThe
Blaster Worm: Then and Now. IEEE Security & Privag),

6 Conclusions and Future Plans 26-31 (2005) _
7. Bhattacharyya, M., Schultz, M.G., Eskin, E., HershkapS®lfo,

. . S.J.: MET: An Experimental System for Malicious Email Track
We have described an algorithm, named COVERAGE, that ing. In: Proceedings of the New Security Paradigms Workshop

allows cooperating agents to share information about the (NSPw), pp. 1-12 (2002) _
spread of malicious virus in the Internet and use this infor8. Binkley, J.R., Singh, S.: An Algorithm for Anomaly-basBdtnet
mation for controlling the behavior of detection and filter-  Detection. In: Proceedings of Steps to Reducing Unwantaffidr

. : . - on the Internet Workshop (SRUTI), pp. 43—48 (2006)
ing resources. The algorithm operates without fully trggti Briesenmeister, L., Porras, P.A.; Automatically DedgcPropa-

such information, so as to limit the damage of false alarms gation Sequences that Circumvent a Collaborative Wormiiefe
injected by malicious or faulty nodes. Our solution is based In: Proceedings of the5*" International Performance Comput-
on the idea of carefully sampling of global state to validate ing gg? ggzm(nzﬁgggations Conference (Workshop on Malware),
claims made by individual participants. Simulation result  PP- 25/~ ©) . . .
conflrm that this method !s_effectlve in I|m|t|ng the dar_nag ' mffg:g Bgiygaggﬂt?g;j,l‘law'w grr'ggh'\,/\I,iégﬁtiﬁgt_m%?mgaggngng
of virus attacks, and that it is robust against attacks by-mal o the 377 International Conference on Detection of Intrusions
clous participants. and Malware & Vulnerability Assessment (DIMVA), pp. 129314
Our approach is motivated by the belief that for day- (2006)

zero virus detectors to be maximally effective, they nedd- Cai. M., Hwang, K., Kwok, Y.K., Song, S., Chen, .. Coltab-
y Y tive Internet Worm Containment. IEEE Security & Privacy Mag

the latitude to be paranoid and flag even mildly suspicious azine3(3), 25-33 (2005)

behavior as a pOSSIb|e attack. Consequently, we focus @ CERT Advisory CA-2001-19: ‘Code Red’” Worm Exploiting
how how well defensive systems can deal with frequent false Buffer Overflow in IIS Indexing Service DLL.

alarms, and whether they can sensibly allocate resources tohttp://www.cert.org/advisories/CA-2001-19.html (2001

; ; 3. Cert Advisory CA-2003-04: MS-SQL Server Worm.
cover many simultaneous attacks. In this respect, COVER® = D'/ 1w cert. or g/ advi sor i es/ CA- 2003- 04,

AGE performs well. When compared against a similar ap- p¢nj (2003)
proach, the NRLO3 algorithm [51], COVERAGE exhibits a4. Cheetancheri, S.G., Agosta, J.M., Dash, D.H., Levify|.KRowe,
lower cost in terms of scanning for worms due to its resource- J., Schooler, E.M.: A Distributed Host-based Worm Detectio

aware approach. Furthermore, it has a lower communication System. In: Proceedings of the SIGCOMM Workshop on Large-
. Scale Attack Defense (LSAD) (2006)

costin the presence of false alarr_ns and fast worms, and ¢an Chen, Z., Ji, C.: A Self-Learning Worm Using Importancau$s

detect and react to slow-propagating worms better. However ning. In: Proceedings of the ACM Workshop on Rapid Malcode

the price COVERAGE pays for screening for false alarms is (WORM), pp. 22—30 (2005)

that it may not react as quickly to fast worms. The price #. Chinchani, R., Berg, E.V.D.: A Fast Static Analysis Apgeh to

pays for reacting to slow worms more quickly is higher com- Detetc}t Exploit Code Inside Network Flows. In: Proceedings o
[ the8"" International Symposium on Recent Advances in Intrusion
munication overhead than NRLO3 for slow worms. Detection (RAID), pp. 284—304 (2005)
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