Proceedings of the 2007 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY, 20-22 Juf82

Arachne: Integrated Enterprise Security Management

Matthew Burnside, Angelos D. Keromytis

Abstract— Security policies are a key component in protecting enter-
prise networks. There are many defensive options availableo these poli-
cies, but current mechanically-enforced security policie are limited to tra-
ditional admission-based access control. There are defems capabilities
available that include logging, firewalls, honeypots, rotback/recovery, and
intrusion detection systems, but policy enforcement is eseatially limited
to allow/deny semantics. Furthermore, access-control mbanisms operate
independently on each service, which often leads to incorssént or incor-
rect application of the intended system-wide policy. To beg to solve these
problems, we propose a new system for defense-in-depth ugiglobal secu-
rity policies. Under a global security policy, every policydecision is made
with near-global knowledge, and re-evaluated as global kneledge changes,
given an initial configuration provided by the administrator. Using a vari-
ety of actuators we make the full array of defensive capabilities available
to the global policy. We outline our proposal for enterprisewide security
policies, explore the design space, and discuss Arachne,rqrototype im-
plementation.

|. INTRODUCTION

Modern security policies are inflexible. They are limitedeby
mismatch between notions of policy enforcement and thendef
sive capabilities in the network. There are a variety of dsifee
options available to a large network, including but not texito
logging, firewalls, honeypots, and intrusion detectiortesys —

mechanisms that allow for escalating the response to ackatt

— but policy enforcement s essentially limited to allowdgese-
mantics.
Furthermore, traditional access-control mechanisms use

enterprise networks operate independently on each servi

When a user issues a request to a network service, the sgrvi
access-control mechanism independently uses its seqaiity
icy to make a decision on how to handle the request, then g
inactive. There may be information relevant to the decisign-

where in the network, but the decision is made without cdnsu{

ing any other network entities, so the component may artige
locally correct, but globally wronglecision.

The access-control mechanism then goes inactive afteridits
tial use, so no future action by the user within the context
the security policy can cause the decision to be revisitdds T
presents a problem with long-lived sessioag(SSH), because
there is traditionally no action by the user that can cause
access-control mechanism to re-examine its decision.

nected to the Internet through a firewall, as shown in Figure
The security policy at the firewall (the firewall rule set) efitied
by hand by the system administrator, as are the policieseat

CS Department, Columbia University, mb@cs.columbia.edu
CS Department, Columbia University, angelos@cs.coluratia

ISBN 9-9999-9999-9/99/ $20.002007 IEEE

S N5
%/‘ ‘%/
Internet Firewall Webserver Database

Fig. 1. Example network. A web server and database are cmthée the
Internet through a firewall.

web server and databadet @ccess and grant tables, respec-
tively). Each of these policies is evaluated by the corrasgpty
application, with no input from the other network entitiesen
though that input might sometimes be highly relevant, as we
shall see shortly. Additionally, there are many defensigae
bilities available to this network, including using the Vil to
redirect misbehaving traffic to a honeypot, logging mildiiss

icious traffic, and asking for re-authentication at theatlase.

owever, there is no coherent mechanism for specifying er co
ordinating these responses.

The applications make policy decisions independently, so
each application must make assumptions on the behavioeof th

Bthers. In this case, the security policy at the web servestmu

implicitly assume that all of its traffic has arrived throutite
irewall. An attacker can compromise the system by bypassing
he firewall, through insider knowledge (gaining access ltm a
machine) or through an open wireless access point. He can
fifen probe the web server’s scripts for, say, SQL-injectioln
nerabilities with impunity. The firewall verifies that eachgiet
“Sees conforms to its security policy, but the attackeri'sbra-
havior goes unnoticed. There is no way for the web serverto de

ermine that an incoming request has been vetted by the firewa

4ne observe that although the network services work togéther
handling requests, there is no cooperation in determirtiieg t

{oper security context for authorizing these requests.
To resolve these conflicts, we propose a new scheme based
on global security policies. Every policy decision is made
ith near-global knowledge, and then re-evaluated as thizad)|
owledge changes. Furthermore, through the usetfators

we make the complete array of defensive options availahtesto
B'alicy. In this paper, we will explore the design space ofhsuc

a

system, raising questions such as how to define and distribu
olicies, how to scale the system, and how to manage informa-
n flow, and then describe our prototype implementatidieda

Arachne.

The remainder of this paper is organized as follows. In Sec-

P olicy Policy

A
E vents E vents

Sensors I_ | | Actuators Sensors I_ | I \ Y Actuators
|]

t 1t v v oy

Network: applications, network links,
routers, etc.

Fig. 2. System model. Sensors generate events, which acegsed by the Internet Firewall W/éb Db
policy, which makes decisions and notifies actuators to fpoditwork and

application behavior.
Fig. 3. The example network under our model.

tion Il we desc_nbe the general mode_l for systems_ to SOI.VE ﬂgions and notifies thactuatorsto modify application behavior
problem. We discuss some of the design tradeoffs in the spacg, response

Section Ill. We give some details on our prototype, Araclime, : . .
. . ! X Figure 3 shows the model as applied to the example from Fig-
Sections IV and V. We discuss some related work in Section V} :
. . ure 1. The firewall, web server, and database are observed by
and conclude the paper in Section VII. : :
sensors which generate events which are evaluated by the pol
icy; the policy then signals the actuators to modify eachiapp
cation’s behavior in response to observed events. For eeamp
Our goal is to create the tools necessary to make aut@mnsider the following policy:
mated policy decisions in an enterprise network with néab@ 1. Incoming requests are only allowed through the firewall if
knowledge, and to re-evaluate those decisions in real tfoe. they are on port 80.
this system to be viable, it must improve the security of tae n 2. Requests are only processed by the web server if they pass
work, be capable of scaling to enterprise network sizesg Bavthrough the firewall.
minimal impact on performance, and be straightforward for® Requests are only processed by the database if they come

Il. ARCHITECTURE

system administrator to install and to define policies. from the web server, and are authenticated.
We model the system by dividing it into four major types o#l. If a request fails authentication at the database, thedlte
components (as shown in Figure 2): should drop the request, and not allow any further requemsts f

SensorsSmall programs scattered around the network that gehat source.
erateeventscorresponding to observed network and application An external user issues a request on port 80 for file
behavior. Each sensor is customized for the particulariegpl i ndex. ht m , which contains dynamic content. The request
tion or network link it is observing. A sensor observing a weérrives at the firewall, generating an event. The request is a
server is configured to parse web requests, server &agsin lowed under Rule 1, so the request passes through the firewall
intrusion detection system (IDS) is also considered a senso generating a “passed through the firewall” event. The reques
EventsAn event is any action performed by an application thélten arrives at the web server, generating another everg. Th
may be relevant to some policy decision. Examples of evants policy determines that this request is allowed under Rulee2,
clude authenticating a user, initiating a network conmegtand cause it can verify that the request has passed through éae fir
requesting a file. Events may be positive or negative; a fitewwall (having seen the previously generated events). The file
rejecting a connection is an event. i ndex. ht ml has dynamic content, so the request must authen-
Policy A list of objectives, rules for behavior, requirements, anticate at the database, and then make the appropriate diaety.
responses, whose goal is to ensure the security of the rnetwstep generates a new event and is evaluated by the policg alon
An example policyall incoming requests must connect on porthe way. If authentication fails at the web server, the polises
80 and may only request files nameudex. ht ml . The global an actuator on the firewall to cut off the request and prevent i
policy may be distributed across multiple network nodes. any further access to the network. Under a traditional sgcur
Actuators An actuator is a program which modifies applicatiopolicy, the database might be able to lock out the request, bu
behavior after being triggered by a policy. An actuator rigthe attacker would be allowed to continue probing the retii®f
close a port on a firewall, turn on logging on a file server,neati network.
requests to a web page, or activate an intrusion detectgiarsy
The is the policy enforcement point.

A network, consisting of applications and network links, is To attain the goals of this system, we must address several
observed by theensorseach generatingventsin response to design-related questions. Every design choice has trigléo
requests. Events are evaluated bypbé#cy, which makes deci- performance, scalability, and so on. In this section, weldis

IIl. DESIGN

ISBN 9-9999-9999-9/99/ $20.0402007 IEEE 2

some of the most significant of those questions and give soomint of misbehaviors the session has performed. If théogess

thoughts on answering them. misbehaves, we deduct from the trustworthiness. More $&rio
Which events are noteworthykhy action taken by an appli- misbehavior leads to larger deductions.

cation (or even a non-action) could be relevant to some ypolic

decision. It requires intimate knowledge of the applicatio

determine which actions are truly relevant. Thus, each®ens We will now describe Arachne, our prototype implementa-

may require customization for the specific application iblis tion. Arachne is written inC' and Python, and it consists of

serving. five major components: sensors, principals, an event dsg¢aba
How do we organize event&ent broadcasting and retrievala behavior-based policy engine, and actuators. We willudisc

can be viewed as a publish/subscribe system [1]. Howevér, wéach in turn.

the potential for thousands of sensors, each generating tho

sands of events per minute, it is imperative that only notéwo A- Sensors

events are delivered to specific policy components. Onei-poss Arachne sensors are small programs scattered around the net

bility, which we will explore in Section IV is to aggregateeus work that generateventscorresponding to observed network

through groups of like interest, based on the idea of a sessignd application behavior. Each sensor is customized fqudhe

We informally define a session as the collection of eventegenticular application or network link it is observing. As wellgiee

ated by all services in the process of handling a specificagtquin Section IV-C, a sensor must be configured with some knowl-
Beyond filtering on sessions, it may be desirable to filter astige of the local network topology.

users, target services, or other types of events, thusimgeat

channels for specific users, specific services, or specifitccge B. Principals

types €.g, any event related to any file server). Filters like this The termprincipal has different meanings for different com-

make it possible for the system to detect, for example, exeie ponents in a network. At the network layer, it may be

slow port scans, or misbehavior by a particular user. an IP address. For one application, a principal may be a
Where is the policy enactedThe policy engine may be a (username, password) pair. For another application, a prin-

single centralized entity, or it may be distributed acrosstim cipal may be a public/private key pair. That is, the defimitad

ple components. A centralized policy server may not scale, principal is application-specific.

with fully distributed policy decision-making and enforaent, However, Arachne must be principal-agnostic, which is

it may be more difficult to administer and to define new poliachieved through sensor customization. Sensors mustglrea

cies. The latter case may be alleviated by centralizing tieyo be customized on a per-application basis. When a sensoss cu

management while maintaining a distributed policy engine. tomized, we teach it what a principal is for the application o
How does the policy interact with local policies™ost network link it observes. A sensor for a firewall recognizes |

services have built-in policy mechanisms. Apache hasldress:port pairs as principals, while a sensor for a da&b

. ht access, MySQL has grant tables, and so on. This systemcognizes keys as principals.

might interact with the existing policy mechanisms by: ever

riding the existing mechanism, making all decisions localt C. Eventdatabase

finding a compromise where most decisions are made locallyrecall that one of the design questions for this system is how
the the global mechanism steps in to make corrections. to manage the volume of events that will be generated by the
How is the policy abstractedPhat is, what abstraction do wesensors. Regardless of whether all events are stored in-a cen
use as the basis for enacting the policy? Modern accessotoniifal database or distributed, the volume requires someadeth
models include access control lists (ACLs) and, more régenftor organization. In Arachne, we organize the events usimy t
role-based access control (RBAC). We believe neither is@ppcomponents: a primary MySQL database for storing events, an
priate in this architecture. Consider a scenario where @ach a custom database for linking events istssionsThe primary
coming request is assigned a role from a pre-defined listh Eatatabase allows for queries such as “list all events withsti-de
role has a set of services it is allowed to access. If the iqugation port of 22.”
misbehaves on the web server, we may wish to remove the wela session is a grapty = (V, E) where the vertice¥” are
server from the set of services to which the request is alfiowa set of events and the edg&sare causality links between
access, essentially changing the request's role to a nemitih them. In general, there is no method for identifying catgali
more limited access. Since a new role is required for evesy p@ut sensors distributed through the network can be useditb bu
sible subset of services we may wish to allow for a request, th causality graph that closely approximates the graph tbatdv
list of roles will quickly become unwieldy. Thus, some othepe built with total knowledge. We use sensors with local kihow
mechanism is required. edge to generate special linkage events that indicate ldanisa
As we will explore in more detail in Section 1V, we proposédetween normal events.
a simple metric. For each session, we maintain a value estifor example, a TCP connection arrives at a firewall from
mating the trustworthiness of that session — a simple we@jhtsome IP:port (so the firewall sensor generatesmiaoming con-

IV. ARACHNE

ISBN 9-9999-9999-9/99/ $20.002007 IEEE 3

nection eventand then leaves to IP:otherport (the firewall serbe reduced to 90, immediately triggering the increaseldogt
sor generates departing connection eventand the firewall actuator.

sensoralso generates an event indicating that the previous two

events are causally linked. These three events are prackgse V. DISCUSSION

the session database to build a graph, the first two events ar, thjs section we discuss some subtleties in Arachne, éhclu
between them. vent the system from only becoming more restrictive, and fi-

There are two types of links: links across a single layerifasally, how we prevent the system from entering sensor/émtua
the firewall example) and links that move up or down the negycles.

work/application stack, and there is a sensor that coverl ea

type. A linkage of the latter type is, for example, a TCP comk. Shared principals
nection arriving at a web server that is causally linked wlith
application-layer behavior of responding to the requesgfaiA,
this does require that each sensor be customized for théispe

There are some cases where a principal may be shared. Con-
sider a web server that multiplexes requests over a singie co
o S) fection to a database. All incoming requests to the database
application or network location itis observing. _ share the same key, and hence, the same principal. This opens

When a request. disconnects, a sensor generatastank the possibility for an adversary to mount a denial-of-se\at-
event, so the session graph stored_ln the database always {56 by misbehaving and driving down the score of that key.
resents the current state of the session. To resolve this issue, we require that shared principalegis+
tered with the policy engine so that it can reduce the weidht o
the score of the shared principal (or ignore it all togetindrgn

The policy engine is the core of Arachne’s behavior-baseglculating the behavioral score for a session.
access control mechanism. It maintains a score for eachiprin Unfortunately, some principals may be shared outside aur ne
pal, modifies that score based on events linked to the pahcipvork so we have no direct knowledge of the sharing. For exam-
through its sessions, and changes the network’s respantes t ple, in NAT and DHCP situations, one IP may represent mutipl
principal by triggering actuators. individuals over time. A malicious user behind a NAT can deny

Each principal ID is retained in long-term storage in thengveservice all the other users behind the NAT by misbehaving and
database, along with a behavioral score. Every princigatsst driving down the score. This problem is handled by the fargiv
with a score of 100, and that is also the maximum score. Wheess server, described in Section V-B.
events with non-zero penalty values are associated withrthe A related situation is the case where multiple principats ar
cipal (by being linked through sessions) that value is destlic controlled by a single hidden individual, such as the case of
from the principal’s score. botnet. In this case, we make use of IDS sensors which are

The penalty value for a given event is application-specifiable to detect, for example, DDoS attacks and multi-souoce p
For one application, a failed password is relatively unintgat, scans, and generate a “meta-principal” with linkages tgtire
resulting in a small penalty, while for another it is sigrdiit cipals performing the attack. Thus, each small transgrassi
should result in a large penalty. Sensors are already cimtdm taken by the individual principals is also deducted fromdbere
on a per-application basis, and it is a simple matter to stwe of the meta-principal and the group as a whole is punished.
application-specific penalty values for each class of eaetite
sensor as well. When a sensor generates an event, it attaeheB. Forgiveness server

penalty value before sending it to the event database. &ipil pq described, our system can only get more restrictive over

actuators are locally customized to trigger for a specifi@eof ime To allow for relaxation of a principal's score, we mir

a session’s score. . ~duce the notion of a forgiveness server. Any time a principal
Over the lifetime of a session, the scores for each princigalp|ocked by an actuator from taking some action, they are in

linked to that session are modified based on the penaltysralg@ructed (or redirected automatically, depending on cdite

of the events generated. We treat each session as having\{8g the forgiveness server. The forgiveness server is b we

score of the lowest scoring principal linked to it, but we &€ geryer that examines the score of the incoming principal and

searching more sophisticated heuristics. based on its value, makes the principal perform whatever ac-

tions are necessary to bring the score back to 100. For exampl

« To be forgiven a score of 95, the principal must reply to an
Each actuator is associated with a scoring range for whiabitomated email.

that actuator should trigger. When a session enters that seoTo be forgiven a score of 75, the principal must submit his/he

ing range, the actuator triggers. Consider an actuatortwihic SSN.

creases the log level for sessions in the scoring range &. 0-@ To be forgiven a score of 50, the principal must fill out a form

If a session with a score of 100 fails a password auth, genemxplaining his/her behavior and submit his/her credit canch-

ing an event with a penalty value of 10, the session score wkr.

D. Policy engine

E. Actuators

ISBN 9-9999-9999-9/99/ $20.002007 IEEE 4

« To be forgiven a score of 10, the principal must talk to a sya€cess control. Each principal is assigned one or more, antels

tem administrator on the phone. each role has an associated list of privileges that are ptedni
The specific actions required can be customized on a per-sitembers in the role. Both ACLs and RBAC are useful tools,
application, and principal basis. and may play some part in the system proposed in this pager, bu
alone they do not solve the problems we have described. They
C. Correctness both fall into the gatekeeper category, where the secudligy

There are two fundamental ways the scoring system can fé#lconsulted only once, and there is no mechanism for esuglat
wrongly decrementing a score and wrongly forgiving a score.response.

The first is prevented on an ongoing basis by maintenance ofRecent work [8], [9] on policy-based management [10] and
the part of the system administrator, examining action mspothe NSA's RAJAC (Risk Adaptable Access Control) [11] model
and fine-tuning scores as necessary. The second is prevehtaeg demonstrated that synchronous repeated policy é¢icadua
by the forgiveness server which directly links the forgiges is feasible and desirable. Arachne takes it one step fuether
values with the actions required to receive the forgiven@al allows forasynchronouseevaluation.

There is still a problem, however, and that is the initial as- Most prior work in the policy field can be divided into three
signment of the scores, penalty values, and actuator tiigge major categories: policy specification [12], [13], resalyipol-
ranges. The system administrator starts out with someainiticy conflicts [14], [15], and distributed enforcement [1H]7].
values and then fine-tunes them to correctness. Thisisealy f |n their work in the field of trust management, Blazs,
sible if the session-and-actuator-response package lateso al., [18], [19], [20] built PolicyMaker, a tool that takes a wni
That is, an actuator response can only affect a single ses6io fied approach to describing policies and trust relatiorsip
it affects multiple sessions, then it is possible to causesaade enterprise-scale networks by defining policies based atecre
where a session generates an event which triggers an actugdgs. It is based on a policy engine that identifies whetbenes
which generates an event which triggers another actusttor, request- with credentials: complies with policyp. In Policy-

To prevent these cascades, we disable events generated jgaiker, policies are defined by programs evaluated at runtime
result of an actuator and allow actuators only to affect glsin SpK| [21], [22], [23] is a similar mechanism that uses a forma

session. This reduces the broadness of our system (byr@nitianguage for expressing policies. In both cases, the facos i
the abilities of the actuators) but it prevents catastrophiors. trust management rather than policy correctness.

The session-and-actuator-response is isolated so tha@Imi gonatti, et al, [24] propose an algebra for composing het-
figuration or other error in a single session will not affetiter erogeneous security policies. This is useful in networkt wi
sessions. As long as the configuration is correct for a giesn smytiple policies defined in multiple languages(most net-
sion, that session will continue to be handled, even if sothero yorks today). However, this system requires thltpolicies

session is configured incorrectly. and supporting information and credentials be availabéesin-
The key is that misconfigurations and errors are always p@ge decision point.

sible, but by isolating the effects of those mistakes, &Y \yhen there are multiple policies or multiple users defining

itself continues to operate. policy there is always the possibility of conflict [15]. Theop-

lem is exacerbated in large-scale networks.

o . i The STRONGMAN trust management system [25] focuses
In existing services, the access-control mechanism og®raf, the problem of scaling the enforcement of security poli-

as agatekeeperWhen a principal makes a request, the acces§es and resolving policy conflicts. In STRONGMAN, high-

control mechanism consults a security policy, makes a ®&Gis |eye|, abstract security policies are automatically thates into

and goes inactive. The access-control mechanism (and herggler components for each service in the network. However

the security policy) is not consulted again, regardlessigffa- i, STRONGMAN, if some base assumption in the high-level
ture actions taken by that principal. This style of accesgrod policy is violated, there is no way for the individual comgorts
was first described by Lampson [2], [3], and refined by Gras getect or recover.

ham and Denning [4]. Their work provided the basis for speci- Ponder [26] and SPL [27] are policy languages that avoid

;ylng SE(.:uhm%/ poll|c(j:|e|s n ﬂ;e form of the a::lt;es;cc?_nt_ro:jm:t policy conflicts by depending on a unique namespace for all
rom which the widely used access control list ()is dedv resources in the system. A rule operating on an object is al-

ACLs consist of a list of tuples: ways guaranteed to be operating on the same object, regardle
of where in the system the rule is interpreted.

Firewalls [28], [29] are one of the most common and most
that define the security policy for the system — which sulsjesvell-known mechanisms for policy enforcement. However,
have which access rights on which objects. nearly all firewall research has focused on isolated firewall

ACLs do not scale well in all cases, so in large-scale netaorRodes and the specifics of the enforcement mechanismsy rathe
they are often replaced by role-based access control (REAC) than policy coordination.

[6], [7]. RBAC is now the predominant model for advanced The Oasis architecture [30] takes a wider view and uses arole

VI. RELATED WORK

< subjectobject access rights-

ISBN 9-9999-9999-9/99/ $20.002007 IEEE 5

based system where principals are issued names by sergices. ACKNOWLEDGMENTS

principal can only use a new service on the condition thaadt h This research was sponsored by the NSF through grants CNS-
already been issued a name from a specific other service. Qa-5-,73 and CNS-04-26623. We authorize the U.S. Gov-
SIS r(_ecognlzes_the need to _coordma_te _the depen_de_nueednetv%mment to reproduce and distribute reprints for Governmen
services, but since credentials are limited to verifyingnber-

hip i le.iti o ti lici sel tal purposes notwithstanding any copyright notation tbere
SNip In a group or rolé€, it1s necessary 1o tie policies close Any opinions, findings, and conclusions or recommendations
the groups to which they apply.

. _ _ expressed in this material are those of the authors and do not
The Firmato system [31] is a firewall management toolkihecessarily reflect the views of the NSF or the U.S Government

It provides a portable, unified policy language, indepehdén
the firewall specifics. Firewall configuration files are gexted
automatically from the unified global policy. Firmato is led [
to packet filtering, and the complete policy must be avadatl |3
the policy-enforcement point so Firmato may not scale well i
large networks. 3l

RADIUS [32] and its successor DIAMETER [33] are authen4]
tication, authorization and accounting protocols. Theyuie
communication with a policy server to make policy-based-degs)
sions. These protocols are typically used for user adnnatist
in roaming and dial-up situations.

Park and Sandhu [34] use the notion of usage control (UCON)
to integrate many mechanisms, including authorizatiobkga- 7]
tions, continuity and mutabilityContinuityrefers to the concept
of ongoing controls for long-lived sessions or asynchranau (8]
vocation. UCON uses the continuity concept to allow for re-
evaluating decisions when an attribute change occurs iman gj
tity. Our work extends UCON by re-evaluating decisions when
anyrelevant event occurs.

Hale, et al., [35] propose a ticket-based authorization modé&{°!
to manage distributed policies. In this architecture, eaet
work is managed by a controlling mediator communicatingpwit
a central policy repository. The mediator serves as a midatie [11]
layer, facilitating communication between disparate otgji@nd
principals.

Vandenwauveret al, [36] use a combination of mail, web
and script-based attacks to show that any intranet pratecl]
solely by firewalls and intrusion detections systems caiveot
made completely secure.

[12]

[14]

[15]
VII. CONCLUSION

We have argued that current mechanically-enforced sgcur[lltsl
policies are incapable of addressing the complexities afeno
enterprise networks. They are unable to take full advarmzﬁge[l?]
the defensive capabilities available to them, while thepeh-
dent nature of access-control decision-making leaves ¢loe d
open to adversaries. We propose a system to address thbse
lems through global security policies, where every poliegid
sion is made with near-global knowledge, and re-evaluased a
global knowledge changes. Through the use of actuators, #d
make the full array of defensive capabilities available he t
global policy. We describe Arachne, a prototype implemtorna
of this system. The goal is a coherent, enterprise-wideoresp
to any network threat.

[20]

ISBN 9-9999-9999-9/99/ $20.002007 IEEE

REFERENCES

D. Powell (Guest Ed.), “Group communicatiorlCommunications ACM
vol. 39, pp. 50-97, Apr. 1996

B. Lampson, “Protection,” irProceedings of th&*" Princeton Sympo-
sium on Information Sciences and Systepps 473-443, March 1971.

B. Lampson, “Protection,Operating Systems Reviewol. 8, pp. 18-24,
January 1974.

G. S. Graham and P. J. Denning, “Protection: Principlesd Bractices,”
in Proceedings of the AFIPS Spring Joint Computer Confergmee417—
429, 1972.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. YourtRole-based
access control modeldEEE Computervol. 29, no. 2, pp. 38—-47, 1996.
D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, anddRan-
dramouli, “Proposed NIST Standard for Role-Based AccesstrG
ACM Transactions on Information and System Security (TC3SEI. 4,
pp. 224-274, August 2001

D. F. Ferraiolo, D. R. Kuhn, and R. Chandramoufple Based Access
Control. Artech House, 2003.

R. Choudhary, “A Policy Based Architecture for NSA RAdAdodel,” in
Proceedings of 6th IEEE Workshop on Information Assuramzk $ecu-
rity, (United States Military Academy, West Point, NY), June 200

R. Choudhary, “Compound Identity Measure: A New Conciepinfor-
mation Assurance,” ifProceedings of 7th IEEE Workshop on Information
Assurance and SecurjtfUnited States Military Academy, West Point,
NY), June 2006

J. Schnizlein, J. Strassner, M. Scherling, B. Quinri&zog, A. Huynh,
M. Carlson, J. Perry, and S. Waldbusser, “Terminology fdidyeBased
Management,” Request for Comments (Proposed Standar8) Bitérnet
Engineering Task Force, Nov. 2001.

R. W. McGraw, “Securing Content in the Department of &efe’'s Global
Information Grid,” in Secure Knowledge Management Worksh&@iate
University of New York, Buffalo, NY), September 2004.

M. Blaze, J. Feigenbaum, J. loannidis, and A. D. KeramytThe
KeyNote Trust Management System Version 2." Internet RFQ427
September 1999.

M. Damianou,A Policy Framework for Management of Distributed Sys-
tems PhD thesis, 2002

S. Jajodia, P. Samarati, and V. S. Subrahmanian, “Ackidanguage for
expressing authorizations,” iroceedings of the 1997 IEEE Symposium
on Security and Privagypp. 31-42, May 1997.

L. Cholvy and F. Cuppens, “Analyzing consistency ofigéy policies,”
in RSP: 18th IEEE Computer Society Symposium on Researchunitgec
and Privacy 1997.

M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackaad A. Es-
siari, “Certificate-based access control for widely distted resources,”
in Proceedings of the USENIX Security Symposipm 215-228, August
1999.

A. D. Keromytis, S. loannidis, M. B. Greenwald, and J. $tith, “Man-
aging access control in large scale heterogeneous netivork8roceed-
ings of the NATO NC3A Symposium on Interoperable Networl&dfcure
Communications (INSCNovember 2003.

M. Blaze, J. Feigenbaum, and J. Lacy, “DecentralizassiManagement,”
in Proc. of the 17th Symposium on Security and Priyamy. 164-173,
IEEE Computer Society Press, Los Alamitos, 1996.

M. Blaze, J. Feigenbaum, and M. Strauss, “Complianceckimg in the
PolicyMaker Trust-Management System,”Rmoc. of the Financial Cryp-
tography '98, Lecture Notes = in Computer Science, vol. 1486 254—
274, Springer, Berlin, 1998

M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromyftihe role of
trust management in distributed systems securitySegure Internet Pro-
gramming pp. 185-210.

[21]
[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

C. Ellison, “SPKI requirements,” Request for CommeR&92, Internet
Engineering Task Force, Sept. 1999.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomasd T. Ylonen,
“SPKI certificate theory,” Request for Comments 2693, Im¢Engineer-
ing Task Force, Sept. 1999.

C. M. Ellison, “SDSI/SPKI BNF.” Private Email, July 199

P. Bonatti, S. D. C. di Vimercati, and P. Samarati, “A Miat Approach
to Composing Access Policies,” Froceedings of Computer and Commu-
nications Security (CCS) 200pp. 164—173, November 2000.

A. D. Keromytis, S. loannidis, M. B. Greenwald, and J. $mith, “The
STRONGMAN Architecture,” irProceedings of tha"¢ DARPA Informa-
tion Survivability Conference and Exposition (DISCEX,Ifp. 178-188,
April 2003.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The pangelicy
specification languageecture Notes in Computer Sciena®l. 1995,
pp. 18-38, 2001.

C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes, U8gcpolicy con-
sistency,” 2000.

W. R. Cheswick and S. M. Bellovirkirewalls and Internet Security: Re-
pelling the Wily Hacker Addison-Wesley, 1994.

J. Mogul, R. Rashid, and M. Accetta, “The Packet Filtém Efficient
Mechanism for User-level Network Code,” Rroceedings of the Eleventh
ACM Symposium on Operating Systems Principghes 39-51, November
1987.

R. Hayton, J. Bacon, and K. Moody, “Access Control in ape® Dis-
tributed Environment,” iiEEE Symposium on Security and Privatbiay
1998.

Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: eowel firewall
management toolkit,” ifProceedings of the 1999 IEEE Symposium on Se-
curity and Privacy pp. 17-31, May 1999.

C. Rigney, A. Rubens, W. Simpson, and S. Willens, “Resndathentica-
tion Dial In User Service (RADIUS),” Request for Commentsafbsed
Standard) 2138, Internet Engineering Task Force, Apr. 1997

P. Calhoun, A. Rubens, H. Akhtar, and E. Guttman, “DIAVMER Base
Protocol,” Internet Draft, Internet Engineering Task Fgr®ec. 1999.
Work in progress.

J. Park and R. Sandhu, “The UCQMN < usage control model, ACM
Transactions on Information and System Secunityl. 7, pp. 128-174,
Feb. 2004.

J. Hale, P. Galiasso, M. Papa, and S. Shenoi, “SecudtigyPCoordina-
tion for Heterogeneous Information Systems,Proc. of the 15th Annual
Computer Security Applications Conference (ACSA&rember 1999.
M. Vandenwauver, J. Claessens, W. Moreau, C. Vaduvd, RianMaier,
“Why enterprises need more than firewalls and intrusion atiete sys-
tems,” in IEEE 8th International Workshops on Enabling Technologies
Infrastructure for Collaborative Enterprises (WET ICE)R96-18 June
1999, Stanford, CA, USAp. p.152-7, Los Alamitos, CA, USA : IEEE
Comput. Soc, 1999.

ISBN 9-9999-9999-9/99/ $20.002007 IEEE

