
Proceedings of the 2007 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY, 20-22 June 2007

Arachne: Integrated Enterprise Security Management

Matthew Burnside, Angelos D. Keromytis

Abstract— Security policies are a key component in protecting enter-
prise networks. There are many defensive options availableto these poli-
cies, but current mechanically-enforced security policies are limited to tra-
ditional admission-based access control. There are defensive capabilities
available that include logging, firewalls, honeypots, rollback/recovery, and
intrusion detection systems, but policy enforcement is essentially limited
to allow/deny semantics. Furthermore, access-control mechanisms operate
independently on each service, which often leads to inconsistent or incor-
rect application of the intended system-wide policy. To begin to solve these
problems, we propose a new system for defense-in-depth using global secu-
rity policies. Under a global security policy, every policydecision is made
with near-global knowledge, and re-evaluated as global knowledge changes,
given an initial configuration provided by the administrator. Using a vari-
ety of actuators, we make the full array of defensive capabilities available
to the global policy. We outline our proposal for enterprise-wide security
policies, explore the design space, and discuss Arachne, our prototype im-
plementation.

I. I NTRODUCTION

Modern security policies are inflexible. They are limited bya
mismatch between notions of policy enforcement and the defen-
sive capabilities in the network. There are a variety of defensive
options available to a large network, including but not limited to
logging, firewalls, honeypots, and intrusion detection systems –
mechanisms that allow for escalating the response to an attack
– but policy enforcement is essentially limited to allow/deny se-
mantics.

Furthermore, traditional access-control mechanisms usedin
enterprise networks operate independently on each service.
When a user issues a request to a network service, the service’s
access-control mechanism independently uses its securitypol-
icy to make a decision on how to handle the request, then goes
inactive. There may be information relevant to the decisionelse-
where in the network, but the decision is made without consult-
ing any other network entities, so the component may arrive at a
locally correct, but globally wrongdecision.

The access-control mechanism then goes inactive after its ini-
tial use, so no future action by the user within the context of
the security policy can cause the decision to be revisited. This
presents a problem with long-lived sessions (e.g., SSH), because
there is traditionally no action by the user that can cause the
access-control mechanism to re-examine its decision.

Consider a local network with a web server and database con-
nected to the Internet through a firewall, as shown in Figure 1.
The security policy at the firewall (the firewall rule set) is defined
by hand by the system administrator, as are the policies at the

CS Department, Columbia University, mb@cs.columbia.edu
CS Department, Columbia University, angelos@cs.columbia.edu

F irewallInternet W eb s erver Databas e

Fig. 1. Example network. A web server and database are connected to the
Internet through a firewall.

web server and database (htaccess and grant tables, respec-
tively). Each of these policies is evaluated by the corresponding
application, with no input from the other network entities,even
though that input might sometimes be highly relevant, as we
shall see shortly. Additionally, there are many defensive capa-
bilities available to this network, including using the firewall to
redirect misbehaving traffic to a honeypot, logging mildly sus-
picious traffic, and asking for re-authentication at the database.
However, there is no coherent mechanism for specifying or co-
ordinating these responses.

The applications make policy decisions independently, so
each application must make assumptions on the behavior of the
others. In this case, the security policy at the web server must
implicitly assume that all of its traffic has arrived throughthe
firewall. An attacker can compromise the system by bypassing
the firewall, through insider knowledge (gaining access to alo-
cal machine) or through an open wireless access point. He can
then probe the web server’s scripts for, say, SQL-injectionvul-
nerabilities with impunity. The firewall verifies that each packet
it sees conforms to its security policy, but the attacker’s misbe-
havior goes unnoticed. There is no way for the web server to de-
termine that an incoming request has been vetted by the firewall.
We observe that although the network services work togetherin
handling requests, there is no cooperation in determining the
proper security context for authorizing these requests.

To resolve these conflicts, we propose a new scheme based
on global security policies. Every policy decision is made
with near-global knowledge, and then re-evaluated as the global
knowledge changes. Furthermore, through the use ofactuators,
we make the complete array of defensive options available tothe
policy. In this paper, we will explore the design space of such
a system, raising questions such as how to define and distribute
policies, how to scale the system, and how to manage informa-
tion flow, and then describe our prototype implementation called
Arachne.

The remainder of this paper is organized as follows. In Sec-

ISBN 9-9999-9999-9/99/ $20.00c©2007 IEEE 1

P olicyP olicy

E vents

Actuators

Network: applications , network links ,

routers , etc.

Network: applications , network links ,

routers , etc.

S ens ors

Fig. 2. System model. Sensors generate events, which are processed by the
policy, which makes decisions and notifies actuators to modify network and
application behavior.

tion II we describe the general model for systems to solve this
problem. We discuss some of the design tradeoffs in the spacein
Section III. We give some details on our prototype, Arachne,in
Sections IV and V. We discuss some related work in Section VI
and conclude the paper in Section VII.

II. A RCHITECTURE

Our goal is to create the tools necessary to make auto-
mated policy decisions in an enterprise network with near-global
knowledge, and to re-evaluate those decisions in real time.For
this system to be viable, it must improve the security of the net-
work, be capable of scaling to enterprise network sizes, have a
minimal impact on performance, and be straightforward for a
system administrator to install and to define policies.

We model the system by dividing it into four major types of
components (as shown in Figure 2):
SensorsSmall programs scattered around the network that gen-
erateeventscorresponding to observed network and application
behavior. Each sensor is customized for the particular applica-
tion or network link it is observing. A sensor observing a web
server is configured to parse web requests, server logs,etc. An
intrusion detection system (IDS) is also considered a sensor.
EventsAn event is any action performed by an application that
may be relevant to some policy decision. Examples of events in-
clude authenticating a user, initiating a network connection, and
requesting a file. Events may be positive or negative; a firewall
rejecting a connection is an event.
Policy A list of objectives, rules for behavior, requirements, and
responses, whose goal is to ensure the security of the network.
An example policy:all incoming requests must connect on port
80 and may only request files namedindex.html. The global
policy may be distributed across multiple network nodes.
Actuators An actuator is a program which modifies application
behavior after being triggered by a policy. An actuator might
close a port on a firewall, turn on logging on a file server, redirect
requests to a web page, or activate an intrusion detection system.
The is the policy enforcement point.

A network, consisting of applications and network links, is
observed by thesensors, each generatingeventsin response to
requests. Events are evaluated by thepolicy, which makes deci-

Internet F irewall W eb Db

P olicyP olicy

E vents

ActuatorsS ens ors

Fig. 3. The example network under our model.

sions and notifies theactuatorsto modify application behavior
in response.

Figure 3 shows the model as applied to the example from Fig-
ure 1. The firewall, web server, and database are observed by
sensors which generate events which are evaluated by the pol-
icy; the policy then signals the actuators to modify each appli-
cation’s behavior in response to observed events. For example,
consider the following policy:
1. Incoming requests are only allowed through the firewall if
they are on port 80.
2. Requests are only processed by the web server if they pass
through the firewall.
3. Requests are only processed by the database if they come
from the web server, and are authenticated.
4. If a request fails authentication at the database, the firewall
should drop the request, and not allow any further requests from
that source.

An external user issues a request on port 80 for file
index.html, which contains dynamic content. The request
arrives at the firewall, generating an event. The request is al-
lowed under Rule 1, so the request passes through the firewall,
generating a “passed through the firewall” event. The request
then arrives at the web server, generating another event. The
policy determines that this request is allowed under Rule 2,be-
cause it can verify that the request has passed through the fire-
wall (having seen the previously generated events). The file
index.html has dynamic content, so the request must authen-
ticate at the database, and then make the appropriate query.Each
step generates a new event and is evaluated by the policy along
the way. If authentication fails at the web server, the policy uses
an actuator on the firewall to cut off the request and prevent it
any further access to the network. Under a traditional security
policy, the database might be able to lock out the request, but
the attacker would be allowed to continue probing the rest ofthe
network.

III. D ESIGN

To attain the goals of this system, we must address several
design-related questions. Every design choice has trade-offs in
performance, scalability, and so on. In this section, we discuss

ISBN 9-9999-9999-9/99/ $20.00c©2007 IEEE 2

some of the most significant of those questions and give some
thoughts on answering them.

Which events are noteworthy?Any action taken by an appli-
cation (or even a non-action) could be relevant to some policy
decision. It requires intimate knowledge of the application to
determine which actions are truly relevant. Thus, each sensor
may require customization for the specific application it isob-
serving.

How do we organize events?Event broadcasting and retrieval
can be viewed as a publish/subscribe system [1]. However, with
the potential for thousands of sensors, each generating thou-
sands of events per minute, it is imperative that only noteworthy
events are delivered to specific policy components. One possi-
bility, which we will explore in Section IV is to aggregate events
through groups of like interest, based on the idea of a session.
We informally define a session as the collection of events gener-
ated by all services in the process of handling a specific request.

Beyond filtering on sessions, it may be desirable to filter on
users, target services, or other types of events, thus creating
channels for specific users, specific services, or specific service
types (e.g., any event related to any file server). Filters like this
make it possible for the system to detect, for example, extremely
slow port scans, or misbehavior by a particular user.

Where is the policy enacted?The policy engine may be a
single centralized entity, or it may be distributed across multi-
ple components. A centralized policy server may not scale, but
with fully distributed policy decision-making and enforcement,
it may be more difficult to administer and to define new poli-
cies. The latter case may be alleviated by centralizing the policy
management while maintaining a distributed policy engine.

How does the policy interact with local policies?Most
services have built-in policy mechanisms. Apache has
.htaccess, MySQL has grant tables, and so on. This system
might interact with the existing policy mechanisms by: over-
riding the existing mechanism, making all decisions locally, or
finding a compromise where most decisions are made locally
the the global mechanism steps in to make corrections.

How is the policy abstracted?That is, what abstraction do we
use as the basis for enacting the policy? Modern access control
models include access control lists (ACLs) and, more recently,
role-based access control (RBAC). We believe neither is appro-
priate in this architecture. Consider a scenario where eachin-
coming request is assigned a role from a pre-defined list. Each
role has a set of services it is allowed to access. If the request
misbehaves on the web server, we may wish to remove the web
server from the set of services to which the request is allowed
access, essentially changing the request’s role to a new role with
more limited access. Since a new role is required for every pos-
sible subset of services we may wish to allow for a request, the
list of roles will quickly become unwieldy. Thus, some other
mechanism is required.

As we will explore in more detail in Section IV, we propose
a simple metric. For each session, we maintain a value esti-
mating the trustworthiness of that session – a simple weighted

count of misbehaviors the session has performed. If the session
misbehaves, we deduct from the trustworthiness. More serious
misbehavior leads to larger deductions.

IV. A RACHNE

We will now describe Arachne, our prototype implementa-
tion. Arachne is written inC and Python, and it consists of
five major components: sensors, principals, an event database,
a behavior-based policy engine, and actuators. We will discuss
each in turn.

A. Sensors

Arachne sensors are small programs scattered around the net-
work that generateeventscorresponding to observed network
and application behavior. Each sensor is customized for thepar-
ticular application or network link it is observing. As we will see
in Section IV-C, a sensor must be configured with some knowl-
edge of the local network topology.

B. Principals

The termprincipal has different meanings for different com-
ponents in a network. At the network layer, it may be
an IP address. For one application, a principal may be a
〈username, password〉 pair. For another application, a prin-
cipal may be a public/private key pair. That is, the definition of
principal is application-specific.

However, Arachne must be principal-agnostic, which is
achieved through sensor customization. Sensors must already
be customized on a per-application basis. When a sensor is cus-
tomized, we teach it what a principal is for the application or
network link it observes. A sensor for a firewall recognizes IP
address:port pairs as principals, while a sensor for a database
recognizes keys as principals.

C. Event database

Recall that one of the design questions for this system is how
to manage the volume of events that will be generated by the
sensors. Regardless of whether all events are stored in a cen-
tral database or distributed, the volume requires some method
for organization. In Arachne, we organize the events using two
components: a primary MySQL database for storing events, and
a custom database for linking events intosessions. The primary
database allows for queries such as “list all events with a desti-
nation port of 22.”

A session is a graphG = (V, E) where the verticesV are
a set of events and the edgesE are causality links between
them. In general, there is no method for identifying causality,
but sensors distributed through the network can be used to build
a causality graph that closely approximates the graph that would
be built with total knowledge. We use sensors with local knowl-
edge to generate special linkage events that indicate causal links
between normal events.

For example, a TCP connection arrives at a firewall from
some IP:port (so the firewall sensor generates anincoming con-

ISBN 9-9999-9999-9/99/ $20.00c©2007 IEEE 3

nection event) and then leaves to IP:otherport (the firewall sen-
sor generates adeparting connection event), and the firewall
sensoralsogenerates an event indicating that the previous two
events are causally linked. These three events are processed by
the session database to build a graph, the first two events are
the initial two vertices and the third event represents the link
between them.

There are two types of links: links across a single layer (as in
the firewall example) and links that move up or down the net-
work/application stack, and there is a sensor that covers each
type. A linkage of the latter type is, for example, a TCP con-
nection arriving at a web server that is causally linked withthe
application-layer behavior of responding to the request. Again,
this does require that each sensor be customized for the specific
application or network location it is observing.

When a request disconnects, a sensor generates anunlink
event, so the session graph stored in the database always rep-
resents the current state of the session.

D. Policy engine

The policy engine is the core of Arachne’s behavior-based
access control mechanism. It maintains a score for each princi-
pal, modifies that score based on events linked to the principal
through its sessions, and changes the network’s responses to the
principal by triggering actuators.

Each principal ID is retained in long-term storage in the event
database, along with a behavioral score. Every principal starts
with a score of 100, and that is also the maximum score. When
events with non-zero penalty values are associated with theprin-
cipal (by being linked through sessions) that value is deducted
from the principal’s score.

The penalty value for a given event is application-specific.
For one application, a failed password is relatively unimportant,
resulting in a small penalty, while for another it is significant
should result in a large penalty. Sensors are already customized
on a per-application basis, and it is a simple matter to storethe
application-specific penalty values for each class of eventat the
sensor as well. When a sensor generates an event, it attachesthe
penalty value before sending it to the event database. Similarly,
actuators are locally customized to trigger for a specific range of
a session’s score.

Over the lifetime of a session, the scores for each principal
linked to that session are modified based on the penalty values
of the events generated. We treat each session as having the
score of the lowest scoring principal linked to it, but we arere-
searching more sophisticated heuristics.

E. Actuators

Each actuator is associated with a scoring range for which
that actuator should trigger. When a session enters that scor-
ing range, the actuator triggers. Consider an actuator which in-
creases the log level for sessions in the scoring range of 0-95.
If a session with a score of 100 fails a password auth, generat-
ing an event with a penalty value of 10, the session score will

be reduced to 90, immediately triggering the increase-log-level
actuator.

V. D ISCUSSION

In this section we discuss some subtleties in Arachne, includ-
ing shared principals, how we use a forgiveness server to pre-
vent the system from only becoming more restrictive, and fi-
nally, how we prevent the system from entering sensor/actuator
cycles.

A. Shared principals

There are some cases where a principal may be shared. Con-
sider a web server that multiplexes requests over a single con-
nection to a database. All incoming requests to the database
share the same key, and hence, the same principal. This opens
the possibility for an adversary to mount a denial-of-service at-
tack by misbehaving and driving down the score of that key.
To resolve this issue, we require that shared principals be regis-
tered with the policy engine so that it can reduce the weight of
the score of the shared principal (or ignore it all together)when
calculating the behavioral score for a session.

Unfortunately, some principals may be shared outside our net-
work so we have no direct knowledge of the sharing. For exam-
ple, in NAT and DHCP situations, one IP may represent multiple
individuals over time. A malicious user behind a NAT can deny
service all the other users behind the NAT by misbehaving and
driving down the score. This problem is handled by the forgive-
ness server, described in Section V-B.

A related situation is the case where multiple principals are
controlled by a single hidden individual, such as the case ofa
botnet. In this case, we make use of IDS sensors which are
able to detect, for example, DDoS attacks and multi-source port
scans, and generate a “meta-principal” with linkages to theprin-
cipals performing the attack. Thus, each small transgression
taken by the individual principals is also deducted from thescore
of the meta-principal and the group as a whole is punished.

B. Forgiveness server

As described, our system can only get more restrictive over
time. To allow for relaxation of a principal’s score, we intro-
duce the notion of a forgiveness server. Any time a principal
is blocked by an actuator from taking some action, they are in-
structed (or redirected automatically, depending on context) to
visit the forgiveness server. The forgiveness server is a web
server that examines the score of the incoming principal and,
based on its value, makes the principal perform whatever ac-
tions are necessary to bring the score back to 100. For example:
• To be forgiven a score of 95, the principal must reply to an
automated email.
• To be forgiven a score of 75, the principal must submit his/her
SSN.
• To be forgiven a score of 50, the principal must fill out a form
explaining his/her behavior and submit his/her credit cardnum-
ber.

ISBN 9-9999-9999-9/99/ $20.00c©2007 IEEE 4

• To be forgiven a score of 10, the principal must talk to a sys-
tem administrator on the phone.

The specific actions required can be customized on a per-site,
application, and principal basis.

C. Correctness

There are two fundamental ways the scoring system can fail:
wrongly decrementing a score and wrongly forgiving a score.

The first is prevented on an ongoing basis by maintenance on
the part of the system administrator, examining action reports
and fine-tuning scores as necessary. The second is prevented
by the forgiveness server which directly links the forgiveness
values with the actions required to receive the forgiven value.

There is still a problem, however, and that is the initial as-
signment of the scores, penalty values, and actuator triggering
ranges. The system administrator starts out with some initial
values and then fine-tunes them to correctness. This is only fea-
sible if the session-and-actuator-response package is isolated.
That is, an actuator response can only affect a single session; if
it affects multiple sessions, then it is possible to cause a cascade
where a session generates an event which triggers an actuator
which generates an event which triggers another actuator,etc.

To prevent these cascades, we disable events generated as a
result of an actuator and allow actuators only to affect a single
session. This reduces the broadness of our system (by limiting
the abilities of the actuators) but it prevents catastrophic errors.
The session-and-actuator-response is isolated so that a miscon-
figuration or other error in a single session will not affect other
sessions. As long as the configuration is correct for a given ses-
sion, that session will continue to be handled, even if some other
session is configured incorrectly.

The key is that misconfigurations and errors are always pos-
sible, but by isolating the effects of those mistakes, the system
itself continues to operate.

VI. RELATED WORK

In existing services, the access-control mechanism operates
as agatekeeper. When a principal makes a request, the access-
control mechanism consults a security policy, makes a decision,
and goes inactive. The access-control mechanism (and hence,
the security policy) is not consulted again, regardless of any fu-
ture actions taken by that principal. This style of access control
was first described by Lampson [2], [3], and refined by Gra-
ham and Denning [4]. Their work provided the basis for speci-
fying security policies in the form of the access control matrix,
from which the widely used access control list (ACL) is derived.
ACLs consist of a list of tuples:

< subject, object, access rights>

that define the security policy for the system – which subjects
have which access rights on which objects.

ACLs do not scale well in all cases, so in large-scale networks
they are often replaced by role-based access control (RBAC)[5],
[6], [7]. RBAC is now the predominant model for advanced

access control. Each principal is assigned one or more roles, and
each role has an associated list of privileges that are permitted
members in the role. Both ACLs and RBAC are useful tools,
and may play some part in the system proposed in this paper, but
alone they do not solve the problems we have described. They
both fall into the gatekeeper category, where the security policy
is consulted only once, and there is no mechanism for escalating
response.

Recent work [8], [9] on policy-based management [10] and
the NSA’s RAdAC (Risk Adaptable Access Control) [11] model
have demonstrated that synchronous repeated policy evaluation
is feasible and desirable. Arachne takes it one step furtherand
allows forasynchronousreevaluation.

Most prior work in the policy field can be divided into three
major categories: policy specification [12], [13], resolving pol-
icy conflicts [14], [15], and distributed enforcement [16],[17].

In their work in the field of trust management, Blaze,et
al., [18], [19], [20] built PolicyMaker, a tool that takes a uni-
fied approach to describing policies and trust relationships in
enterprise-scale networks by defining policies based on creden-
tials. It is based on a policy engine that identifies whether some
requestr with credentialsc complies with policyp. In Policy-
Maker, policies are defined by programs evaluated at runtime.
SPKI [21], [22], [23] is a similar mechanism that uses a formal
language for expressing policies. In both cases, the focus is on
trust management rather than policy correctness.

Bonatti, et al., [24] propose an algebra for composing het-
erogeneous security policies. This is useful in networks with
multiple policies defined in multiple languages (i.e., most net-
works today). However, this system requires thatall policies
and supporting information and credentials be available ata sin-
gle decision point.

When there are multiple policies or multiple users defining
policy there is always the possibility of conflict [15]. The prob-
lem is exacerbated in large-scale networks.

The STRONGMAN trust management system [25] focuses
on the problem of scaling the enforcement of security poli-
cies and resolving policy conflicts. In STRONGMAN, high-
level, abstract security policies are automatically translated into
smaller components for each service in the network. However,
in STRONGMAN, if some base assumption in the high-level
policy is violated, there is no way for the individual components
to detect or recover.

Ponder [26] and SPL [27] are policy languages that avoid
policy conflicts by depending on a unique namespace for all
resources in the system. A rule operating on an object is al-
ways guaranteed to be operating on the same object, regardless
of where in the system the rule is interpreted.

Firewalls [28], [29] are one of the most common and most
well-known mechanisms for policy enforcement. However,
nearly all firewall research has focused on isolated firewall
nodes and the specifics of the enforcement mechanisms, rather
than policy coordination.

The Oasis architecture [30] takes a wider view and uses a role-

ISBN 9-9999-9999-9/99/ $20.00c©2007 IEEE 5

based system where principals are issued names by services.A
principal can only use a new service on the condition that it has
already been issued a name from a specific other service. Oa-
sis recognizes the need to coordinate the dependencies between
services, but since credentials are limited to verifying member-
ship in a group or role, it is necessary to tie policies closely to
the groups to which they apply.

The Firmato system [31] is a firewall management toolkit.
It provides a portable, unified policy language, independent of
the firewall specifics. Firewall configuration files are generated
automatically from the unified global policy. Firmato is limited
to packet filtering, and the complete policy must be available at
the policy-enforcement point so Firmato may not scale well in
large networks.

RADIUS [32] and its successor DIAMETER [33] are authen-
tication, authorization and accounting protocols. They require
communication with a policy server to make policy-based deci-
sions. These protocols are typically used for user administration
in roaming and dial-up situations.

Park and Sandhu [34] use the notion of usage control (UCON)
to integrate many mechanisms, including authorizations, obliga-
tions, continuity and mutability.Continuityrefers to the concept
of ongoing controls for long-lived sessions or asynchronous re-
vocation. UCON uses the continuity concept to allow for re-
evaluating decisions when an attribute change occurs in an en-
tity. Our work extends UCON by re-evaluating decisions when
anyrelevant event occurs.

Hale,et al., [35] propose a ticket-based authorization model
to manage distributed policies. In this architecture, eachnet-
work is managed by a controlling mediator communicating with
a central policy repository. The mediator serves as a middleware
layer, facilitating communication between disparate objects and
principals.

Vandenwauver,et al., [36] use a combination of mail, web
and script-based attacks to show that any intranet protected
solely by firewalls and intrusion detections systems cannotbe
made completely secure.

VII. C ONCLUSION

We have argued that current mechanically-enforced security
policies are incapable of addressing the complexities of modern
enterprise networks. They are unable to take full advantageof
the defensive capabilities available to them, while the indepen-
dent nature of access-control decision-making leaves the door
open to adversaries. We propose a system to address these prob-
lems through global security policies, where every policy deci-
sion is made with near-global knowledge, and re-evaluated as
global knowledge changes. Through the use of actuators, we
make the full array of defensive capabilities available to the
global policy. We describe Arachne, a prototype implementation
of this system. The goal is a coherent, enterprise-wide response
to any network threat.

ACKNOWLEDGMENTS

This research was sponsored by the NSF through grants CNS-
06-27473 and CNS-04-26623. We authorize the U.S. Gov-
ernment to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright notation thereon.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or the U.S Government.

REFERENCES

[1] D. Powell (Guest Ed.), “Group communication,”Communications ACM,
vol. 39, pp. 50–97, Apr. 1996.

[2] B. Lampson, “Protection,” inProceedings of the5th Princeton Sympo-
sium on Information Sciences and Systems, pp. 473–443, March 1971.

[3] B. Lampson, “Protection,”Operating Systems Review, vol. 8, pp. 18–24,
January 1974.

[4] G. S. Graham and P. J. Denning, “Protection: Principles and Practices,”
in Proceedings of the AFIPS Spring Joint Computer Conference, pp. 417–
429, 1972.

[5] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based
access control models,”IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

[6] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST Standard for Role-Based Access Control,”
ACM Transactions on Information and System Security (TISSEC), vol. 4,
pp. 224–274, August 2001.

[7] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli,Role Based Access
Control. Artech House, 2003.

[8] R. Choudhary, “A Policy Based Architecture for NSA RAdACModel,” in
Proceedings of 6th IEEE Workshop on Information Assurance and Secu-
rity, (United States Military Academy, West Point, NY), June 2005.

[9] R. Choudhary, “Compound Identity Measure: A New Conceptin Infor-
mation Assurance,” inProceedings of 7th IEEE Workshop on Information
Assurance and Security, (United States Military Academy, West Point,
NY), June 2006.

[10] J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S.Herzog, A. Huynh,
M. Carlson, J. Perry, and S. Waldbusser, “Terminology for Policy-Based
Management,” Request for Comments (Proposed Standard) 3198, Internet
Engineering Task Force, Nov. 2001.

[11] R. W. McGraw, “Securing Content in the Department of Defense’s Global
Information Grid,” in Secure Knowledge Management Workshop, (State
University of New York, Buffalo, NY), September 2004.

[12] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The
KeyNote Trust Management System Version 2.” Internet RFC 2704,
September 1999.

[13] M. Damianou,A Policy Framework for Management of Distributed Sys-
tems. PhD thesis, 2002.

[14] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A logical language for
expressing authorizations,” inProceedings of the 1997 IEEE Symposium
on Security and Privacy, pp. 31–42, May 1997.

[15] L. Cholvy and F. Cuppens, “Analyzing consistency of security policies,”
in RSP: 18th IEEE Computer Society Symposium on Research in Security
and Privacy, 1997.

[16] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Es-
siari, “Certificate-based access control for widely distributed resources,”
in Proceedings of the USENIX Security Symposium, pp. 215–228, August
1999.

[17] A. D. Keromytis, S. Ioannidis, M. B. Greenwald, and J. M.Smith, “Man-
aging access control in large scale heterogeneous networks,” in Proceed-
ings of the NATO NC3A Symposium on Interoperable Networks for Secure
Communications (INSC), November 2003.

[18] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust Management,”
in Proc. of the 17th Symposium on Security and Privacy, pp. 164–173,
IEEE Computer Society Press, Los Alamitos, 1996.

[19] M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance Checking in the
PolicyMaker Trust-Management System,” inProc. of the Financial Cryp-
tography ’98, Lecture Notes = in Computer Science, vol. 1465, pp. 254–
274, Springer, Berlin, 1998.

[20] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The role of
trust management in distributed systems security,” inSecure Internet Pro-
gramming, pp. 185–210.

ISBN 9-9999-9999-9/99/ $20.00c©2007 IEEE 6

[21] C. Ellison, “SPKI requirements,” Request for Comments2692, Internet
Engineering Task Force, Sept. 1999.

[22] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,and T. Ylonen,
“SPKI certificate theory,” Request for Comments 2693, Internet Engineer-
ing Task Force, Sept. 1999.

[23] C. M. Ellison, “SDSI/SPKI BNF.” Private Email, July 1997.
[24] P. Bonatti, S. D. C. di Vimercati, and P. Samarati, “A Modular Approach

to Composing Access Policies,” inProceedings of Computer and Commu-
nications Security (CCS) 2000, pp. 164–173, November 2000.

[25] A. D. Keromytis, S. Ioannidis, M. B. Greenwald, and J. M.Smith, “The
STRONGMAN Architecture,” inProceedings of the3rd DARPA Informa-
tion Survivability Conference and Exposition (DISCEX III), pp. 178–188,
April 2003.

[26] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,”Lecture Notes in Computer Science, vol. 1995,
pp. 18–38, 2001.

[27] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes, “Security policy con-
sistency,” 2000.

[28] W. R. Cheswick and S. M. Bellovin,Firewalls and Internet Security: Re-
pelling the Wily Hacker. Addison-Wesley, 1994.

[29] J. Mogul, R. Rashid, and M. Accetta, “The Packet Filter:An Efficient
Mechanism for User-level Network Code,” inProceedings of the Eleventh
ACM Symposium on Operating Systems Principles, pp. 39–51, November
1987.

[30] R. Hayton, J. Bacon, and K. Moody, “Access Control in an Open Dis-
tributed Environment,” inIEEE Symposium on Security and Privacy, May
1998.

[31] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: a novel firewall
management toolkit,” inProceedings of the 1999 IEEE Symposium on Se-
curity and Privacy, pp. 17–31, May 1999.

[32] C. Rigney, A. Rubens, W. Simpson, and S. Willens, “Remote Authentica-
tion Dial In User Service (RADIUS),” Request for Comments (Proposed
Standard) 2138, Internet Engineering Task Force, Apr. 1997.

[33] P. Calhoun, A. Rubens, H. Akhtar, and E. Guttman, “DIAMETER Base
Protocol,” Internet Draft, Internet Engineering Task Force, Dec. 1999.
Work in progress.

[34] J. Park and R. Sandhu, “The UCONABC usage control model,”ACM
Transactions on Information and System Security, vol. 7, pp. 128–174,
Feb. 2004.

[35] J. Hale, P. Galiasso, M. Papa, and S. Shenoi, “Security Policy Coordina-
tion for Heterogeneous Information Systems,” inProc. of the 15th Annual
Computer Security Applications Conference (ACSAC), December 1999.

[36] M. Vandenwauver, J. Claessens, W. Moreau, C. Vaduva, and R. Maier,
“Why enterprises need more than firewalls and intrusion detection sys-
tems,” in IEEE 8th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET ICE’99), 16-18 June
1999, Stanford, CA, USA, pp. p.152–7, Los Alamitos, CA, USA : IEEE
Comput. Soc, 1999.

ISBN 9-9999-9999-9/99/ $20.00c©2007 IEEE 7

