
SSARES: Secure Searchable Automated Remote Email Storage∗†

Adam J. Aviv
Department of Computer and Information Science

University of Pennsylvania
aviv@seas.upenn.edu

Michael E. Locasto
Department of Computer Science

Columbia University
locasto@cs.columbia.edu

Shaya Potter
Department of Computer Science

Columbia University
spotter@cs.columbia.edu

Angelos D. Keromytis
Department of Computer Science

Columbia University
angelos@cs.columbia.edu

Abstract

The increasing centralization of networked services
places user data at considerable risk. For example, many
users store email on remote servers rather than on their lo-
cal disk. Doing so allows users to gain the benefit of reg-
ular backups and remote access, but it also places a great
deal of unwarranted trust in the server. Since most email
is stored in plaintext, a compromise of the server implies
the loss of confidentiality and integrity of the email stored
therein. Although users could employ an end–to–end en-
cryption scheme (e.g., PGP), such measures are not widely
adopted, require action on thesenderside, only provide
partial protection (the email headers remain in the clear),
and prevent the users from performing some common oper-
ations, such as server–side search.

To address this problem, we present Secure Searchable
Automated Remote Email Storage (SSARES), a novel system
that offers a practical approach to both securing remotely
stored email and allowing privacy–preserving search of that
email collection. Our solution encrypts email (the head-
ers, body, and attachments) as it arrives on the server us-
ing public–key encryption. SSARES uses a combination of
Identity Based Encryption and Bloom Filters to create a
searchable index. This index reveals little information about
search keywords and queries, even against adversaries that
compromise the server. SSARES remains largely transpar-
ent to both the sender and recipient.

∗This work was partially supported by the National Science Foundation
through Grant ITR CNS-04-26623.

†all work done at the Network Security Lab at Columbia University
Department of Computer Science

1 Introduction

Most email is both sent and stored in a plaintext format.
During transmission, encryption standards, such as SSL,
can protect a message from eavesdroppers. However, email
“at rest” (stored on the server) remains at risk. Servers that
store email and provide remote access and easy backups of
a user’s mailbox are also trusted to protect the email’s con-
tents; a compromised server implies the compromise of the
users’ email, and a user cannot easily prevent such a sit-
uation. Even though email content can be secured using
public-key encryption (e.g.,PGP), this solution alone is not
viable for two reasons. First, PGP preserves the headers
of the email so that the message can be properly delivered.
Consequently, an attacker can still partially compromise the
users’ privacy by determining who the user is communicat-
ing with. More importantly, PGP-style protection relies on
the correspondents actively employing the tool. Unfortu-
nately, the use of public-key encryption is not widespread
among the general public.

The first step toward a solution to the email ”at rest”
problem involves the construction of an email system that
provides confidentiality protection without the direct inter-
action of the user. Having a transparent procedure would
allow for the average user to not change his/her normal
email practices while still being assured of the protection
provided. Incoming email can be completely encrypted on
the email server as it arrives. More precisely, the email
body, headers, and attachments are entirely encrypted using
a RSA-style public key so that once encrypted, the email
can not be read except by the appropriate recipient. Doing
so assures that, regardless of who the sender is, the content
will be protected once it arrives. The users’ email practices
need not change, and they do not need to convince their cor-
respondents to alter theirs.

1



Since the server encrypts the entire message with a pub-
lic key upon arrival, it cannot access any content in the
email once the message is encrypted, limiting the amount
of data exposure to an attacker that compromises the sys-
tem. However, the server also cannot provide search ca-
pabilities like those supported by email protocols such as
POP or IMAP. Although we could move the search process
to the client, doing so requires extra processing and band-
width, since every message must be transferred, decrypted,
and then searched. If the client is working from a mobile
device or has a large amount of email, this choice involves
serious delay. It seems that we have arrived at an impasse:
we gain confidentiality protection but must relinquish the
ability to search the archive of encrypted emails.

A first approach to remote searches of the encrypted
email archive uses a hash table to reference keywords within
a message. A user sends a hash of the keyword, and the
server uses the hash table to determine which messages
matches the request without decrypting any messages or
needing knowledge of the keyword being searched. If an at-
tacker compromises the server, however, the attacker would
have access to the hash table and could perform a dictionary
attack using keywords that are relevant to the victim. The
attacker could also watch the user perform searches and ini-
tiate a dictionary attack against the hash requests. Both the
emails and the search mechanism require protection.

To solve the problem of simultaneously protecting email
”at rest” and allowing for keyword-based searching, we
present Secure Searchable Automated Remote Email Stor-
age (SSARES). Our system completely encrypts incom-
ing messages and also allows a user to search their email
without revealing identifiable information about either the
keywords of the messages or the keywords in the search
queries. The system is built using a combination of PEKS
(Public Key Encryption with Keyword Search) [5], a form
of Identity Based Encryption (IBE) that works with a pub-
lic/private key architecture, and Bloom Filters [4].

Our threat model focuses on two types of attackers. The
first can break into the server and download the contents of
the mailbox for offline analysis. The second observes the
system in action and watches how messages are matched to
try and determine the contents. Of course, once the server
becomes compromised, all subsequent arriving unencrypted
messages are trivially exposed.

2 Related Work

Songet al. studied the problem of searching encrypted
data by using asymmetric key techniques [15]. Their system
requires the user to perform keyword encryption locally so
that no information is leaked to the untrusted server. For
newly arriving email, the keywords must be stored in an
unsearchable format until the user can connect and encrypt

the keywords using the searchable format.
Goh presented an encrypted Bloom Filter, Z-IDX, that

is secure against adaptive chosen keyword attack [10]. The
document is encrypted with a public key on the server, but a
Z-IDX is attached to the message only after the client con-
nects, downloads new messages, decrypts them, creates the
Z-IDX, and returns it to the server. Once the Z-IDX is cre-
ated by the user, the user can produce trapdoors, an encryp-
tion of the keyword. The server can use the trapdoor to test
whether that keyword is contained in the filter. Bellovinet
al. presented a similar technique, but their scheme requires
an independent third party [3]. The system is designed such
that two or more parties may share data when they do not
fully trust each other. It is geared toward database queries,
and as such it does not match our needs because the third
party can be considered as untrustworthy as the server it-
self.

Ballard et al. developed a correlation-resistant storage
technique for a ”survivable” storage network capable of us-
ing untrusted nodes [2]. Curtomolaet al. describe a search-
able symmetric encryption scheme with properties similar
to Goh [9]. Although their approach is more efficient than
SSARES, the system still requires the user to encrypt con-
tent locally in order to protect the secret key, and thus would
not fit our goal for transparent operations. Other work in
this area has been done for a remote file system [8] and for
a distributed storage system [1].

Bonehet al. introduced a new method to perform IBE
with a Weil Pairing [6]. Although a number of papers have
leveraged this work, the work most relevant to SSARES is
by Bonehet al. [5], which introduced the PEKS process.
Parket al. enhanced the PEKS concept for use as device-
specific private keys and describes an application for email
gateways [13]. Park also introduced a mode of PEKS that
allows for conjunctive keyword searching [14]. Although
not currently implemented in SSARES, conjunctive key-
word searching would be a valuable feature to add. Guet
al. showed how to remove covert channels from the PEKS
encryption, and presented an efficient scheme that removed
the pairing operation from the encryption procedure [11].
Waterset al. used a form of the PEKS procedure to build
an encrypted searchable audit log [16]. It uses a three-party
system, an encrypted database with PEKS referencing, an
audit escrow agent that managed key distribution, and an
authentication system.

2.1 PEKS

The PEKS process consists of four functions. They are
as follows:

1. KeyGen(s): generates a public/private-key pair,Apub

andApriv, given a security parameters

2



2. PEKS(Apub, W ): given a public-key,Apub, and a
word, W , produces the searchable encryption, or the
PEKS, calledS

3. Trapdoor(Apriv , W ): given the private keyApriv and
a word W, it produces an encrypted trapdoorTW

4. Test(Apub, S, TW ): given the public keyApub, a
trapdoorTW , andS = PEKS(Apub, W

′), outputs
match if W = W ′ andno match otherwise

The construction of PEKS that SSARES uses is based on
a bilinear map of elliptic curves. It uses two groupsG1, G2

of prime orderp with a bilinear mape : G1XG1 → G2

between them. There are also two hash functions that fit the
following criteria:

1. H1 : {0, 1}∗ → G1

2. H2 : G2 → {0, 1} logp

The more detailed construction is as follows:

1. KeyGen(p): The security parameter determines the
size, p, of the groupsG1 and G2. It next picks a
randomα and a generatorg of G1, and it outputs
Apub = [g, h = gα] andApriv = α.

2. PEKS(Apub, W ): computest = e(H1(W ), hr)
wherer is randomly generated, and outputs
PEKS(Apub, W ) = [gr, H2(t)] = S[A, B]

3. Trapdoor(Apriv , W ): TW = H1(W )α which is con-
tained inG1

4. Test(Apub, S, TW ): if H2(e(TW , A)) = B then it is a
match otherwise it isno match

A message is parsed for keywords. The original message
can be encrypted and each keywordi can be encrypted
using the PEKS public-key,Apub, to create a searchable
encryptionSi. EachSi can then be appended to the end
of the encrypted message in a list form. For a messageM
and a public-key encryption algorithmEpub, the resulting
remote searchable messageM ′ can be visualized like this:

M ′ = [Epub(M), S1, S2, ..., Si, ..., Sn]

To search for a keyword, a trapdoor can be created using
the PEKS private key,Apriv, and the keyword. The trap-
door can then be tested against the PEKS list usingApub,
and if any match, then the keyword is contained in the mes-
sage.

This construction is non-interactive and can thus be
used autonomously between client and server due to the
public/private-key structure.

2.2 Bloom Filter

A Bloom Filter is an array,B, of m bits that are ini-
tialized to zeros. There is also a set ofk independent hash
functions that are uniformly distributed between[0, m− 1].

To add an entry into the Bloom Filter for a wordW ,
calculate

b1 = H1(W )
b2 = H2(W )
...
bk = Hk(W )

Each bi represents an index intoB, and each corre-
sponding location inB is set to1. To check if a wordW
is represented in the index, the same hashing procedure
is used. If for eachbi there is a corresponding1 at the
location B[bi], thenW is probabilistically represented in
the Bloom Filter. If any of thebi locations have0, then
W is definitively not represented in the Bloom Filter. The
probability of a false-positive, or the error of the filter, can
be calculated using this formula.

(1 − (1 − 1/m)))kn)k

wheren is the number of records, or words, that are cur-
rently represented in the index.

3 SSARES Design

SSARES contains three major components that imple-
ment the storage protection and searching capabilities men-
tioned in Section 1. The first two components handle the
encryption of newly arrived email as well as providing the
server-side mechanisms for searching the email archive.
The third component operates on the client side and han-
dles the composition and issuance of search requests to the
server.

The first component, SSARES Email Production, em-
ploys RSA-style public key encryption to completely en-
crypt incoming email, and also extracts keywords from the
email to be encrypted using the PEKS public key. The re-
sult of the PEKS encryption is a secure searchable form of
each keyword, a “peks”, that can only be searched by the
client using their PEKS private key. Each keyword’s asso-
ciated peks is then appended to the completely encrypted
email in the form of a list, a “peks-list.” The output form of
the email, called an SSARES Email, is an encapsulation of
the completely encrypted original email and the peks-list in
a new email construct with a unique id associated with it.
The SSARES Email is then stored in a SSARES Mailbox to

3



be referenced for searches. The original email is removed
from the system and can no longer be accessed except by
the client using their RSA-style private key.

The client-side component, SSARES Query Production,
enables the user to create a “trapdoor,” an encrypted form of
a keyword that uses the PEKS private key. A trapdoor and
a peks can be securely compared to determine if there are
a match without revealing the underlying keyword. Each
trapdoor created represents one keyword the user wishes to
search for. The output of SSARES Query Production is a
SSARES Query, which is simply a list of trapdoors, and is
then sent to the server to be used in searching.

The last component, SSARES Search, runs on the server
side. Using the client’s search request, the SSARES Query,
and the client’s SSARES Mailbox, SSARES Search per-
forms PEKS testing, a comparison of the trapdoors in the
query to the peks list of each SSARES email in the mail-
box. All resulting matches are returned to the client, and
decrypted on the client side. Using PEKS, the server (or an
adversary that controls it) does not learn what the matched
keyword was. Figure 1(a) provides a visual representation
of how information, keys, and requests are distributed be-
tween client and server in the SSARES system.

(a) Diagram of SSARES System and Client, Server Interaction.

(b) Diagram of SSARES Email
and Search Query.

Figure 1. SSARES Design Diagrams

Even a small mailbox with 100 emails, containing 400

keywords each, could require up to 40,000 peks to test on
each search, which would create significant delays. To al-
leviate this overhead, we introduce a Bloom Filter with an
adjustable amount of error built in (we call this construct an
“error-prone filter”). More precisely, an error-prone filter
is a Bloom Filter with a high false-positive rate (25%) so
that it becomes difficult to retrieve accurate results when an
attacker initiates a dictionary attack. Each SSARES email
produced has an associated error-prone filter and a peks-
list. The SSARES query has a list of error-less Bloom Fil-
ters, query filters, as well as the list of trapdoors. SSARES
Search first checks each query filter against the error-prone
filter, and it eliminates 75% of the messages on average
(only if a match occurs are the trapdoors and peks-list used).
This approach allows SSARES to quickly ignore messages
unrelated to the user’s query. A visual description of the
resulting SSARES Query and Email is available in Fig-
ure 1(b).

A number of optimizations are meant to make SSARES
more practical in terms of search speeds. For example, us-
ing multiple peks-list per message, one for each message
part (To, From, Subject,etc.), allows more precise search-
ing by reducing the total number of peks to test. Also, we
use a technique we refer to as Alpha-Sorting, where each
peks has the first character of the unencrypted keyword left
in the clear to be matched before testing an individual peks.
A SSARES Query would not only have a query-filter but
also the appropriate peks-list to test and the Alpha-Sorting
technique per keyword the user wishes to search for.

3.1 SSARES Component Design

We next examine SSARES’s key distribution and the de-
tails of what happens when the server receives new mail
(SSARES Email Production), when the user requests a
search (SSARES Query Production), and finally when the
server searches the email (SSARES Search).

Key Distribution The server has three sets of regis-
tered keys with the user. The first is a standard RSA public
key, the second is the PEKS public key, and the third is
the Weil Pairing that is needed to perform PEKS operation.
The user’s keeps locally on their machine an RSA private
key and the PEKS private key.

SSARES Email Production When the server receives
email, it must convert it into a SSARES Email as discussed
above. This process takes place in two phases. The first
phase parses the email for keywords. The parsing choices
made by SSARES are discussed in Section 4.1. The sec-
ond phase completely encrypts the message (headers, body,
and attachments), creates the error-prone filter, and gener-
ates the peks-lists, one per message part. It is during the sec-
ond phase that Alpha-Sorting techniques are implemented.
The completed SSARES Email format encapsulates the en-

4



crypted email as its body and the error-prone filter and peks-
lists as attachments. SSARES synthesizes headers; the only
meaningful headers are a unique message identifier and the
date. The SSARES email is now ready for storage, and is
placed in the SSARES mailbox. After these two phases fin-
ish, SSARES discards both the original unencrypted email
and the unencrypted keyword list, securely deleting them
from both memory and disk.

SSARES Query Production To assist the user in
searching their email, the client-side search component cre-
ates a query filter and a trapdoor per keyword the client
wishes to search for. The client also specifies which mes-
sage part to search in for each keyword. Query Produc-
tion then creates the trapdoor using the PEKS private key
and the query-filters. The resulting SSARES Query is then
sent to the server-side search component, which performs
the actual search. If the user wishes to search for multiple
keywords, a query filter and a trapdoor is produced per re-
quested keyword and the Alpha-Sorting technique is used
as well. In this case, the SSARES Query contains a query
filter list and a trapdoor list with Alpha-Sorting. SSARES
does not inject error into the query filters because doing so
would most probably cause the server-side error-prone fil-
ters to not match the query. The potentially matching email
would then be erroneously ignored.

However, refraining from injecting error into query fil-
ters offers an attacker the best opportunity to perform a dic-
tionary attack. If the attacker were able to successfully de-
duce the keyword used to create the filter, he can perform
a search and gain information about the encrypted email.
The worst case scenario occurs when a user searches for
one keyword. One filter and one trapdoor are produced, and
the attacker knows that the results of the dictionary attack
relates to this given trapdoor. Due to a random coefficient
in the trapdoor encryption procedure, however, the attacker
cannot match the broken trapdoor to later trapdoor requests.
With multiple keyword searches, the attacker would not be
able to match a query filter to a specific trapdoor, but the
attacker can still replay a search and determine which mes-
sages (including more recently received ones) match the
SSARES Query.

SSARES Search The server receives the SSARES
query, performs a search of the SSARES mailbox, and re-
turns matching messages to the client. For each message in
the mailbox, the server first checks to see if any of the query
filters matches the error-prone filter. On the first match of
a query filter, the server next performs PEKS testing on the
appropriate peks-list matching the message part specified in
the query. Before each individual peks is tested, SSARES
Search first checks the Alpha-Sorting component, and only
if there is a match does the search component test the peks
against the trapdoor. On the first match of any of the trap-
doors, the email’s unique ID is added to return list. If none

of the trapdoors match any of the peks in the peks-list, then
the SSARES query does not match this email, and the algo-
rithm moves onto the next email in the SSARES mailbox. If
none of the query filters matched the error-prone filter, then
there is no need to perform the PEKS testing, and the algo-
rithm moves on to the next email. Once there are no more
emails to test in the SSARES mailbox, the server returns the
list of matched email’s unique IDs to the user.

Search speed depends on how many PEKS-encrypted
keywords must be tested, since this operation is the most
time-consuming. However, using the error-prone filter
has the potential to eliminate 75% of the messages, and
SSARES would only have to perform PEKS testing on 25%
of the messages (at most). This reduction does not im-
ply, however, that the search only tests 25% of the PEKS-
encrypted keywords on a search. Each email will have a
varied amount of keywords, and it could be the case that the
25% of email messages that do need to be checked consists
of a much larger percentage of the total PEKS-encrypted
keywords. To help combat this we implemented Alpha-
Sorting, but as will be shown, Alpha-Sorting alone does not
completely solve this problem.

4 Implementation

The SSARES implementation proceeded in two stages.
The first stage focused on the construction of two
command-line applications written inC. These applica-
tions perform PEKS operations and the Bloom Filter cre-
ation and testing. These applications provide a core library
that is invoked by the Python wrapper scripts written dur-
ing the second stage of development. The wrapper scripts
supervise email handling and parsing, provide input to the
command-line applications, construct the SSARES format-
ted emails and queries, and execute the search.

The PEKS application leverages the Stanford PBC li-
brary [12], a C package implementing various Identity
Based Encryption algorithms. Our PEKS application uses
the bilinear map function, which is the heart of the PEKS
encryption process. Using the PBC library, we created an
extension that performs PEKS operations (we refer to this
component as the PEKS library in the remainder of the pa-
per). It uses/dev/urandom for randomness, and SHA1
for hash operations (although we intend to use SHA256 in
the future). Our user-level application exposes the basic op-
erations of the PEKS library (key generation, trapdoor gen-
eration, PEKS generation, and PEKS testing).

We also developed a new Bloom Filter library. We chose
reasonable defaults for the configuration settings exposed
by the library. The length of the filters is 200 bytes (1600
bits) and use 5 hash functions. The hashes are obtained
usingSHA1SUM. We split the 20-byte digest into 5 parts.
Each 4-byte segment is interpreted as an unsigned integer

5



modulo 1600 to get the desired range. The minimum er-
ror building was chosen to be 25%, as we already men-
tioned. The library accomplishes error building by adding
extra “words” to the Bloom Filter. A random word is gener-
ated by reading from/dev/urandom. After this noise is
added to the filter, the library computes the error using the
formula in Section 2.2. Once the filter error has reached or
surpassed the minimum error level, the algorithm halts.

We used this library to provide the core of our second
command-line application. This application works in three
stages: generate filter, generate query, and test. Generating
a filter requires a list of keywords as input, and outputs an
error-prone filter (for the minimum false-positive rate speci-
fied). No error is built in when creating a query. Instead, the
application processes a list of keywords and outputs a sepa-
rate query filter per keyword. When testing, the application
receives a list of query filters and an error-prone filter. Upon
the first match of any of the query filters, it returns and re-
ports a match. If all the query filters do not match, then the
application returns and reports no match.

4.1 SSARES Email and Query Production

With the Bloom Filter and PEKS applications serv-
ing as a foundation, we developed wrapper scripts in
Python. The scripts are designed to handle email and
command line input to the application. The first script,
SSARES email parse.py, transforms a new email into
a SSARES email as described in Section 3. The script ex-
ecutes on the server and makes use of the RSA and PEKS
public keys. The script first parses the email for keywords.
Keywords are taken from theTo:, From:, Date:, and
Subject: headers. All words from the body of the
email are considered keywords, except for common words
of three letters or less. Attachment names are also consid-
ered keywords. Keywords are organized into fields depend-
ing on their position in the email, namely the section from
which they were extracted. A separate peks-list is created
for each field. Doing so enables more specific searching and
can potentially reduce the number of PEKS testing needed
to complete a search.

It is also at this phase that Alpha-Sorting is implemented.
Within each peks-list, each individual PEKS will have the
first letter of the unencrypted keyword exposed, so that dur-
ing testing, if the unencrypted letter does not match the cor-
responding letter provided in the query, there is no need to
perform the PEKS test. This must be done at this point in
the procedure because the original email and the keyword
lists are then purged from the system.

Only one error-prone filter is created per message, and it
contains the hashes of all the keywords in the message re-
gardless of their field. This organization allows SSARES to
eliminate a message from a search with only one test of the

Bloom Filter. In contrast, if each field has an error-prone
filter, the probability of having to perform PEKS testing in-
creases with each additional filter test. For example, with
four Bloom Filters to test per message (each having a min-
imum error of 25%) every message would on average have
at least one filter that matched, and thus at least one of the
attached peks-list would need to be tested. We avoid this
situation because it would render the filters useless.

A second script,SSARES email search.py, helps
the user query the email archive. It uses the PEKS private
key to create trapdoors. The user provides a list of keywords
per field. The script then calls the Bloom Filter application
to produce the query filter and calls the PEKS script to cre-
ate the desired trapdoors. We separate each trapdoor into a
list according to the queried field so that they may be tested
against the proper peks-list on the server. Just as before, the
trapdoors, like each PEKS in the peks-list of each SSARES
Email, will have the first letter of the unencrypted keyword
exposed so that Alpha-Sorting technique can be used. Ob-
viously, since there is only one error-prone filter to test per
message, the query filters are not separated. Finally, the
script sends the resulting SSARES Query to the server to
perform a SSARES search.

Searching is accomplished using the
SSARES mailbox test.py script. The script
accepts as input an SSARES Email created using
SSARES email parse.py and an SSARES Query
created usingSSARES email search.py and tests for
a match using the algorithm described in Section 3. The
output of the script is a list of SSARES Email unique IDs,
which can then be returned to the client. As a result, the
user can request each matching email individually and
decrypt and read it locally.

5 Evaluation

We evaluated SSARES in three parts: email production,
query production, and searching. The sample set of emails
we used consisted of 100 messages from the Enron Data
Set [7]. All tests were run on a Red Hat Enterprise Linux
machine with a Pentium 4 CPU at 3.00 GHz.

5.1 SSARES Email Production

We ran theSSARES email parse.py script over our
sample dataset to produce a SSARES Mailbox. Figure 2
shows the results. Figure 2(a) and Figure 2(b) show the rela-
tionship between the original size of the email in bytes and
the number of keywords, respectively, and the size of the
resulting SSARES Email in bytes with a best fit line. Both
graphs display a strong linear relationship, but the number
of keywords appears to have more influence on the final size

6



(a) Original Email Size to SSARES Email Size in
Bytes

(b) Number of Keywords to SSARES Email Size in
Bytes

(c) Number of Keywords to Time of SSARES En-
cryption

(d) Original Email Size to Time of SSARES Encryp-
tion

Figure 2. Graphs for Email Production

of the SSARES Email than the original size of the unen-
crypted email. This effect is due to the fixed size of the
PEKS-encrypted keywords. A larger number of keywords
implies more PEKS-encryption results, leading to a larger
SSARES Email.

The average original email size was 2523 bytes, while
the average SSARES email size was 94,863 bytes, repre-
senting an average increase factor of 37, as shown by the
slope of Figure 2(a). Given the current and foreseeable
cost of storage, we believe this tradeoff to be reasonable for
some environments, but not entirely satisfactory. Nonethe-
less, we are investigating techniques for minimizing this
overhead. The slope of Figure 2(b), at 387.27, represents
the average amount of space one keyword in the original
email takes up in the final encrypted email. Even a rela-
tively small message that is excessively “wordy” can poten-
tially take up more space than an unencrypted message that
might be larger but contain fewer distinct words.

Figure 2(c) and Figure 2(d) display time dependencies
in SSARES Email Production. Figure 2(c) shows a direct
relationship between the number of keywords and the time
of email production. The slope, at 0.07, indicates the aver-
age amount of time in seconds per keyword in encryption.
Figure 2(d) also displays a linear relationship between the
original size of the email and the time of encryption, but
the linear relationship is most likely linked to the fact that
larger emails tend to have more keywords. The average time
of encryption was 17.17 seconds with a standard deviation
of 24.17 seconds. The worst case was 179.31 seconds, but

this particular email contained over 1,000 keywords. Speed
of encryption is not a critical performance factor because
email is a transport medium that already operates on the
order of minutes. A message arriving after an additional
minute would not render the system unusable.

5.2 SSARES Query Production

To test query production, we obtained keywords dur-
ing the email production test by collecting keywords while
parsing the body and subject of the email. Three different
forms of SSARES Queries with varying amounts of key-
words (1 to 20) were produced with the subject and body as
the search fields, both with and without Alpha-Sorting.

The first form of SSARES Queries were ”first-match”
queries in that the first keyword provided was a match for
at least one message. The second was ”last-match” queries:
the last keyword provided is a match for an email. The third
form is ”no match” queries, where none of the keywords are
a match. We produced non-matching keywords by append-
ing numerals to the end of the search keywords. The vari-
ety of SSARES Queries were chosen so that the produced
queries can be used during searching and provide varying
results on different styles of searches.

Figure 3 displays the results from the SSARES query
production test. Figure 3(a) shows the relationship between
the number of keywords and the time it takes to produce
a query. Query production is relatively fast, even with an
excessive amount of keywords. Using twenty keywords,

7



(a) Number of Keywords Being Searched to Time
(sec) per Message in Search

(b) Number of Keywords being Searched to Time of
Search

(c) Number of Matches to Time (s) of Search (d) Time (s) per Message for a Match or No Match

Figure 4. Graphs for Overall Searching on the Subject without Alpha Sorting

it took less then 2 seconds to produce a query. This time
is an important performance factor, because total search-
ing speed is dependent on how fast the client can produce
a query. The size, in bytes, of the resulting queries is dis-
played in Figure 3(b) as it relates to the size, in bytes, of
the keywords being searched for. There is a semblance of
a linear relationship, most likely due to the fixed amount of
information that must be produced (the filter and the trap-
door) and the fixed size of these. The size of queries seems
to be reasonable, at most 9 KB, and should not pose serious
performance issues.

5.3 SSARES Search

The SSARES Queries produced by the SSARES Query
Production testing were used to run the search testing over
the SSARES Mailbox produced in the email production
testing. Figures 4(a) and 4(b) show how the time of search-
ing in seconds relates directly to the number of keywords
being searched for, but it is also dependent on the number
of keywords per message in the mailbox, as expected. There
is a general decrease in search speed (increase in search
time) as the number of keywords increases, and the out-
lying points above the grouping represent the searching of
the email that contains over a thousand keywords. Even
without Alpha-Sorting (using just the error-prone filters)it
only takes about 7 seconds to search the largest message
and only 2.7 seconds on average, but one can see clearly in
Figure 4(b) that these times add up to a fairly slow overall
searching speed. A small search of 1 to 6 keywords over 100

emails can take half a minute. It should also be noted that
these search results were done on the subject of the emails,
whose associated peks-list is much shorter then the body of
the email. One particular search with 8 keywords took over
a minute, which is probably due to matching the messages
with longest peks-list. A query with just 1 keyword can
have this effect, and a search that takes over a minute is a
significant delay for reasonable use and justifies the use of
filters and Alpha-Sorting to increase the speed of the search.
Without the filters, a search could take hours, but even with
filters alone SSARES is not fast enough to be reasonably
practical.

The effects of the Bloom Filter on searching speed is
drastic. Figure 5(a) shows this best. When a query fails the
filter, we can eliminate it from the search in under a second,
but if the filter was passed, then the time per message can
be between 1 and 7 seconds. Figure 5(b) is even more en-
couraging, as it shows how many messages per search we
were able to eliminate using the filter. On average, we were
able to eliminate 76% of the messages, which also matches
our minimum error rate of 25%. Changing the minimum er-
ror of the filter should have effects on the overall searching
speed, at the cost of reduced privacy.

Additionally, search testing was performed with the
added Alpha-Sorting technique, which had a profound ef-
fect on search speed. Looking at Figure 6, one can see
that with just the filters, average search speed for search-
ing the Subject of the email were 28.88 (s) and 0.27 (s) per
email. Alpha-Sorting improved the speed to 7.00 (s) per

8



(a) Search Speed for Subject Search without Alpha-Sorting

(b) Search Speed for Subject Search with Alpha-Sorting

(c) Search Speed for Body Search with Alpha-Sorting

Figure 6. Search Speed Comparison with Alpha-Sorting

search and 0.05 (s) per email. But, search testing on the
body, whose peks-list contains many more keywords than
the subject, shows how there is still a need for speed im-
provement as the number of peks to test increases. Using
Alpha-Sorting, the 46.47 (s) average search and 0.45 (s) av-
erage per email is still too slow to offer true practicality
when it comes to searching the largest peks-list of the email,
namely the body.

6 Conclusion

We have presented SSARES, a novel system that takes
a practical approach to addressing the problem of simulta-
neously securing email at rest and allowing search of that
email. The combination of Bloom Filter with intentionally
added errors, PEKS encryption, and Alpha Sorting provides
an automated and transparent process so that normal email
practices of sender and receiver need not change. Instead,

a list of automatically generated keywords is compared (in
a secure manner) with a search query. SSARES helps im-
prove the security of server–side email storage, and if prop-
erly implemented, can have a significant impact on the pri-
vacy of user email and other information stored with third
party providers.

References

[1] S. Artzi, A. Kiezum, C. Newport, and D. Schultz. Encrypted
Keyword Search in Distributed Storage System.MIT CSAIL
Tech Report, MIT-CSAIL-TR-2006-010, February 2006.

[2] L. Ballard, M. Green, B. de Medeiros, and F. Monrose.
Correlation-Resistant Storage via Keyword Searchable En-
cryption. Cryptology ePrint Archive, Report 2005/417,
2005.

[3] S. M. Bellovin and W. R. Cheswick. Privacy-
Enhanced Searches Using Encrypted Bloom Filters.
<www.cs.columbia.edu/ smb/papers/>, DRAFT, 2006.

9



(a) Number of Keywords to Time in Query Produc-
tion

(b) Size of Keywords (bytes) to Size of Query
(bytes)

Figure 3. Graphs for Query Production

[4] B. Bloom. Space/time trade-offs in hash coding with allow-
able errors.Communications of the ACM, 13(7):422–426,
July 1970.

[5] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. In C. Cachin
and J. Camenisch, editors,Proceedings of Eurocrypt, pages
506–522, 2004.

[6] D. Boneh and M. Franklin. Identity-Based Encryption from
Weil Pairing. SIAM Journal of Computing, 32(3):586–615,
2003.

[7] CALO Project. Enron Data Set.<Enronmail.com>, 2004.
[8] Y.-C. Chang and M. Mitzenmacher. Privacy Preserving Key-

word Searches. InProceedings of ACNS, pages 442–455,
June 2005.

[9] R. Cutmola, J. Garay, S. Kamara, and R. Ostrovsky. Search-
able Symmetric Encryption: Improved Definition and Effi-
cient Constructions. InProceedings of ACM CCS, Novem-
ber 2006.

[10] E.-J. Goh. Secure Indexes.Cryptology ePrint Archive, Re-
port 2003/216, 2003.

[11] C. Gu, Y. Zhu, and Y. Zhang. Efficient Public Key Encryp-
tion with Keyword Search Scheme from Pairings.Cryptol-
ogy ePrint Archive, Report 2006/108, 2006.

[12] B. Lynn. The Pairing Based Cryptography Library.
<crypto.stanford.edu/pbc/>.

[13] D. Park, J. Cha, and P. Lee. Searchable Keyword-Based
Encryption.Cryptography ePrint Archive, Report 2005/367,
2005. Available at http://eprint.iacr.org.

[14] D. Parl, K. Kim, and P. Lee. Public Key Encryption with
Conjuctive Field Keyword Search. In C. Lim and M. Yung,
editors,Proceedings of WISA, pages 73–86, 2004.

(a) Time per Message for Either Failed of Passed
Bloom Filter

(b) Number of Messages to Fail Filter to Time(s) per
Search

Figure 5. Effects of the Bloom Filter

[15] D. Song, D. Wagner, and A. Perrig. Practical Techniques
for Searches on Encrypted Data. InIEEE Symposium on
Security and Privacy, pages 44–55, May 2000.

[16] B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Building
and Encrypted and Searchable Audit Log.Proceedings of
ISOC NDSS, February 2004.

10


