
PalProtect: A Collaborative Security Approach to Comment Spam

Benny Wong, Michael E. Locasto, Angelos D. Keromytis

Network Security Laboratory

Department of Computer Science, Columbia University in the City of New York

{bw2024,locasto,angelos}@cs.columbia.edu

Abstract— Collaborative security is a promising solution
to many types of security problems. Organizations and in-
dividuals often have a limited amount of resources to detect
and respond to the threat of automated attacks. Enabling
them to take advantage of the resources of their peers by
sharing information related to such threats is a major step
towards automating defense systems.

In particular, comment spam posted on blogs as a way
for attackers to do Search Engine Optimization (SEO) is a
major annoyance. Many measures have been proposed to
thwart such spam, but all such measures are currently en-
acted and operate within one administrative domain. We
propose and implement a system for cross-domain informa-
tion sharing to improve the quality and speed of defense
against such spam.

I. Introduction

The use of blogging software is an extremely popular web
application. Blogging complements traditional means of
Internet communication like email and instant messaging.
The use of blogs ranges from personal journals to corporate
marketing. More serious blogs attempt to supplement or
replace traditional journalism and political punditry.

While blogs facilitate group discussion, it is the very in-
teractive nature of this communication that opens it to
attack. Often, the blog software and users themselves are
not the target of attack. Rather, the application is used
as a platform for Search Engine Optimization. Attackers
use the comment posting functionality of blogs to submit
comments that include links to the sites they want to ad-
vertise. When search engines index the blog, including the
comments of each post, the attacker hopes that the sheer
number of links that he has inserted across a number of
blogs will increase the ranking of the target site in search
results.

Besides threatening to decrease the quality of search re-
sults, spam comments waste the time and resources of blog
owners and hosting companies. The insertion of comment
spam is often automated, and the sheer amount of it makes
manually identifying and deleting comment spam a time–
consuming process, in addition to taking up a significant
portion of the space that a blog owner may have allocated
(or been allocated, in a hosted environment) for the blog
content.

Disabling comments is a somewhat unsatisfactory solu-
tion to this problem. It is akin to an email spam solu-
tion where no-one is allowed to send an unsolicited email
(and thus no-one can start an email conversation with
an unknown contact). Such strategies are self-defeating.
What is needed is a high-quality, high-confidence, auto-
mated mechanism for identifying and deleting comment
spam as it is submitted. While a number of technolo-
gies have been proposed and implemented (mostly adapted
from current email spam solutions), none perform auto-
mated cross-domain sharing of comment spam signatures.

We present the design and implementation of PalPro-
tect, a plug-in for the popular WordPress blogging soft-
ware. PalProtect automatically identifies comment spam,
creates a signature for it, and distributes the signature to
a collection of peers. PalProtect is a concrete example of a
collaborative security system.

II. Related Work

Collaborative security is the growing trend towards shar-
ing information security resources within and across admin-
istrative domains and systems to improve the overall secu-
rity of the peer group. Three areas of computer security
where a collaborative approach are immediately applicable
are (a) worm detection and notification, (b) self-healing
software, and (c) spam filtering. The reasoning is that a
larger and more widespread network of sensors can achieve
more complete knowledge of an attack more quickly than
a single isolated node.

This observation is a widespread one. In particular,
for worm detection [1], notification [2], and containment
[3] systems, a collaborative approach is mentioned several
times in the literature. Systems that seek to generate signa-
tures for worm traffic include Autograph [4] and EarlyBird
[5]. Both papers refer to signature distribution as a fun-
damental step in defending against worms. A recent study
by Moore et al. [2] concludes that a worm containment
response needs to occur within three minutes. In addition,
the participation of nearly all major AS’s is required for a
containment to be effective. While these requirements are
quite challenging, they confirm that foreseeable threats are

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 170

best addressed by a collaborative approach.

Vigilante [6] is a system motivated by the need to contain
Internet worms. To that end, Vigilante supplies a mech-
anism to detect an exploited vulnerability. A major ad-
vantage of this vulnerability-specific approach is that Vigi-
lante is exploit-agnostic and can potentially be used to de-
fend against polymorphic worms. While Vigilante doesn’t
address the self-healing of a piece of exploited software,
it defines an architecture for production and verification
of Self-Certifying Alerts (SCA’s), a data structure for ex-
changing information about the discovered vulnerability.
Vigilante works by analyzing the control flow path taken
by executing injected code.

Collaborative security can also be leveraged for more
mundane intrusion detection tasks. DOMINO [7] is a sys-
tem for correlating intrusion alerts. Lincoln et al. examine
the problem of privacy–preserving alert sharing for IDS sys-
tems [8], one of the challenges proposed in Du and Atallah
[9]. Kruegel et al. [10] propose a peer-to-peer system that
recognizes attacks in a distributed manner. In their system,
only a small number of messages needed to be exchanged
to determine that an attack was underway.

A collaborative approach to security also seems useful in
the context of self-healing software. Not only can networks
and end-hosts exchange information about intrusion alerts,
but they can also exchange information about exploited
vulnerabilities and code patches for these vulnerabilities.
Application Communities [11] are one particular expres-
sion of this idea whereby a large collection of hosts agree
to collaboratively monitor small slices of each instance of
an application locally. When a fault or vulnerability is
discovered, information that enables the host to prevent
further occurrences of that fault is exchanged with peers.

The system most closely related to ours is Vipul’s Ra-
zor (http://razor.sourceforge.net). It is a reputation-
based system for filtering email spam, but the identification
of spam is not automated. Like most collaborative security
approaches, it requires some amount of community buy-
in to increase its effectiveness. Challenges for this system
(as with ours) also include privacy-preservation, trust and
reputation issues, and peers with differing profiles. While
some of these problems can be solved with white-listing,
our approach uses Z-strings to help address privacy con-
cerns. Z-strings are one-way data structures that remove
the ability to reconstruct the original input that forms a
signature, but can still be used to match.

III. Architecture

PalProtect is a plug-in to the WordPress blog software
that enables weblog owners to identify and prevent spam
comments from entering the system. It does so by creat-
ing unique signatures from the comments that have been
identified as spam. Comments can be classified as spam
by both automated (another anti-spam plug-in) or manual

(blog administrator review) mechanisms. This information
can then be recorded and used to identify future comments
that may be spam.

In addition, PalProtect not only uses this information
to prevent potential spam comments, it shares this infor-
mation with its peers so that they can benefit from it as
well. When a signature is created for the blog that initially
catches the spam comment, and the signature is inserted
into PalProtect’s database, PalProtect proceeds to notify
its peers of the new signature. This creates a collabora-
tive threat prevention system that fosters the concept of
learning from other peoples mistakes.

A. Spam Detection

Initial detection of a spam comment can be done through
a number of other anti-spam plug-ins. We treat these plug-
ins as sensors that provide the information PalProtect will
use. PalProtect’s primary function is correlation, although
it does maintain its own signature database as a last resort
to classify and block comment spam. These sensors include
Akismet, Bayesian Comment Spam filter, Spam Assassin,
WP Blacklist, and Graphic Turing Tests (GTT’s). When
one of these filters classifies a comment as a piece of spam,
PalProtect will be invoked.

In order to reduce dependencies on other modules and
plug-ins, one major assumption of PalProtect’s design is
that PalProtect can observe some external action, signal,
or notification that other anti-spam plug-ins exhibit. Pro-
vided that such a signal exists, PalProtect captures the raw
text data of the comment. From there, it grabs the com-
ment data from the signal and creates a signature from the
spam comment and saves it to the WordPress database. Af-
ter this information has been saved, the raw comment data
is forwarded to peers. The methods of signature creation
and methods of broadcasting are discussed in Section III-C
and Section III-D.

B. Enforcement

In addition to providing its own enforcement via match-
ing against its internal signature database, PalProtect still
leverages any other spam filters that are present in the
blog. In this way, PalProtect is positioned as a last resort
mechanism to catch comments suspected of being spam. If
the comment has passed all of the other filters that are in
place, PalProtect compares the contents of the comment
with the signatures in its database. The comment can only
enter the system once it has passed through all of the tests,
including PalProtect’s enforcement.

PalProtect can employ a variety of signature types to
match and discard spam comments. Depending on the
type of signature preference that is currently set, PalPro-
tect converts the new comment into an instance of the cur-
rent signature type. From there, PalProtect will use signa-
ture specific methods to determine whether the comment

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 171

is in fact recognizable as a piece of comment spam. For
example, using URL lists (discussed in Section III-C) Pal-
Protect will flag comments that have half of the URLs that
are in a URL list. However, for the hash function, match-
ing is based on taking a hash of the raw comment text and
comparing it with the hash values already in the signature
database.

C. Signature Creation

The data in the comment can be modeled in a variety
of ways to create signatures for matching spam. PalPro-
tect provides five ways to create these signatures. Further,
User-defined signature creation methods are easy to inte-
grate into PalProtect. Because of this, the range of signa-
ture creation methods is easily extensible. The five base
methods that are integrated into PalProtect are:

1. Exact Match - This method takes the raw data from
the comment received and compares it with the raw data
that is in the database. This is the simplest and quickest,
but arguably the least effective at catching even slightly
polymorphic spam.
2. Longest Common Substring - This method is similar
to the exact match, except that it will take substrings of
the data in the database and compare that to substrings
in the pending comment. In the database, it will not be
stored in an extra table because the data used is stored for
the exact match.
3. URL Lists - Since the purpose of most spam comments
is to lead the reader or a search engine to another site, one
of the most effective ways to identify spam threats is to
extract the URLs from the spam comments. PalProtect
will extract all of the URLs in the spam comment and store
it as an array in the database. The way URLs are stored
can be full URLs or a smaller substring (i.e. the domain
name) to broaden the scope of enforcement.
4. Hashing - Another way to create these signatures is
by hashing the data and storing the hash key into the
database. This is used mostly with the comment data,
but there is a possibility that it can be used on URLs.
5. Z-String - Using the Z-String method, we can create
a string signature based on the frequency of the letters
in the comment. This method is effective when the spam
comments are different, but similar enough that most of
the comment is the same. The secondary purpose of the
Z-string is to assist user privacy. The original message
cannot be recovered, but the Z-string is still the basis of
a good signature. Of course, this this case, peers would
not forward the raw text, but rather the pre-computed Z-
string.

D. Message Packaging and Encoding

The main motivation behind creating this plug-in is to
record information that we have learned and notify our
“peers” of this information. The method that is used to

encapsulate and distribute that data is a crucial part of
the process. For each comment broadcast, the data will be
sent to each peer along with the URL of the source blog.
This information will serve to identify the sender. This is
important to include because we want to avoid sending the
message back to its sender.

Each message will also be PGP-encoded to ensure that
the message sent was indeed a valid message. Each Pal-
Protect installation will have a buddy list to hold all of its
peers information (e.g., URLs and PGP-key information).
This list will be discussed further in Section III-F.

Encoding the message with a PGP-key will cut down
significantly on user intervention as well as ensure that the
message is an authentic message from a peer. Instead of
having a message enter a queue or an “inbox” of some sort
where the user of the receiving blog must approve the sig-
nature, the PGP-encoded message can be automatically
approved provided that it is signed with a valid peer public
key and encrypted with the receiver’s public key. If decryp-
tion fails, the message was not meant for this PalProtect
instance. If verification fails, the message was forged. Ex-
tending and delegating trust (perhaps via a system like
KeyNote) is interesting future work.

E. Sending and Receiving

This package of information will be sent to the peer using
an HTTP POST request that is generated by the PHP
code. The POST request contains two parameters: the
URL of the sender and the PGP-encoded message. Since
we are sending simple text between the blogs, a POST
request is the perfect vehicle and a low-overhead method.

The way PalProtect receives the messages from its peers
is by having a dedicated page to receive messages. Since
it will never have to display anything, it is a page contain-
ing only PHP and will parse the POST parameters that
it receives. Once the message is received and decoded,
the raw comment is first checked against PalProtect’s local
database to make sure that it is not a duplicate signature.
If the comment is new, then it is inserted into the local
database (and optionally forwarded to a set of peers).

F. Buddy List

PalProtect uses an array of objects to keep track of its
“buddies.” The objects will contain two pieces of infor-
mation: the URL of the peer blog and the PGP-key of
that blog. To ensure the integrity of the information in the
buddy list, the URL and PGP-key will be manually entered
by the owner of the blog. This will prevent problems that
may arise from any automated system.

G. Additional Functionality

A previously undiscussed feature of PalProtect is the
ability to maintain a white-list. This white-list provides
the capability for the user to guard against having certain

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 172

messages enter the signature list. In particular, attackers
may attempt to submit spam comments that include links
to popular legitimate sites like cnn.com, citibank.com,
and whitehouse.gov or other strings that the user deems
acceptable. Without a white-list, We require the new table
due to some limitations of the list management functional-
ity in WordPress’s API. For every comment that is consid-
ered spam, PalProtect creates an encapsulated object that
will hold the raw text as well as any of the other signature
representations determined by PalProtect’s settings. By
creating a table specifically for the signatures, each record
will represent one comment with the columns being the dif-
ferent signature representations. This organization makes
the signature creation scalable by easily adding a column
if needed.

When PalProtect receives a comment, it will first check
the signature creation method preference that is currently
set. It immediately stores the raw text in the object and
then proceeds to store the newly created signature.

H. Limitations

Many of the problems that PalProtect may encounter
are problems with most intrusion detection systems. One
of the more common problems is that of identifying com-
ments as “false positives.” If there is a comment that is
wrongly identified as spam and has had a signature created
and distributed, we need to find a way to remove this entry
from the list of signatures and somehow relay that message
to the peers that we have sent it to. This problem is par-
tially addressed by creating a revocation message type, but
some process that identifies false positives still needs to be
established.

One sensor that we would like specifically exploit would
be the Graphic Turing Test (or GTT) due to its high con-
fidence system to detect whether the commenter is human
or not. The basis of the Graphic Turing Test is a challenge-
response system. Given an image of distorted alphanumeric
characters, a human will be able to distinguish the char-
acters while an automated process will find it difficult. If
the GTT field is left empty or is incorrectly guessed, this
is a strong indication that the comment was posted by an
automated process and should be considered spam.

However, we are unable to utilize the the GTT sen-
sor. The other sensors that we employed to catch spam
would only mark a comment appropriately. However, when
the GTT refuses a comment, it automatically prevents the
comment data from entering the database. Because of this,
the comment would not be able to be marked as spam –
thus depriving us of the event that PalProtect uses. The
GTT directly manipulates the database in its code (which
does not involve WordPress itself), thus eliminating the
medium that PalProtect and GTT would potentially com-
municate through. Since one of our design requirements
was to be standalone and have no dependencies on or

changes made to other modules, we are currently unable
to use the GTT plug-in as a sensor.

Another problem that arises in our system is in the dis-
tribution of the spam data. Currently, PalProtect iterates
through the buddy list and broadcasts a comment out to
everyone on the list, except to the immediate sender. We
would ideally want the system to forward the message to
a few peers, and then have them forward it to others –
in essence, controlled flooding. This approach would be
the most effective way to distribute messages over a large
network and would also alleviate the load on the sender,
especially if the peer list is lengthy.

IV. Evaluation and Results

Currently, PalProtect has not been widely deployed, and
we are unable to report on the behavior of a large scale
deployment. However, our evaluation focuses on basic per-
formance measurements of the system as deployed in our
testbed. The evaluation of our current PalProtect system
is mainly a feasibility study and focuses on the actual de-
velopment of the plug-in so that is can be distributed to
the WordPress community. There is much to do in terms
of follow-up analysis of PalProtect, including analyzing pri-
vacy concerns and optimizing the routing of notifications
and revocations.

A. Data Transmission

To see how feasible PalProtect is as add-on software to
WordPress, we must first test the efficiency of the messag-
ing process between two blogs. This measurement is crucial
in seeing how quickly the plug-in can work before any more
development is done. The average time it takes for mes-
sages to get from one place to another must be reasonably
quick – otherwise the plug-in is only another component
that will slow down the process of submitting a comment.

To quantify how long it would take for each transmission,
we first took a median-length (see Section IV-B) spam com-
ment and sent it 1000 times from one blog to another. We
repeated this process for ten more trials. We then took
the average time for each of the 1000 transmissions. The
results are listed in Table I

From these trials, we can see that the PalProtect plug-in
transmits a spam message of typical length quite consis-
tently. The typical time it takes for the transaction to
complete is just about 1.1 seconds. This is a fairly reason-
able base cost. Future work would involve analyzing the
impact of an unreliable or broken network between the two
peers. Since we are sending all the messages to one blog,
the transmission time may be even faster since the target
PalProtect system may be a bottleneck.

B. Space Efficiency

It is important to estimate how much space in storage
the raw data and the signature will take up for every entry.

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 173

TABLE I

Transmission test times for ten trials. Each trial

represents the average of 1000 transmissions.

Trial mean (s)
1 1.123607881
2 1.127622069
3 1.143602064
4 1.120167783
5 1.112963404
6 1.127018733
7 1.464225132
8 1.225920218
9 1.112342873
10 1.233204941

First, we will need to find out how long a typical spam
comment is. To do this, we had to manually browse the web
looking for blogs that have fallen victim to spam comments.
After browsing over twenty blogs, we had collected 161
spam comments. Many of the blogs we had found were
very vulnerable, which led to many different types of bots
and different types of spam. Though the number of blogs
were not many in number, the different types of comments
from each were sufficient.

The statistics of the lengths of these 161 spam comments
were as follows:
1. Mean: 646.7081
2. Median: 154
3. Standard Deviation1: 1901.8820

From this data, we can conclude that the average length
of the comment data will be around 650 characters, but half
of the time it will be around 150 characters and below.

The next step is to analyze how much additional space
each different signature type requires. For example, the
MD5 hash signature will always be 128-bits simply because
it is implemented that way. The Z-String will also be fixed
at 256 characters. However, other methods, such as the
URL list, can still vary a lot from comment to comment.
It can range from having no URLs to having over 1000
characters of links to other websites.

C. Enforcement Time

The final performance concern is how quickly enforce-
ment can occur; that is, how quickly the local signa-
ture database and matching algorithm operates. The way
that PalProtect currently implements enforcement, we ex-
pect that the performance grows linearly with time. This
method is a simple traversal of every element in the signa-
ture list that compares a signature of the incoming com-
ment with the current record. This operation is O(n).

However, we can improve on the time complexity of the
enforcement. Instead of traversing a list, PalProtect can
maintain a hash table with entries for each signature in

the database. This means that instead of having an O(n)
operation, enforcement can achieve O(1) time complexity.

V. Conclusions

Collaborative security is an emerging area of research
and a powerful tool against attackers whose activities are
“globally loud but locally quiet.” Such attackers seek to
spread their activities over space and time so that they do
not raise above a local threshold. Comment spam is one
particular type of threat that can be addressed by a collab-
orative security system. We have presented PalProtect, a
WordPress plug-in that identifies such spam and notifies its
peers. At the cost of having a few community members or
peers detect the spam, the entire group can be inoculated
against future instances of that spam comment (or closely
related variations thereof).

There remain a number of challenges for collaborative
security systems. First, the utility of cross-domain infor-
mation sharing is questionable when the domains sharing
information do not share common interests. These sorts
of incompatibility lead to larger questions of trust between
peers. In addition, sufficiently large-size networks require
elegant and scalable routing algorithms to help compress,
store, and transmit information in a timely manner while
minimizing the required bandwidth.

References

[1] D. J. Malan and M. D. Smith, “Host-Based Detection of Worms
through Peer-to-Peer Cooperation,” in Proceedings of the 3rd

ACM Workshop on Rapid Malcode (WORM), November 2005.
[2] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Inter-

net Quarantine: Requirements for Containing Self-Propagating
Code,” in Proceedings of the IEEE Infocom Conference, April
2003.

[3] K. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D.
Keromytis, and D. Li., “A Cooperative Immunization System for
an Untrusting Internet,” in Proceedings of the 11th IEEE Inter-
national Conference on Networks (ICON), pp. 403–408, October
2003.

[4] H.-A. Kim and B. Karp, “Autograph: Toward Automated,
Distributed Worm Signature Detection,” in Proceedings of the
USENIX Security Conference, 2004.

[5] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated
Worm Fingerprinting,” in Proceedings of Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2004.

[6] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron, “Vigilante:
End-to-End Containment of Internet Worms,” in Proceedings of
the Symposium on Systems and Operating Systems Principles
(SOSP 2005), 2005.

[7] V. Yegneswaran, P. Barford, and S. Jha, “Global Intrusion De-
tection in the DOMINO Overlay System,” in ISOC Symposium
on Network and Distributed Systems Security, February 2004.

[8] P. Lincoln, P. A. Porras, and V. Shmatikov, “Privacy-Preserving
Sharing and Correlation of Security Alerts,” in Proceedings of
the USENIX Security Symposium, pp. 239–254, 2004.

[9] W. Du and M. J. Atallah, “Secure Multi-Party Computation
Problems and their Applications,” in Proceedings of the New
Security Paradigms Workshop, pp. 11–20, September 2001.

[10] C. Krugel, T. Toth, and C. Kerer, “Decentralized Event Correla-
tion for Intrusion Detection,” in Proceedings of the International
Conference on Information Security and Cryptology (ICISC),
December 2001.

[11] M. E. Locasto, S. Sidiroglou, and A. D. Keromytis, “Applica-
tion Communities: Using Monoculture for Dependability,” in

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 174

Proceedings of the 1st Workshop on Hot Topics in System De-
pendability (HotDep-05), June 2005.

Proceedings of the 2006 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY

1-4244-0130-5/06/$20.00 ©2006 IEEE 175

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

