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Abstract. Cooperative defensive systems communicate and cooperate
in their response to worm attacks, but determine the presence of a worm
attack solely on local information. Distributed worm detection and im-
munization systems track suspicious behavior at multiple cooperating
nodes to determine whether a worm attack is in progress. Earlier work
has shown that cooperative systems can respond quickly to day-zero
worms, while distributed defensive systems allow detectors to be more
conservative (i.e. paranoid) about potential attacks because they manage
false alarms efficiently.

In this paper we begin a preliminary investigation into the complex
tradeoffs in such systems between communication costs, computation
overhead, accuracy of the local tests, estimation of viral virulence, and
the fraction of the network infected before the attack crests. We evaluate
the effectiveness of different system configurations in various simulations.
Our experiments show that distributed algorithms are better able to bal-
ance effectiveness against viruses with reduced cost in computation and
communication when faced with false alarms. Furthermore, cooperative,
distributed systems seem more robust against malicious participants in
the immunization system than earlier cooperative but non-distributed
approaches.

1 Introduction

Increasing innovation among attackers, the increasing penetration of broadband
Internet service and persistent vulnerabilities in host software systems have led
to new classes of rapid and scalable mechanized attacks on the information in-
frastructure. Leveling the playing field requires scalable, automated responses
to malicious code that can react in the short propagation windows evident with
network worms such as Slammer [1]. Traditional approaches have relied on sig-
natures, manual containment and quarantine (e.g., [12]), and while tools are
improving, reliance on identifying signatures and other improvements in detec-
tion processes is by itself insufficient. What is needed to complete the defensive



technology portfolio is a scalable, distributed, adaptive response mechanism,
based on cooperative behavior amongst a set of responding nodes. Since naive
cooperative behaviors might introduce new risks, including fragility in the face
of poor or maliciously-generated information, particular attention must be paid
to robustness in the cooperative strategy.

The problem of detecting, quarantining and recovering from day-zero viruses
is made easier if local detectors are allowed more room for error. If we err on
the side of allowing false alarms, then detectors can be cautious (paranoid!) and
conservatively flag anything that looks suspicious, and depend on cooperative
corroboration to determine whether the attack is real or not. For this strategy to
be effective, though, requires the entire anti-virus system to handle false alarms
quickly and cheaply and still respond rapidly to real virus attacks.

Handling individual false alarms is not sufficient, however; by allowing more
false alarms we increase the probability that the system will be called upon
to manage multiple simultaneous potential viral attacks. Simultaneous attacks
complicate the anti-virus response because increasing the defense against one
virus involves either decreasing the defense against another virus or incurring
higher costs (if the system can afford any further anti-virus costs). Simultaneous
attacks may occur because of multiple day-zero viruses [10], or because early-
stage false-alarms are not yet distinguishable from real virus attacks, or because
of the resurgence of old viruses. Old viruses are still potentially virulent, since
a measurable fraction of hosts do not upgrade or patch to eliminate security
bugs, as the persistence of Code Red and other worms has demonstrated. A
good analysis of the persistence of Blaster is given in [4], which shows that
tens of thousands of instances of the virus remain active a full year after the
initial outbreak. More surprisingly, 73%—-85% of infected class-C subnets were
not detected as infected during the first Blaster outbreak.

These observations expose several significant problems that must be dealt
with. Any node that responds to a potential virus carries a cost: a node has
finite resources and therefore can only engage a limited number of viruses at
a time. Deciding to counter one virus entails ignoring some other virus. In the
absence of cost, the best response to a potential virus attack is to flood the
network as rapidly as possible, causing as many cooperating agents to respond
at once. The main question is simply whether the response is quick enough to
stifle the virus. In the presence of a cost model, however, we still need to respond
quickly, but no more quickly than necessary. A false alarm, whether malicious
or unintended, can trigger a DoS attack by the response mechanism itself.

In this paper, we investigate tradeoffs in global, distributed response mech-
anisms that must respond quickly to real viruses and do not over-react to false
alarms. These systems should be efficient in terms of bandwidth and global com-
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5 In this paper we use the term “virus”, in an extremely broad manner, to refer to any
epidemic-like attack communicated over the network. We use this term, regardless,
whether the virus is an active worm that attacks a system even without the unwitting
involvement of a legitimate user or a passive virus, that is embedded in a document
or email, that requires (unintentional) user assistance to become active.



putation. Moreover, the response mechanism must be robust against malicious
agents spreading false information and be able to manage its resources even
when many distinct viruses are active at any time. This approach is orthogonal
to, and can augment, any proposals for the detection of and recovery from day-
zero viruses. It has the added advantage of also performing well in the face of
false alarms resulting from malicious behavior or failed detectors.

We focus here on an algorithm called COVERAGE, whose core ideas were orig-
inally introduced in [2]. This algorithm takes into consideration shared informa-
tion about the observed rate of infection for each virus, verifying that new reports
are compatible with a node’s own empirical observations, and determines (prob-
abilistically) which viruses to respond to. We evaluate its effectiveness through
large-scale simulation. We discuss also, although to a lesser extent, tradeoffs in
a similar cooperative (but non-distributed) approach, called NRL0O3, described
in [13], which differentiates between slow and fast-spreading viruses.

In our previous work, we determined that our basic cooperative and dis-
tributed approach was effective, but only in the sense of measuring the ability of
the two approaches to detect and respond to worms of different infection rates,
as well as their resistance to malicious nodes that spread misinformation. Here,
we offer refined algorithms over the earlier COVERAGE work, and, using a more
detailed model we begin to examine the three-way tradeoff between commu-
nication costs, computation overhead, and the percentage of the network that
gets infected before the reaction mechanism manages to limit the worm prop-
agation. When evaluating alternative approaches in this model, we determine
that COVERAGE always has much lower scanning costs; whether in the cases
of slowly-propagating worms, fast worms, or in the presence of malicious nodes
injecting false alarms. COVERAGE has significantly lower communication cost
when dealing with false alarms. Furthermore, the distributed approaches (both
COVERAGE and our refined version) can trade off higher communication cost to
to detect and react to slow-propagating worms more quickly than the purely
cooperative NRLO3. Finally, both NRL0O3 and the COVERAGE variants can use
increased communication costs to perform better against fast worms, but the
distributed approaches require much higher communication costs than NRL03
— perhaps an unavoidable consequence of their robustness against false alarms.

2 System Model

In this section, we describe our model of how viruses, switches/routers, hosts
and our detection mechanism behave.

Modeling Viruses We use a fairly simple model to describe the behavior of
potential attackers (viruses) that we consider in our work. After infecting a node,
a virus attempts to infect other nodes; it may attempt to only infect a (small)
fixed number of other nodes, or exhibit a greedier behavior. For our purposes,
the distinction between the two types is simply in the probability of detection
of a probe or attack by a detector. A virus may exhibit high locality of infection



(i.e., probing and attacking nodes based on network-topological criteria, such as
“adjacent” IP addresses), or could use a random (or seemingly random) targeting
mechanism, e.g., using a large hit-list, or some pseudo-random sequence for
picking the next address to attack. We expect that viruses that exhibit high
locality are more difficult to detect using an Internet-wide distributed detection
mechanism, but easier to do so on a local basis. We completely characterize a
virus by the rate at which it attempts to infect other nodes and by the fraction
of local attempts it makes. All attacks on susceptible nodes are successful, and in
our simulation a virus never attempts to attack a non-existent node. As a result,
our simulated viruses are more virulent than equally aggressive viruses in the real
world. We make no assumptions about the infection vector: although perhaps
the more “interesting” cases are those where the virus is able to automatically
subvert a machine or application, our model does not preclude human interaction
in the infection process (e.g., mail viruses as attachments).

Furthermore, we only assume that, once detected, there is some detection
and/or response “module” associated with each virus — we do not investigate
its details: the mechanism may be as simple as a content filter. There is some cost
(in terms of CPU, memory, impact on legitimate communications, etc.) associ-
ated with each of these modules, which requires the prioritization of the various
threats (viruses) in terms of allocating resources for detection and response.

Detection of Zero Day Worms Although our algorithm is orthogonal to and
agnostic about the method(s) with which new (zero day) worms are detected,
we briefly discuss different techniques and how they may interact with COVER-
AGE. A zero day worm detector consists of roughly three components. First, we
must detect anomalous behavior. The behavior may range from specific activi-
ties (e.g. port scans, system/application crashes, incorrect password attempts) to
statistical changes (e.g. increased network traffic, slow response time, variation
in system call signatures, number of TCP connections in TIME-WAIT). Sec-
ond, the transmission vector must be identified (finding a set of network packets
whose arrival seems to herald the onset of the anomalous behavior). Third, a
detectable “signature” of the traffic must be generated so that hosts can scan
for, and filter out, the potentially offending traffic. It is important to note that
a “signature” in our model is not necessarily simply a pattern of bits to match
inside a packet — it can be any profile that detects anomalous behavior, ranging
from packet inspection to longer term multi-packet behavior.

Perhaps the most promising approach is that of monitoring the number of
packets aimed at the unused portion of an organization’s address space, as was
suggested in [6]. In that work, it was shown that with as few as 4 such probes, it
is possible to infer the existence of a new worm aimed at a previously untargeted
service/port. A similar approach is proposed in [19], where sudden changes in the
traffic statistics maintained on a per source IP address and per destination port
number indicate a high-visibility event, such as a scanning worm. Similar works
have proposed measuring the entropy of traffic (e.g., in terms of distinct source
TP addresses seen) as an indication of unusual activity. These mechanisms act as
early warnings, alerting administrators and perhaps automatically reconfiguring



a firewall to assume a more defensive posture. However, without corroboration
with outside sources (e.g., through COVERAGE) they can be manipulated by
an attacker to generate false positive reports. It is also worth noting that these
mechanisms can only give a rough fingerprint of a new worm’s activity, such as
the targeted service/port—thus, they can be fairly accurate about the presence
of an attack, but inaccurate about mapping specific packets to the attack, as
would be the case with a worm targeting a protocol such as HTTP.

A second, more accurate but also more expensive (computationally, as well as
in terms of necessary infrastructure) mechanism for detecting worms is through
use of properly instrumented honeypots or virtual machines, as is done in [16, 9],
or through payload analysis [8, 17] that can yield a potential worm signature.
Finally, anomaly detection techniques, such as those proposed in [5], can indicate
the presence of packet payloads that do not conform to the typical contents of
packets for a particular service (e.g., binary content containing a buffer overflow
payload uploaded to a web server).

These mechanisms identify different points in the zero-day worm detection
space, trading off between the likelihood of false positives, the time needed to col-
lect enough evidence before raising an alarm, and the expense of testing whether
an alarm should go off.

These observations are taken into consideration by the COVERAGE algo-
rithm to balance the cost of detection (e.g., coordination, scanning as well as
collateral damage that may be caused by false alarms) and the ability to respond
effectively to virus attacks.

Network Topology Our simulation topology is dictated by our assumptions about
the vulnerabilities and capabilities of network nodes with respect to virus attacks.
We assume that, as a general rule, routers/switches are less likely to be infected
by a virus, and thus that only hosts are susceptible to infection.

Here, we assume that the only nodes in our system capable of scanning packet
sequences for potential viruses are end-hosts or last-hop routers. While consider-
able advantage can be gained by exploiting the great levels of traffic aggregation
seen in routers closer to the network core, it is unlikely that such nodes can
actively scan for viruses without significantly affecting their performance.

Thus, our model of the network topology consists entirely of a collection of
subnets (LANSs) containing a number of hosts. Each subnet connects to the global
network through a single router. All routers are connected together in a single
cloud where each router can address and forward packets to each other directly.
End-hosts can only see their traffic, while routers can inspect all traffic to or
from their associated LAN. It is likely that some organizations contain multiple
subnets that frequently communicate among themselves. Therefore we collect
together several subnets into a domain. A domain captures particular commu-
nication patterns but has no structural impact on the topology for simulation.

State of Nodes A node in our environment can be in one of three states with
respect to a virus: susceptible, protected, or immune. A susceptible node can be
either infected or uninfected. Susceptible nodes will become infected if subjected



to an attack. Protected nodes may be infected or uninfected, but only if the
detection module does not have the ability to detect and disinfect an infected
machine. A protected node will not become infected as long as the protection
mechanism (typically, a module that screens packets or email) is in place. An
immune node does not have the vulnerability exploited by the virus.

Operations A COVERAGE agent can monitor traffic and, for each virus, it can
either ignore the virus or perform one or more of the following operations: collect
and exchange information about a virus, scan for the presence of a virus (actually,
scan for the presence of patterns of network traffic used as a “signature” for
that virus), or filter viruses (by dropping one or more packets that are part
of a virus signature). We assume that there is a cost inherent in checking for
virus signatures. That is, a node cannot be actively “on the lookout” for an
arbitrary number of viruses without adversely affecting its performance. (Some
experimental measurements of such real-world limits are given in [3]). Edge-
routers are more likely to be constrained by high packet rates, and therefore
limited in the amount of scanning they can perform. Hosts can afford to scan
for more viruses without interfering with their (lower) packet rate, but, on the
other hand, have work other than packet forwarding to perform. In either case
there is an upper bound on the number of viruses a node can scan for.

We assume that nodes periodically exchange information about viral infec-
tions. Although the per-virus cost of such an exchange is low, we assume that
the number of known plus potential day-zero viruses exceeds the amount of in-
formation that can be reasonably exchanged at any given time. Thus, actively
exchanging information about a virus incurs a cost, albeit lower than scanning.

Routers can additionally scan for suspicious behavior on all traffic to or
from their LAN (and drop when necessary). We further assume that if a router
detects a rampant viral infection for a virus that has an associated disinfectant
component, the router can invoke a disinfection operation (perhaps alerting an
administrator) on all the nodes in its LAN.

Model of Anti-virus Epidemic Each node participating in the anti-virus response
must make certain decisions: (a) the rate at which it polls other local nodes for
virus information, (b) the rate at which it polls other remote nodes, chosen at
random, for virus information, (¢) whether for each virus to collect information
about it, (d), whether to include that information in virus exchange packets, and
(e) whether to scan for the virus (collecting the results of those scans as part of
the local information for that virus).

3 Cooperative Virus Response

COVERAGE tries to balance the cost of scanning and filtering packets for a
specific virus against the benefit of detecting, other, real viruses in several ways.
First, COVERAGE models the virulence of viruses and ranks them in virulence
order. With probability proportional to their virulence, COVERAGE decides



in rank order whether to actively scan for the virus or not. It stops making
decisions, and scans no more viruses, once the scanning schedule consumes the
entire scanning budget available. Second, each COVERAGE agent exchanges
information about the state of a virus with other cooperating agents in order to
construct a model of the virus and determine whether incoming reports are em-
pirically consistent with the observed state of the network. Third, COVERAGE
agents determine their polling rate to maximize the probability of seeing enough
viruses to confirm the current local estimate of the virus state, while reducing
the probability that communication will add no new knowledge to either of the
participants. We now describe the algorithm in more detail.

3.1 COVERAGE algorithm

Agent communication. Each COVERAGE agent polls other agents, selected
randomly. Assuming that only a small fraction of the nodes are reporting false
information, a randomly selected node is more likely to be trustworthy than a
node that actively contacts us — a small number of malicious nodes may try
to flood the rest of the network. At each poll, the sender reads the response
and updates its local state variables to track the operation of the cooperative
response mechanism and the status of the network in terms of observed attacks.

First, it records whether the remote agent is actively scanning. This allows the
agent to estimate the fraction of agents in the network that are actively scanning
for a particular virus. Second, it updates estimates of possible infections e.g., the
fraction of infected nodes for each virus. We distinguish two types of estimates:
direct and remote. Direct estimates are updated based on whether each remote
agent has directly observed an attack (either to itself or, if a router, to a node in
its LAN). Remote estimates are updated based on the fraction of infected nodes
as estimated by the remote agent (the “direct” estimates of the remote agent).
Direct measurements performed by the local node are absolutely trustworthy —
there is no issue of false positives. The direct measurements of agents that we
poll (which become our remote estimates) are next in trustworthiness. Remote
estimates of agents who we poll are more suspect, and information reported by
agents who contact us are the most suspicious of all. However, we can validate
any information reported to us — if someone reports that a particular virus
is attacking 25% of the Internet at the moment, then if we poll 20 agents at
random, then with 80% probability we would expect to find that between 3 and
7 of those agents had directly seen an attack in the last measurement interval.
Values outside that range would cast doubt on the remote estimate.

Finally, in this paper we ignore the details of how COVERAGE nodes au-
thenticate themselves to each other. However, we note that even strong authen-
tication is not sufficient for our system. If a COVERAGE agent is taken over
by a malicious attacker, then the attacker can (presumably) still authenticate
itself and discover which nodes are not scanning for a particular virus, and use
that information when choosing targets. To defend against such a vulnerability
in COVERAGE , we propose (but have not yet implemented or experimented



with) a simple defense. When polling, the identity of the target agent is not im-
portant — just the fact that we chose it randomly, and it did not choose us. And,
while we are interested in the statistics of the sample as a whole, we need not link
a particular set of direct measurements to a particular IP address. Consequently,
each agent stores a randomly selected response from the last measurement in-
terval (the local measurements are one of the candidates that may be selected),
and returns that random selection in response to any COVERAGE poll, for the
direct measurements and scan list only. (The cumulative counters are still stored
and reported accurately). The poller still receives an accurate response — just
perhaps from a different IP address than the one it polled, and perhaps slightly
older than expected. This adds a level of indirection to the polling process.

Periodic updates. At regular intervals each COVERAGE agent updates
its state based on the information received since the last update. To track the
progress of the infection each COVERAGE agent maintains a smoothed history
for each type of estimate (direct and remote), each as exponentially decaying
averages with varying time constants, to approximate recent infection rate, past
rate, and background rate.

Using these estimates, an agent can compute the fraction of nodes believed to
be infected as well as the growth of the infection, assuming exponential growthS.

If we assume that each infected node infects a nodes at each timestep, and
that a fraction p* of all nodes are infected at some start time ¢g, then at time ¢
we expect the fraction of infected nodes to be p*(1+a)!~t. Consequently, if our
direct samples at times to,t1, and ¢ report a fraction p,[t] nodes are infected”,
we can estimate p} and aq4 for future growth by fitting

palto] = pj;
paft1] = p(1 + ag) 710
palt2] = p(1 + ag)2710)

Given estimates of p} and a4, we can calculate the virulence, vq, of a virus as the
estimated number of timesteps needed by the virus to infect the entire network.

Note that we independently calculate virulence for global and local growth,
in order to identify attacks that are non-uniformly distributed throughout the
network. Using the same method as above the agent also computes a,., p} and
v, based on the remote estimates.

Scanning/filtering. Given the estimates an agent can decide whether it
needs to scan for a given virus. There is a basic, low level of scanning for every

6 We assume all growth is exponential for the purpose of deciding whether to trigger
a reaction. We believe that linear growth worms can be detected by humans, and
need not be countered by an automatic, distributed, algorithm. If our assumption is
incorrect and growth is, in practice, sub-exponential then we recover naturally be-
cause we observe a decrease in o and gradually back-off as the predicted “virulence”
of the virus drops.

7 In fact, we use the smoothed averages rather than instantaneous samples, and the
details of the actual calculation are a bit more complicated, but are not relevant to
the main point of this paper.



virus. When a virus becomes active the scanning rate may increase. In the general
case, the agent can sort viruses in order of their virulence v4 and decide whether
to scan for each virus, in turn, stopping when the scanning budget is filled. (In
our simulation, we only scan viruses whose vy is below threshold.)

To maintain a basic, low level of scanning for every virus, every agent mea-
sures the fraction fscanning of nodes in the network that are actively scanning for
a given virus based on information exchanged with other nodes. If this fraction
is below a threshold figrger (around 2-5%) and the node has enough resources for
scanning, it activates with probability fiarget — fscanning, and disables scanning
in a similar way if too many nodes seem to be active. To avoid turning “blind” to
certain worms because of a fraction of malicious nodes falsely reporting that they
are actively scanning, nodes need to aim for figrget + fmaticious, Where fraticious
is the maximum tolerable fraction of malicious nodes. Although this increases
scanning cost, nodes can trade-off this cost for higher communication costs.

An inactive agent, A, may also start scanning seemingly low-virulence viruses,
if enough other agents claim the virus is virulent, and A finds that the fraction
of scanning nodes is too low to detect virus activity in a single timestep at the
current polling rate. The test is whether n (simply the fraction of agents that
were polled and found to be scanning in the last interval) is less than twice the
estimated fraction of infected hosts (e.g., if n < 2p}). Similarly, if the agent
is active but n > p} then it decides to stop. The agent also stops scanning if
o, approaches 0. This ensures that the fraction of scanning agents is bounded
if there is insignificant progress for a given infection or if the infection is small
compared to the number of actively scanning agents. Such heuristics are essential
for controlling the behavior of the algorithm, keeping the response mechanism
“ahead” of the virus but also limiting the damage and cost when malicious agents
spread false information.

A small number of agents need to be watching for each dormant virus. The
number of active scanners monitoring a virus may be more than warranted by
the level of virus activity. An agent detecting this will stop monitoring the virus.
If the agent finds that it now has ample room within its scanning budget to
consider another virus, it chooses another virus to monitor uniformly at random
from the (large) virus database. The agent may choose a virus that almost no
one else is scanning for — in which case it will stay on the scanning list for a long
time, and be inspected by the agent as long as there are not too many virulent
virii. If the new virus is dormant, but enough people are already looking at it,
then the agent will drop it, and randomly choose another.

Polling rate. An agent communicates with agents within the same domain
at a constant, high rate, as the cost of intra-domain communication is assumed to
be very small. Inter-domain communication is generally more expensive; agents
therefore need to adapt the rate of polling remote agents, avoiding excessive
communication unless necessary for countering an attack. When there is no
virus activity, agents poll at a pre-configured minimum rate (at least an order
of magnitude lower than the rate for intra-domain communication). An agent
periodically adapts the remote polling rate if v, is less than a given threshold.



The new rate is set so that the agent polls 1/(p%)? remote agents in each update
interval, unless this rate exceeds a pre-configured maximum rate. This is used
to increase the polling rate when the remote estimate indicates that an attack is
imminent (but not yet reflected in the direct estimate). If the more recent direct
estimate pg[n] is non-zero, then the polling rate is increased so that at least a
few samples can be collected in each update interval. Finally, if the estimated
virus population p} is small and the estimated virus growth rate is close to zero,
the agent throttles back its remote polling rate to the minimum rate.

These adjustments are always performed on the polling side. We avoid chang-
ing the state or behavior of the polled agent to reduce the risks associated with
malicious agents. Otherwise, they could spread misinformation and raise false
alarms more effectively by increasing their own communication rate.
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Fig. 1. Fractions of infected hosts and scanning nodes over time (top), and
fraction of actively infected nodes (bottom)

3.2 COVERAGE behavior

To give a rough sense of how the COVERAGE algorithms described above be-
have, Figure 1 displays a single example run of the COVERAGE algorithm
against a single simulated virus called “worm 1”. We show the activity of the
virus (the number of nodes that were ever infected in their lifetime) in (a), and
the currently infected nodes in (b)), as well as the response of COVERAGE
(both the number of agents scanning for “worm 17, as well as the number of
agents scanning for a dormant virus “worm 0”). (Section 4 describes how we
approximate a heavy load on the COVERAGE agents by using a simulation pa-
rameter threshold — each agent is too busy to consider any virii unless they are
likely to take over the entire network within threshold measurement intervals.)

One can see the initial stage of the infection and the response of the algo-
rithm: the virus manages to infect roughly 10% of the hosts; cooperation be-
tween COVERAGE agents results in a rapid activation of filtering on roughly
75% of the network effectively eliminating the virus. Soon after stopping the
attack, the COVERAGE agents on uninfected parts of the network deactivate

10



scanning/filtering. However, as shown in Figure 1(b), a small number of hosts
remains infected and undiscovered, resulting in another three episodes where
COVERAGE agents are activated (each episode with a smaller fraction of agents
activated) to defend against a secondary outbreak. Although a tiny fraction of
infected nodes remains undiscovered, it does not cause any further harm and
COVERAGE gives users time to patch up their systems. The scanning for dor-
mant “worm 0” continues, except during the most virulent part of the outbreak,
where the number dips as resources are marshaled to defend against “worm 1”.

4 Simulation Results

To simplify the analysis of COVERAGE and to meaningfully include the non-
adaptive NRL03, we restrict the simulation to a single virus. We model the
impact of multiple active viruses by assuming that each node is busy handling
other viruses. To represent the load imposed by other viruses, we specify a thresh-
old under which a virus will not have high enough priority to be scheduled in
the scanning budget. If many viruses are active then the threshold will be a
small number, such as 5 (recall that the virulence is a measure of how many
measurement intervals it will take before the virus has covered the entire Inter-
net). Unless the current virus is poised to conquer the entire net at its current
rate of growth from its current coverage within threshold intervals, it will not
have high enough priority to be scheduled in the scanning budget. We only con-
sider cases where the net is already under heavy attack by other viruses, setting
threshold equal to 5 and 20.

To better understand the performance of COVERAGE, we limit our simula-
tion to a simple, relatively small network of 100,000 edge-routers, each connected
to 8 hosts, with 50 edge-routers in each of 2,000 domains. We also consider the
performance of our version of COVERAGE in relation to NRL03 [13], another
cooperative algorithm, which makes different tradeoffs than COVERAGE. NRL03
uses cooperative peer-to-peer strategies to respond to large scale Internet worm
attacks. The model involves a number of friend nodes, which work together
by exchanging information to warn of suspicious worm-like network behavior.
As in COVERAGE, a small fraction of nodes is assumed to be scanning for a
given virus. When the virus is detected, the node broadcasts the alert to its
friends. When a node receives such an alert, it increments an alert counter, and
propagates the alert to its set of friends when this counter reaches a threshold.

For the COVERAGE algorithm, we set the local-domain polling interval to
1.8 seconds , the maximum and minimum remote polling intervals to 6 seconds
and 1.8 seconds respectively. For both algorithms we assume that 4% of the
edge-routers are permanently scanning for the virus.

Our analysis uses three metrics. First, we model the success of the attack
by integrating the number of infected nodes over time. This is only relevant in
the case of a real virus attack. Second, we consider the number of edge-routers
actively scanning/filtering this virus. This is a measure of the computational
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We measure the progress of infections of differing virulence and the success
of the response mechanism as the integral over time of the fraction of infected
nodes. The results for COVERAGE and NRL03 with different parameters are
shown in Figure 2. (It may seem counter-intuitive that the more virulent viruses
cover less of the network; however, recall that we are integrating over time and
that the faster worms, while they spread faster are also detected and disin-
fected faster). COVERAGE reacts more slowly than NRLO03 for fast worms —
we model COVERAGE dealing with other viral outbreaks, but let NRLO3 as-
sume that this is the only virus in the Internet. Consequently, the virus takes a
larger initial toehold in the network under COVERAGE, and is active slightly
longer before being cleaned up. Because of this toehold, COVERAGE performs
relatively worse than NRL for fast worms. On the other hand, it detects the slow
worms before NRL03, and therefore does better. The slow response by COVER-
AGE in the case of fast worms has been a deliberate design choice in an attempt
to make the algorithm robust against false information from malicious nodes.
Figure 3 plots the high water mark of viral attacks as a function of the virus
infection rate for different communication settings in COVERAGE. We can see
that a moderate increase in communication rates in COVERAGE allows it to
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stop the virus with a lower high water mark than NRL, but at the expense of
more communication.

Figures 4 and 5 show the fraction of nodes scanning for a virus as a function
of the virulence of the virus and the fraction of malicious (or faulty) nodes. The
figures for COVERAGE are more pessimistic than for NRL, because in NRL
every edge-router is scanning for the virus (obviously impractical for a large set
of viruses), and the graphs report only those nodes that are actively filtering the
virus. The COVERAGE plots report the fraction of nodes that even scan for
the virus at all. A smaller number (unreported here) are filtering for the virus.
Nevertheless, a pessimistic (“worst-case”) results for COVERAGE have far lower
scanning costs than optimistic (“best-case”) results for NRL03. COVERAGE
manages to control the virus with a much smaller set of scanning nodes, and it
similarly detects false alarms with fewer nodes triggered to scan or filter.

Figures 6 and 7 demonstrate that the communication costs for COVERAGE
in the face of false alarms is much lower than for NRL0O3 — understandably
because COVERAGE identifies the false alarms correctly. In the case of slow-
growth worms, COVERAGE requires significantly more communication to con-
vince cooperating peers that a virus attack is underway. However, this extra cost
conveys a benefit: COVERAGE detects slow-growth worms long before NRLO03 is
able to. For fast worms, communication costs are generally comparable — NRL
requires considerably more communication when Friends = 8, but it should be
noted that NRLO3 controls the infection more rapidly than COVERAGE in
these cases. For COVERAGE to control fast worms as effectively as NRLO03
would require even higher communication costs.

The impact of false alarms on detection performance (because nodes get
confusing reports from malicious nodes about another virus) is illustrated more
clearly in Figure 4. We see that the fraction of nodes that are left unprotected
by COVERAGE grows almost linearly with the number of malicious nodes —
roughly double the number of nodes are infected when 4% of the nodes are
malicious compared to a system without any malicious nodes.

5 Related Work

Reference [15] shows that a distributed worm monitor can detect non-uniform
scanning worms two to four times as fast as a centralized telescope, and that
knowledge of the vulnerability density of the population can further improve
detection time.

In [11], the authors coordinate the sharing of IDS alerts for detecting worm
attacks and port scanning across administrative domains. Porras et al. [14] argue
that hybrid defenses using complementary techniques (in their case, connection

8 The communication costs for COVERAGE scale with the virulence and number of
active viruses, and are thus more scalable than NRL — still, we are investigating
ways of conveying the necessary polling information more efficiently during quiet
periods.
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Fig. 8. Impact of false alarms and malicious nodes on detection performance.

throttling at the domain gateway and a peer-based coordination mechanism),
can be much more effective against worms.

Reference [18] proposes the use of “predator” viruses that spread in much
the same way malicious viruses do but try to eliminate their designated “victim”
viruses. The authors show that predators can be made to perform their tasks
without flooding the network and consuming all available resources. However,
designers of predators would have to find their own exploits (or safeguard exploits
for future use), which is not an attractive proposition. Furthermore, many recent
worms have been closing the hole they exploited, after infecting a machine.

DOMINO [20] is an overlay system for cooperative intrusion detection. The
system is organized in two layers, with a small core of trusted nodes and a larger
collection of nodes connected to the core. The experimental analysis demon-
strates that a coordinated approach has the potential of providing early warn-
ing for large-scale attacks while reducing potential false alarms. Reference [21]
describes an architecture and models for an early warning system, where the
participating nodes/routers propagate alarm reports towards a centralized site
for analysis. The question of how to respond to alerts is not addressed, and,
similar to DOMINO, the use of a centralized collection and analysis facility is
weak against worms attacking the early warning infrastructure.

The earliest work on cooperative response mechanisms is that of Nojiri et
al. [13]. They present a cooperative response algorithm where edge-routers share
attack reports a small set of other edge-routers. Edge-routers update their alert
level based on the shared attack reports and decide whether to enable traf-
fic filtering and blocking for a particular attack. Analysis by Kannan et al [7]
has shown that cooperative response algorithms can improve containment, even
when a minority of firewalls cooperate. That work, however promising, does not
directly relate to our work. They are more concerned with a single fast virus
— the analysis focuses on a single virus (consequently underplaying the cost of
over-aggressive response), has a weaker model of “malicious” firewalls (malicious
firewalls merely stay silent, but do not mislead through false alarms), and does
not explore the benefits of allowing more lattitude in generating false alarms.
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6 Conclusions and Future Plans

We have described an algorithm, named COVERAGE, that allows cooperating
agents to share information about the spread of malicious virus in the Internet
and use this information for controlling the behavior of detection and filtering
resources. The algorithm operates without fully trusting such information, so as
to limit the damage of false alarms injected by malicious nodes. Our solution is
based on the idea of carefully sampling of global state to validate claims made by
individual participants. Simulation results confirm that this method is effective
in limiting the damage of virus attacks, and that it is robust against attacks by
malicious participants. When compared against a similar approach, the NRL03
algorithm [13], COVERAGE exhibits a lower cost in terms of scanning for worms
due to its resource-aware approach. Furthermore, it has a lower communication
cost in the presence of false alarms and fast worms, and can detect and react
to slow-propagating worms better. However, it does not react as quickly to fast
worms, and the price it pays for reacting to slow worms more quickly is higher
communication overhead than NRLO3 for slow worms.

Our plans for future work include reducing the communication cost of polling
without measurably reducing the effectiveness of the mechanism, and examining
in detail the case of multiple, simultaneously active viruses. We believe that we
can tune the communication rate to adapt to the virulence of a virus, allowing
COVERAGE to react to fast worms quickly (at the cost of increased communica-
tion overhead for very virulent worms). Due to space considerations, this paper
simply assumes that many COVERAGE nodes are occupied by higher-virulence
viruses, and that we must reserve processing cycles to deal with lower virulence
viruses, too. Much work remains to be done in improving the actual choices each
node makes of which set of viruses to monitor.
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