
Remotely Keyed Cryptographics
Secure Remote Display Access Using

(Mostly) Untrusted Hardware

Debra L. Cook1, Ricardo Baratto1, Angelos D. Keromytis1

Department of Computer Science, Columbia University, New York, NY, USA
{dcook,ricardo,angelos}@cs.columbia.edu

Abstract. Software that covertly monitors user actions, also known as spyware,
has become a first-level security threat due to its ubiquity and the difficulty of
detecting and removing it. Such software may be inadvertently installed by a user
that is casually browsing the web, or may be purposely installed by an attacker
or even the owner of a system. This is particularly problematic in the case of
utility computing, early manifestations of which are Internet cafes and thin-client
computing. Traditional trusted computing approaches offer a partial solution to
this by significantly increasing the size of the trusted computing base (TCB) to
include the operating system and other software.
We examine the problem of protecting a user accessing specific services in such
an environment. We focus on secure video broadcasts and remote desktop access
when using any convenient, and often untrusted, terminal as two example appli-
cations. We posit that, at least for such applications, the TCB can be confined to
a suitably modified graphics processing unit (GPU). Specifically, to prevent spy-
ware on untrusted clients from accessing the user’s data, we restrict the boundary
of trust to the client’s GPU by moving image decryption into GPUs. This allows
us to leverage existing capabilities as opposed to designing a new component
from scratch. We discuss the applicability of GPU-based decryption in the two
scenarios. We identify limitations due to current GPU capabilities and propose
straightforward modifications to GPUs that will allow the realization of our ap-
proach.
Keywords: GPUs, Encryption, Thin Clients, Video Conferencing.

1 Introduction

Spyware has been recognized as a major threat to user privacy. Especially when com-
bined with a large-scale distribution mechanism (such as a popular web site or applica-
tion, or a computer worm), the potential for large-scale security violations is consider-
able. Organizations increasingly spy on their employees’ computer activities using the
same technology, and public computers on Internet cafes are so riddled with such mal-
ware that only the most foolhardy of souls would use them for any sensitive application.

Work on addressing this problem has focused either on detection of spyware activ-
ity on a system or building a trusted system from the bottom-up, using a combination
of hardware support, operating system extensions and application-specific logic. While
promising, these approaches offer only limited security against an adversary that legit-
imately controls the spyware-infected system, or against spyware that does not exhibit

real-time activity (e.g., consider a program that simply takes snapshots of the system’s
screen as the unsuspecting user is accessing some sensitive information). While images,
like any data, can be sent encrypted over networks using existing protocols such as TLS
and IPsec, decryption is performed by the operating system, creating the potential for
the data to be copied by an untrusted client.

We propose to use the system’s Graphics Processing Unit (GPU) as the only trusted
component in our spyware-safe system for displays. By using GPUs, we leverage exist-
ing capabilities within a system as opposed to designing and adding a new component
to protect information sent to remote displays. Sensitive content is directly passed to
the GPU in encrypted form. The GPU decrypts and displays the content without ever
storing the plaintext in the system’s memory or exposing it to the operating system, the
CPU, or any other peripherals. We use a remote-keying protocol to securely convey the
decryption key(s) to the GPU, without exposing them to the underlying system. With
this mechanism as our basic block, we can implement applications such as secure video
broadcasts or remote desktop display access without trusting the rest of the system.

Our work is an initial step of which the main purpose is to propose the concept
and determine the feasibility of GPU-based decryption. We determine that, with careful
design, current GPUs allow for in-GPU image decryption at rates sufficient to support
the example applications. We also identify several obstacles to fully implementing our
scheme on current GPUs. The most difficult aspect of moving decryption into a GPU
is the API and the types of operations supported within the GPU. [4] demonstrated that
the APIs for GPUs are not designed to support operations typically found in symmetric
key ciphers. As a result, we do not focus on forcing an existing symmetric key cipher to
fit within a GPU in order to decrypt the data, but rather implement as many operations
as possible within the GPU and confine the remaining ones to a C program in order
to illustrate the concept. In the future, either a cipher suited for GPUs and/or support
for additional operations in GPUs is required. We have begun work on a stream cipher
designed for GPUs and include an estimate of the performance. We identify straightfor-
ward additions to future GPU designs that will allow for the realization of our scheme,
and its possible integration with the Trusted Computing Group’s proposed architecture.

2 Motivation

Applications to which our work is relevant include remote desktops (a thin-client sce-
nario) and video conferencing displays. In a thin-client scenario, the client connects to
a server which fulfills all of the client’s computing needs [11]. Since all application
logic is executed in the server, the client is completely stateless, and does little more
than display updates sent by the server and forward local user input events. Current
thin-client systems provide secure sessions by encrypting the display protocol before it
is transferred over the network. However, in scenarios where the client terminal is un-
trusted, such as public computers, it may not be desirable for the host operating system
to have access to the unencrypted display updates. Consider the system described in [8],
wherein access to sensitive 3D data was controlled by manipulating the content sent to
the remote display client. Since the display data on the client cannot be secured, a num-
ber of additional mechanisms are devised to prevent the actual client application from

being used as an attack tool on the system. In contrast, if the current display is only in
decrypted form within the GPU, we only need to block reads by other applications.

In video conferencing, we wish to prevent clients from copying the conference dis-
plays. How to secure video recorded at the client and audio is beyond the scope of this
paper, although the concept we demonstrate with GPUs can also be applied to digi-
tal cameras and digital signal processors. While there are existing digital rights man-
agement (DRM) architectures aimed at preventing unauthorized copying of video, the
images are still decrypted within the remote and untrusted OS. DRM includes how to
manage the usage and trade of material [6], and must protect against both unauthorized
access and unauthorized copying. An example is Microsoft’s Windows Media Player
DRM 9 Series, which includes the capability of authenticating and remotely-keying the
media player [10]. The images are decrypted within the operating system by the media
player then sent to the GPU. This architecture’s security depends on using a specific
closed-source media player and no program being able to access the memory utilized
when decrypting the data. Alternative models of using trusted GPUs have been consid-
ered [2], but none has been implemented to our knowledge. The Trusted Computing
Group’s scope includes untrusted clients but its proposed architecture utilizes distinct
trusted platform modules (TPMs), which may be hardware or software, to address mul-
tiple needs and provide a generic solution [14]. For graphical applications, our approach
can be considered as an alternative that avoids specialized system components, or as a
companion to TPMs. In particular, one possibility is for the TPM to handle key negoti-
ation with the remote server, and then provide the session key to the GPU. We should
note that similar concerns arise when handling voice traffic, as noted in [15].

Our main goal in moving decryption of graphics into the GPU is to prevent the
underlying operating system or other software from gaining access to the unencrypted
data. Specifically, we consider malacious software running on the client’s operating
system which attempts to read or modify displays and responses transmitted between
the server and the client. We do not address modifications to the client’s hardware, such
as altering of the GPU. Furthermore, security of the client’s surroundings (e.g, a camera
recording the client’s display) is a separate problem outside the scope of our work.

3 Prototype
3.1 Architecture

Figure 1 depicts our overall architecture. A server encrypts the data and sends it to
the client. The data remains encrypted until it enters the GPU where it is decrypted
and displayed. The GPU’s buffer is locked to prevent the display from being read by
processes external to the GPU, effectively turning the frame buffer into a write-only
memory. The decryption is performed via software running on the client’s operating
system which issues commands to the GPU (as opposed to a compiled program existing
and executing entirely within the GPU’s memory), with the operations performed within
the GPU. This software does not have access to the keys and data contained inside the
GPU; rather, it specifies the transformations (i.e., decryptions steps) that the GPU must
undertake. Ideally, any intermediate data produced by the decryption program, such as
the keystream, are confined to the GPU. We explain in Section 4 why this is currently
not possible with existing GPUs.

Server

Proxy
(card reader)

Client

Encrypted images/display updates

certificate

GPU

K
ey

st
re

am

ge
ne

ra
ti

on

framebuffer

Establish secure session, server
transmits secret key to proxy.

Insert smartcard

Client transmits GPU’s
certificate to proxy.
Proxy sends secret key
to GPU.

Program on client issues
OpenGL commands to GPU
to generate key stream.

Images or
display updates

secret key(s)

Fig. 1. Architecture for Remotely Keyed Decryption in the GPU

The decryption key changes on a per-session and application basis (and may even
change within a session). Thus, the key must be conveyed to the GPU in a manner that
prevents the client’s operating system from gaining access to it. One way to achieve
this is to remotely key the GPU and decrypt the key therein. The key is used to generate
the keystream directly within the GPU, exposing neither the key nor the keystream to
the OS. The decryption of the key and generation of the keystream can be performed
in a non-visible buffer (back buffer) on the GPU, to avoid visually displaying them.
Reading the encrypted image into the back buffer with the logical operation of XOR
enabled results in the image being decrypted. The result is then swapped to the front
buffer to display the decrypted image to the user.

There are a few possibilities for how the entities involved are authenticated and
how the key is sent to the GPU, depending on which components are trusted. In each
case, it is assumed that the GPU contains a pre-installed certificate and private key. The
certificate may be issued by the manufacturer and hardwired in the GPU. Another option
is to allow writing the certificate to the GPU under circumstances when the client’s OS
is trusted, such as when the GPU is first being installed on a newly configured client.
The first and simplest option for authentication covers the case when the server sending
the images is trusted and there is no need to verify the person viewing the images
(i.e., it is assumed that the fact the viewer was able to start the process on the client
indicates it is safe to send the images) and/or the server is capable of authenticating a
GPU based on its certificate. The server, either by establishing a session key with the
GPU or using the GPU’s public key, encrypts the secret key and sends it to the GPU
via the client. The second, more general scenario, also assumes the server is trusted but
requires verification of the user viewing the images through a proxy entity, such as a
smartcard reader. The user will activate the proxy by inserting a card into the smartcard
reader attached to the untrusted system. The proxy will then establish sessions with
both the server and remote system with the GPU. The server will convey the secret
key to the GPU via the proxy, as shown in Figure 2. The process of converting the
key from being encrypted under the server-proxy session key to being encrypted under
the proxy-GPU session key requires that the key be exposed only on the smartcard.
The proxy and the GPU treat the underlying system, including the OS, as part of the
network connecting them to each other and the server. A third scenario assumes that
neither the server nor the client OS are trusted. When the images are encrypted, the

encryption key is recorded on a smartcard. The encrypted images can then be stored on
any server. To view the images on an untrusted system, the smartcard is inserted into a
card reader (the proxy) or the key can be manually recorded and entered into the proxy.
The proxy, using the GPU’s public key, encrypts the secret key and sends it to the GPU
via the client. The proxy does not have to be collocated with the client, but only has to
be capable of exchanging information with the client. If a secret key only works for n

blocks (such as n frames) of data, the remote keying will occur as needed to provide
the key for each data segment.

The protocols used for the remote keying are not new. Refer to [1] and [5] for a
discussion on authentication using smartcards. The novel component of our work is
implementing one in a manner that avoids exposing the secret key outside the GPU.
Any protocol used for the remote keying requires utilizing an asymmetric encryption
algorithm to either encrypt the secret key directly with the GPU’s public key or to
establish a session key which is then used to encrypt the secret key. Obstacles arise
due to the lack of support in GPUs for the operations required for public key ciphers,
such as modular arithmetic for large integers. We discuss the limitations of the GPU in
regards to public key cryptography when describing our prototype.

3.2 Implementation

To determine the feasibility of our scheme, we implemented the second scenario with
3 entities: a server, a proxy and the client. We use a stream cipher, RC4, to encrypt
the images because of the rate of encryption required for streaming video. The proto-
type implemented as many operations as possible in the GPU via OpenGL, with the
remaining operations restricted to a C program and which would be moved into a suit-
able GPU as we discuss in Section 4. Specifically, existing stream ciphers cannot be
efficiently implemented entirely in OpenGL. We use the following notation:

– K = k1, k2...kn is the set of secret keys used to encrypt the data. ki encrypts the
ith subset of data. These keys may be individually pre-determined, or computed
through a master key using a pseudorandom function.

– A frame refers to one frame of video or one display update.
– Rekeying refers to obtaining the next ki. The interval at which rekeying occurs

depends on either the number of frames displayed or the elapsed time.
– r = is the number of frames or requests after which rekeying is required.
– t = is the amount of time before rekeying is required.
– sk = the session key used for communication between the server and proxy.
– kpubk = the GPU’s public RSA key component.
– kprivk = the GPU’s private RSA key component.
– m = the GPU’s RSA modulus.

Figure 2 illustrates the steps for the remote keying and decryption of images in our
prototype. A certificate containing a RSA [13] key is stored in the GPU’s memory. For
our prototype, a program on the client uses OpenGL to write the certificate to the GPU
then deletes it from the operating system’s memory. Installing a certificate in the GPU
in this manner requires that the process be monitored to ensure that no program on
the client gains access to the private key component of the RSA key while it is being

written to the GPU. The certificate includes a public parameter containing an indication
that the device is a GPU. When the application is started, the client’s OS reads the
public information from the GPU’s certificate and sends it in a request to the proxy. The
proxy, which requires activation either by entering a one-time password or inserting a
smartcard, authenticates the GPU based on the information encoded in its certificate.

Server

Proxy

Client

6:Establish sk
4:

 ce
rti

fic
ate

1: Start application

5: Session request

7: E
sk (k

1)

8: Dsk(Esk(k1))

14: Write keystream
to framebuffer
and XOR with data.

11: Ready for images or display update request

12: images/display updates

3

certificate 10

9:
 (k

1
)p

ub
k m

od
 m

13

14
GPU

3: OS reads public
components of GPU
certificate

10: OS writes (k1)pubk mod m
to GPU; GPU computes
(k1)privk mod m, saves for
use in keystream generation.

13: OS writes data from
server to framebuffer

K
ey

st
re

am

ge
ne

ra
ti

on

framebuffer

2: Enter password

Fig. 2. Remotely Keyed Decryption in GPU Protocol Shown: logical links

The client also sends a connection request to the server. The server contacts the
proxy and a secure session is established between them. This can be accomplished
using any protocol designed for secure session establishment. A single session key may
be used for the entire session, or the session key can be changed periodically, depending
on the protocol. In our prototype, the proxy authenticates the server based on the latter’s
certificate, and uses a single session key, sk. When contacting the proxy, the server
sends a random nonce and its certificate containing its public key for RSA. The proxy
generates a random nonce, encrypts it with the server’s public key and sends it to the
server. The server and proxy both concatenate the two nonces and use a hash of the
result as sk. The server sends k1 encrypted with AES using key sk to the proxy. The
proxy decrypts k1, encrypts it with the GPU’s public key and forwards the result, k

pubk
1

mod m, to the client. The client issues the OpenGL command to turn color mapping on
then writes the value received from the proxy to a specific pixel location in the GPU.
The color map corresponds to xprivk mod m, where x is the value being written, and
results in decrypting the value from the proxy to obtain k1. The write operation is done
to the GPU’s back buffer to avoid visually exposing the resulting pixels (and annoy the
user with unnecessary interference). As we explain later, we use a series of one-byte
values for each ki. The resulting pixels are used as the key to the stream cipher.

The client then signals to the server that it is ready to receive data or, for thin-client
applications, makes a request to update a display. The server sends the encrypted data to
the client. Ideally, the GPU computes the keystream, writing the resulting bytes directly

to the GPU’s back buffer. As explained in Section 4, when using RC4 some C code
is used to represent operations that will be performed in the GPU if improvements are
made to the GPU’s API. The client issues the OpenGL command to turn the logical
operation of XOR on in the GPU, then writes the data received to the back buffer.
The result is the data XORed with the keystream. The buffers are then swapped so the
unencrypted image appears on the display. It is common practice to create an image in
the back buffer then swap it to the front buffer in order to create a smooth transition
between frames. After n frames or t time, the client must signal to the server that it
needs the next secret key, ski+1, which is conveyed via the proxy as before.

Our prototype uses images encoded with 24 bits per pixel using 8 bits for each
of the Red, Green and Blue components. No Alpha component is encoded since the
image is written to the back buffer (which may not support the Alpha component) to
be decrypted. The pixel format is a parameter used by certain OpenGL commands,
such as the Draw command for writing data to the GPU, and can easily be changed to
accommodate other pixel formats.

4 Design Decisions

We now discuss some of our design and implementation decisions that were guided by
the constraints of existing GPUs. We first describe the limitations on programming a
GPU to perform general keying and decryption operations, and then discuss the current
inability to provide data compression.

GPUs are not designed to perform general arithmetic and byte-level operations.
We refer the reader to [3] and [4] for background on GPU APIs and pixel processing,
including the types of operations supported which are relevant to ciphers and the limi-
tations of GPUs in performing byte level operations. There are no API commands for
common operations such as modular arithmetic, shifts and rotates. Some operations can
be performed by a sequence of other commands under certain circumstances, such as
limiting values to a single byte and reading intermediate results from the GPU to the
operating system to allow the result to be a parameter in a subsequent command. We
describe how these limitations impact the ability to remotely key the GPU and decrypt
data within the GPU, and the workarounds we used to create our prototype. We con-
clude that three enhancements to OpenGL are necessary to fully realize our architecture.
First, a means of performing modular multiplication on values of magnitude typical of
those used for public key ciphers is required to securely implement the remote keying.
Second, a mechanism for using the contents of a pixel (or pixel component) as a pa-
rameter to an OpenGL command without first reading the pixel value from the GPU is
required for the remote keying and keystream generation. Third, the ability to perform
modular arithmetic using values less than 256 directly (i.e. without using color maps)
is desirable to efficiently implement certain ciphers, such as RC4, within the GPU.

4.1 Remote Keying

The lack of modular arithmetic and limitations on the range of values in GPUs impacts
the implementation of the asymmetric cipher used in the remote keying. The proxy
conveys the secret keys to the GPU via the client’s OS using an asymmetric key cipher.

Since existing public-key algorithms require exponentiation and/or modular arithmetic,
the operations required cannot be emulated in the GPU with existing APIs, except when
trivially small values are used, or when the values involved can be viewed as a series of 8
bits values. The remote keying of the GPU requires only that the GPU be able to perform
the decryption function of the asymmetric algorithm. We note that unless the proxy
and GPU share a secret key in advance, any protocol used to exchange information,
whether by merely having the proxy encrypt information with the GPU’s public key or
by establishing a session key between them, requires use of an asymmetric cipher.

We considered two options for our prototype. First, the operations can be imple-
mented in C code to represent a function that should be in the GPU. Second, restrictions
can be imposed on the size of the asymmetric cipher’s components to allow it to be im-
plemented to run in the GPU. However, in the case of RSA this requires that plaintext
and ciphertext each be restricted to fit in within a single byte, thus requiring the modu-
lus and exponents also each fit within a single byte and resulting in key components too
small to be secure. To illustrate the concept of decryption using public key cryptogra-
phy within the GPU, we used “toy” values less than 256 in the prototype for the private
and public exponents and the modulus. We used a series of 8-bit values to represent the
data, i.e., the secret key for RC4, encrypted with RSA. Each is encrypted with RSA by
the proxy and sent to the GPU. When using RC4 as the keystream generator, up to 256
single-byte values can be in the series for RC4’s secret key.

A third possibility is the integration of a decrypting GPU with a TPM such as the one
proposed by the Trusted Computing Group. This chip could handle certificate storage
and handling, as well a remote attestation and key negotation. Our GPU can then handle
image decryption using the TPM-negotiated session key.

4.2 Decryption of Data in the GPU

To decrypt the images received from the server, the GPU on the client must run a sym-
metric key cipher. As we described previously, we use a stream cipher. We consider two
options for the stream cipher: using an existing stream cipher and designing a stream
cipher suitable for a GPU. With respect to running an existing cipher within a GPU,
operations typically found in symmetric key ciphers make this infeasible either due to
the nature and number of OpenGL commands required to emulate the operations or due
to the infeasibility to convert the operations to execute within the GPU given limita-
tions of the API [4]. Existing stream ciphers, such as LILI, RC4, SEAL, SOBER and
SNOW, are unsuitable for implementation in a GPU. We chose to use RC4 because it is
possible to implement using OpenGL, though not practical due to the specific OpenGL
commands required resulting in poor performance. The use of irregularly clocked feed-
back shift registers in LILI and SOBER, and 32-bit words in SNOW and SEAL, among
other operations such as 9-bit rotations in SEAL, make these either less attractive than
implementing RC4 or impossible to implement in OpenGL.

The operations in RC4 consist entirely of adding two bytes, modulo 256 and swap-
ping two bytes. Thus, the only operation required of RC4 which is lacking in a GPU
is modular arithmetic. Since the modulus is 256, all values can be represented by sin-
gle bytes and can be stored as individual pixel components. Given two integers, a, b in
the range [0,255], a + b mod 256 can be computed using a color map. This requires

knowing either a or b in advance to determine which color map to activate. For each
integer, a, in the range [0,255], create a color map where the ith entry corresponds
to a + i mod 256. To compute a + b mod 256, b is stored as a pixel component, the
color map for a is activated, then the pixel containing b is copied to a new location.
The result written to the new location will be the bth entry of the color map. This poses
two problems. First, while OpenGL is used, the command to activate a color map must
be issued by a program running on the operating system, requiring a to be exposed to
the operating system. While this does not expose the keystream to the OS, it does pro-
vide partial information to the operating system, which may be helpful in determining
keystream values. Second, the copying of pixels between locations in the buffer is one
of the slowest operations within GPUs. In addition to the copy needed to compute the
sum, copies are needed to update the indices and move bytes into the appropriate pixel
components and locations. As a result, implementing RC4 in OpenGL is not a practi-
cal option. Therefore, we opted to implement the keystream generator of RC4 in C to
represent a function that will eventually be moved into the GPU. The keystream bytes
are written to the GPU as they are computed. This requires the C function computing
the keystream to read the secret key from the GPU. We initially wrote each byte of out-
put from RC4 directly to the GPU as it was generated. However, the number of writes
required (750,000 for a 500x500 image) resulted in poor performance. We changed our
prototype to compute the keystream bytes for an entire row of pixels before writing
them to the GPU, reducing the number of writes to the height of the image with the
tradeoff that a segment of the keystream is temporarily stored outside the GPU.

Due to the inability to efficiently generate a keystream within a GPU by using an
existing stream cipher, we are investigating designing a stream cipher utilizing graphics
operations for which GPUs are designed. We briefly describe the concept here. By
mapping a texture exhibiting sufficient randomness to a continuously morphing image
while changing certain variables, such as viewpoint and lighting, and extracting pixels
from the image, a keystream is generated. The keystream is never within the client’s
system memory in this case. We experiment with an initial version in order to estimate
the time to compute the keystream, with the results shown in Section 5. We point out
that while creation of a new stream cipher suitable for current GPUs is feasible (and in
fact may have wider applicability than our applications), the same is not true for public-
key ciphers, since this would require devising a new one-way function that does not
require exponentiation and modular arithmetic on numbers larger than a single byte.

While the proposed approach protects the secrecy of the images sent to the untrusted
system, the integrity of these images is not protected. This could allow an attacker to
change parts of the image, although this would be immediately detectable by the user,
as it would produce corrupt output on the screen (since the attacker does not know
the session key). Adding a message authentication code (MAC) to our scheme is not
currently feasible due to the limits of current GPUs.

5 Experiments

We conducted two sets of experiments to measure the ability of current GPUs to sus-
tain decryption rates compatible with our example applications. We used OpenGL as

the API to the graphics card driver. We did not use any vendor-specific OpenGL ex-
tensions, making our prototype GPU-independent. We used GLUT to open the display
window. The only requirement is that the GPU must support 32-bit “true color” mode,
as the routine for decrypting the secret key requires representing bytes in a single-pixel
component. The code for the client consists of C, OpenGL and GLUT, compiled using
Visual C++ version 6.0. The processes for the server and proxy are written in JAVA.

The experiments utilized three different clients in order to test different GPUs. The
environments were selected to represent a fairly current computing environment, a lap-
top and a low-end GPU. In all cases, the display was set to use 32-bit true color with
full hardware acceleration. The clients are:

1. A Pentium IV 1.8 GHz PC with 256KB RAM and an Nvidia GeForce3 Ti200
graphics card with 64MB of memory, running MS Windows XP. The GPU driver
uses OpenGL version 1.4.0.

2. A Pentium Centrino 1.3 GHz laptop with 256KB RAM and an ATI Mobility Radeon
7500 graphics card with 32MB of memory, running MS Windows XP. The GPU
driver uses OpenGL version 1.3.425.

3. A Pentium III 800 Mhz PC with 256KB RAM and an Nvidia TNT32 M64 graph-
ics card with 32MB of memory, running MS Windows 98. The GPU driver uses
OpenGL version 1.4.0.

Fig. 3. All Entities on a Single System

We simulated streaming video applications, such as NetMeeting, by sending a stream
of images from the server to the client. We tested with frame sizes of 320x240 and
500x500 pixels. The frames were encrypted and stored in individual files on the server
prior to starting the application. To measure thin-client performance, we used the av-
erage update size of 2,112 pixels (a 16x132 pixel area) from the standard i-Bench [7]
web benchmark for thin-clients. The update sizes in i-Bench range from 1x1 areas to
1,007x622 areas (626,354 pixels). All tests used images encoded as 24-bit RGB pixels,
with 8-bits per color component.

For each image size, two types of tests were run. The first set of tests determined the
delay due to the additional computation needed for the remote keying and decryption,
compared to sending unencrypted images. In these tests, all three entities (server, proxy,

Fig. 4. Dedicated Lan and Client 1 Fig. 5. Shared Lan and Client 2

and GPU) were run on the same PC or laptop. Each of the three clients was tested. The
results of the first set of tests are shown in Figure 3.

The second set of tests involved running each entity on separate systems on a LAN
to determine the overall performance when the data arrival rate was impacted by net-
work delay. The first client with the Nvidia GeForce3 GPU was used for these tests.
Figures 4 and 5 show the results of these experiments. Two tests were run using two
different LANs. In one case, the server and proxy were dedicated to the experiment and
there was no traffic leaving the server and proxy aside from that due to our experiment.
In the second case, we ran our tests on shared servers used for general purpose com-
puting. In both cases, each element had a 100Mbps connection to the LAN. There were
three hops between the client and server, and between the client and proxy; there are
two hops from the proxy to the server.

For all tests, the number of frames per second (fps) for both encrypted and unen-
crypted frames are provided. In video conferencing applications, the fps supported is
important: a minimum rate of 10 fps is required to obtain tolerable video and is typical
in such applications, with 24 fps and higher rates required for better quality. In contrast,
the rate of updates in thin-client applications is dependent on user requests and will be
sporadic. The fps reflects the maximum supported burst rate.

We note that it was not our intention to build a robust streaming video application
using RTP which accounted for delay, rate of transmission and lost packets, but rather
we focus on the remote keying and decryption within the GPU, and determine the re-
sulting overhead. Therefore, TCP was used for all communication between the entities.

At least 99% of the delay when decrypting frames with RC4, compared to using
unencrypted images, is due to the writing of the keystream bytes to the GPU. The
keystream was written to the GPU one row at a time. When the test is run with the
write eliminated (all other operations for the decryption are still performed), the aver-
age time is the same as that for the unencrypted images. The actual computation of the
keystream per frame, enabling the logical operation of XOR in the GPU and swapping
of buffers takes less than 1ms for the 500x500 frames on all clients. When testing the
average thin-client display size update (2,112 pixels), the times for the encrypted up-
dates were the same as for the unencrypted updates because the keystream required only
16 writes to the GPU. In contrast, the 320x240 and a500x500 pixel frames required 240
and 500 writes per frame, respectively.

The limiting factor in the processing of the 2,112-pixel updates is the time for the
server to create the update (read the update from a file in our experiment). To determine
the rate at which the client can process such updates if creation of updates is not a
limiting factor, an array containing 2,112 pixels was stored in memory on the server
and repeatedly sent to the client. The client can process over 500 updates per second
on each of the three platforms, indicating that decryption overhead and the GPU are
not limiting factors for small updates. For larger updates in thin-client applications,
we do not consider an increased delay, e.g., when the entire display changes, to be an
issue; such updates are infrequent and, from a human perspective, are no worse than the
loading of some web pages or opening of applications.

When sending images over a LAN, the decreased rate for the 320x240 and 500x500
pixel frames compared to the case when all processes were on the same PC is due to the
rate at which images are sent from the server to the client being limited by the band-
width. Even if no bandwidth is consumed by protocols, a maximum of 16.66 uncom-
pressed 500x500 RGB frames can be transmitted per second on a 100Mbps interface.

To estimate the time required for computing a keystream designed for the GPU as
described at the end of Section 4, we loaded an initial image in the GPU and measured
the time to execute all of the OpenGL operations under consideration. After each series
of executions, the resulting image is the keystream XORed with the current encrypted
frame. The execution per frame is less then 1ms, indicating that any differences in the
time to process encrypted vs. unencrypted frames will be imperceivable.

The time for the remote keying is mainly dependent on the time to enter the pass-
word or insert the smartcard into the proxy, and may take up to a few seconds if a pass-
word must be entered. Aside from this, the time is dependent on the protocol used and
on the transport delay between the entities. Using a public-key encryption algorithm,
generating random nonces and encrypting the secret key with AES requires approxi-
mately two seconds in each environment.

6 Conclusions

We addressed the feasibility of decrypting images and displays within a graphics pro-
cessing unit as a way of combating the rising threat of spyware. Our primary insight
is that a suitably modified GPU can serve as a minimal trusted computing base for
displays in certain types of widely used applications, such as video conferencing and
remote desktop display access. The main mechanism in our scheme is decryption of
frames exclusively inside the GPU, without storing either the key material or the plain-
text on the system’s main memory. Our technique can protect against many types of
spyware, as well as several attacks aimed at the human interface layer [9].

We explained why this scheme cannot fully be realized due to current limitations
of GPU APIs. We identified three straightforward enhancements to GPU APIs that can
overcome these limitations. With our prototype, we demonstrated that the concept is
feasible for thin-client applications and the video broadcast in conferencing applica-
tions. Designing a keystream which runs entirely in the GPU and takes advantage of
typical graphics operations will eliminate overhead and improve performance. To fur-
ther improve performance in these applications, image compression facilities will need
to be implemented inside the GPU, a trend which is already occurring. In addition, our

numbers show that for typical video conferencing frame rates and web browsing using
thin-clients, the lack of compression is not a performance bottleneck.

Our prototype focused on the securing of images sent to an untrusted client. Some
additional items must be considered in a complete system that protects all inputs. For
example, protecting any user keyboard and mouse inputs on the client which must be
conveyed to the server. Also, depending on the application, audio may need to be en-
crypted in a manner that prevents the OS from accessing the plaintext. The types of
operations supported by programmable DSPs make extending our concept to audio rel-
atively easy. We refer the reader to the extended version of this paper [3] for a complete
discussion. Other items discussed in [3] include proxy attacks in relation to our model,
data compression when using GPU based decryption and server-side encryption when
using a GPU based stream cipher. Future work includes developing prototypes that
fully integrate the concept into thin-client applications and expanding the prototype to
include encryption within DSPs.

References

1. M. Abadi, M. Burrows, C. Kaufman, B. Lampson, Authentication and Delegation with
Smart-cards, Theoretical Aspects of Computer Software, 1991.

2. P. Biddle, M. Peinado and D. Flanagan, Privacy, Security and Content Pro-
tection, http://download.microsoft.com/download/a/f/c/afcf8195-0eda-4190-a46d-
aa60b45e0740/Secure.ppt

3. D. Cook, R. Baratto and A. Keromytis, Remotely Keyed Cryptographics - Secure Remote
Display Access Using (Mostly) Untrusted Hardware (Extended Version), Columbia Uni-
veristy Computer Science Technical Report CUCS 050-04, 2004.

4. D. Cook, J. Ioannidis, A. Keromytis and J. Luck, CryptoGraphics: Secret Key Cryptogra-
phy Using Graphics Cards, RSA Conference, Cryptographer’s Track (CT-RSA), LNCS 3376,
Springer-Verlag, pages 334-350, 2005.

5. H. Gobioff, S. Smith, J. Tygar and B. Yee, Smart Cards in Hostile Environments, 2nd
USENIX Workshop on Electronic Commerce, 1996.

6. R. Iannella, Digital Rights Management (DRM) Architectures, D-Lib Magazine,
http://www.dlib.org/dlib/june01/iannella/06iannella.html vol. 7 (6), June, 2001.

7. i-Bench version 1.5, Ziff-Davis, Inc, http://www.veritest.com/benchmarks/i-bench/.
8. D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia and P. Cignoni and R. Scopigno,

Protected Interactive 3D Graphics Via Remote Rendering, ACM SIGGRAPH, 2004.
9. E. Levy, Interface Illusions, IEEE Security & Privacy, vol. 2 (6), 2004, pages 66-69.

10. Microsoft Windows 9 Media Series Digital Rights Management,
http://www.microsoft.com/windows/windowsmedia/drm.aspx, 2004.

11. J. Nieh, S. Jae Yang and N. Novik, Measuring Thin-Client Performance Using Slow-Motion
Benchmarking, ACM Transactions on Computer Systems, vol. 21 (1), pages 87-115, 2003.

12. OpenGL Organization, http://www.opengl.org.
13. RSA Laboratories, PKCS #1: RSA Encryption Standard Version 1.5, November, 1993.
14. Trusted Computing Group, Trusted Computing Group Architecture Overview,

https://www.trustedcomputinggroup.org/home, 2004.
15. T. J. Walsh and D. R. Kuhn, Challenges in Securing Voice over IP, IEEE Security & Privacy

Magazine, vol. 3 (3), May/June 2005, pages 44-49.
16. M. Woo, J. Neider, T. Davis and D. Shreiner, The OpenGL Programming Guide, 3rd edition,

Addison-Wesley, Reading, MA, 1999.

