
MOVE: An End-to-End Solution To Network Denial of Service

Angelos Stavrou Angelos D. Keromytis Jason Nieh Vishal Misra Dan Rubenstein
Columbia University in the City of New York

{angel,angelos,nieh,misra,danr}@cs.columbia.edu

Abstract

We present a solution to the denial of service (DoS)
problem that does not rely on network infrastructure
support, conforming to the end-to-end (e2e) design prin-
ciple. Our approach is to combine an overlay network,
which allows us to treat authorized traffic preferentially,
with a lightweight process-migration environment that
allows us to move services easily between different parts
of a distributed system. Functionality residing on a part
of the system that is subjected to a DoS attack migrates
to an unaffected location. The overlay network ensures
that traffic from legitimate users, who are authenticated
before they are allowed to access the service, is routed
to the new location. We demonstrate the feasibility and
effectiveness of our approach by measuring the perfor-
mance of an experimental prototype against a series
of attacks using PlanetLab, a distributed experimental
testbed. Our preliminary results show that the end-to-
end latency remains at acceptable levels during regular
operation, increasing only by a factor of 2 to 3, even for
large overlays. When a process migrates due to a DoS
attack, the disruption of service for the end user is in
the order of a few seconds, depending on the network
proximity of the servers involved in the migration.

1 Introduction

One of the fundamental tenets of Internet design is the
end-to-end (e2e) principle [40], which states that func-
tionality should be placed as close to the network edges
as possible, keeping the network core focused on the
task of routing packets. While this has arguably con-
tributed to the success of the Internet, it has created an
ideology that resists mechanisms that require deploy-
ment in the interior (core) of the network. Examples
of such technologies include some forms of QoS [4] and
active networking [52].

Recent events have elevated network denial of service

(DoS) attacks to a first-order security threat. While sev-
eral mechanisms to suppress or counter their effects have
been proposed [16, 44, 47, 51, 38, 35, 21, 53], so far
none has been widely adopted. One characteristic these
mechanisms share is their dependence on elements of
the network infrastructure. Furthermore, it has been ar-
gued recently [12] that the network DoS problem is in-
herently impossible to solve without infrastructure sup-
port. This may provide some insight as to the lack of
deployment of any of these mechanisms. The question
we examine in this paper is whether it is possible to pro-
vide a practical solution to the network DoS problem
that does not require significant (or any) cooperation by
network providers (ISPs).

We present Migrating OVErlay (MOVE), a system
that aims to provide an e2e-compatible anti-DoS mech-
anism. Our approach is to separate “good” traffic from
unknown traffic, and treat the former preferentially, us-
ing an overlay network in a manner similar to SOS
[21, 22, 7, 30] but without using packet filtering. MOVE
nodes are located at edge networks, requiring no in-
frastructure support. Traffic is differentiated on a per-
session basis, using cryptographic authentication and/or
Graphic Turing Tests (GTTs) to determine valid users
(which may simply mean “humans”). The overlay
routes traffic from legitimate users to the current net-
work location of the protected service. When an attack
against the hosting site is detected, we use a lightweight
process-migration mechanism to re-locate the service to
an unaffected site. Legitimate traffic is routed transpar-
ently to the new location, while malicious (or simply un-
known) traffic will continue flowing to the old location.
Our difference from SOS [21, 22], WebSOS [7, 30, 48],
and Mayday [1], is that MOVE does not require a fil-
tering perimeter to be constructed around the target site;
instead, we use process migration to move (and obscure)
the current location of the attacked service, and “step-
ping stone” hosts to maintain connectivity between the
original site and the new location of the service. Ar-
chitecturally, SOS introduced the general idea of using



an overlay and filtering to protect against some classes
of DDoS attacks. WebSOS enhanced the front-end of
the overlay (its interface with the remote clients) to en-
able more ad hoc interactions than SOS allowed. MOVE
concerns itself with the back-end of the overlay (its in-
terface with the protected sites), removing the depen-
dency on network filtering. Our approach is similar to
the concept of “hidden servers” in anonymity systems
such as Tor [37, 11], although our use of server migra-
tion in MOVE allows us to protect against a larger class
of attackers.

No aspect of MOVE depends on the network infras-
tructure itself, although it makes certain assumptions
about the threat model. In particular, (a) there is a notion
of legitimate users, (b) the attackers cannot take over ar-
bitrary routers or eavesdrop at will on arbitrary network
links, and (c) there exists a relatively large number of
potential hosting sites. We discuss these assumptions
further in Section 2.

Where these assumptions hold, we believe MOVE to
be the first anti-DoS mechanism that does not require
any additional functionality from the network. We hope
to demonstrate that by making careful assumptions and
relaxing the threat model in realistic ways, it is possible
to design efficient and effective protection mechanisms
that do not violate prevalent system and network design
principles. To that effect, we test our experimental pro-
totype on PlanetLab [36], a testbed for experimentation
with network overlays. As we show, the overlay mech-
anism increases end-to-end latency by a factor of 2 to
3. Migrating a web server and its associated state causes
less than 10 seconds of service disruption for the end
user, and connectivity resumes transparently to the end
applications; in the case of a VNC server with substan-
tially more state, the service disruption time ranges be-
tween 17 and 22 seconds. The attacker is left with no in-
dication as to the new location of the service, thus having
to either distribute the attack traffic among various po-
tential targets or try to guess the correct hosting site. An
attacker that cannot guess the new location faster than
10 seconds (for the web server case) cannot permanently
disrupt access to the service. Similar results are obtained
when migrating a remote display application, VNC. Fur-
thermore, clients need to use MOVE only when their
connectivity to a service is disrupted; under regular net-
work conditions, direct access to the servers would typ-
ically be used, minimizing the performance impact of
MOVE.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the MOVE system ar-
chitecture after describing its components. Section 3

describes our prototype implementation, and Section 4
presents some preliminary experimental results. We dis-
cuss other mechanisms that address the DoS problem in
Section 5, and conclude the paper with Section 6.

2 System Architecture

We first describe the threat and application models
under which our system operates. We then present the
MOVE architecture, which uses elements of overlay net-
working and process migration.

2.1 Threat and Application Model

DoS attacks can take many forms, depending on the
resource the attacker is trying to exhaust. For example,
an attacker can try to cause the web server to perform ex-
cessive computation, or exhaust all available bandwidth
to and from the server. In all forms, the attacker’s goal is
to deny use of the service to other users. Apart from the
annoyance factor, such an attack can prove particularly
damaging for time- or life-critical services (e.g., track-
ing the spread of an real-world epidemic), or when the
attack persists over several days. Of particular interest
are link congestion attacks, whereby attackers identify
pinch-points in the communications substrate and render
them inoperable by flooding them with large volumes of
traffic. An example of an obvious attack point is the
location (IP address) of the destination that is to be se-
cured, or the routers in its immediate network vicinity;
sending enough attack traffic will cause the links close to
the destination to be congested and drop all other traffic.

We assume that attackers are smart enough to exploit
features of the architecture that are made publicly avail-
able. We do not specifically consider how to protect the
architecture against attackers who can infiltrate the secu-
rity mechanism that distinguishes legitimate traffic from
(illegitimate) attack traffic: we assume that communica-
tions between overlay nodes remain secure so that an at-
tacker cannot send illegitimate communications, mask-
ing them as legitimate. In addition, it is conceivable
that more intelligent attackers could monitor communi-
cations between nodes in the overlay and, based on ob-
served traffic statistics, determine additional information
about the current configuration. Such attackers would
have the ability to subvert arbitrary routers and/or eaves-
drop at will on network links. As such attacks are con-
siderably more difficult than denial of service, we con-
sider them outside our scope. In [56], the authors an-
alyze our overlay architecture under a model allowing
for attackers that can compromise arbitrary nodes in the
overlay, toward determining the identity of the beacon
and/or secret servlets. They conclude that by layering



multiple overlays on top of each other, one can trade off
increased resistance to such attackers with end-to-end
performance.

Our prototype implementation is focused on two ap-
plications (although not limited to these): a web server
and a remote display access application (VNC) [39]. We
chose the Web as an implementation mechanism due to
the facilities that common servers and browsers provide
and the ease with which we could develop a prototype
implementation. VNC is a good example of an applica-
tion that maintains considerable state that cannot be eas-
ily replicated, without being “storage-heavy”. In gen-
eral, the applications we are most interested in are real-
time, server-assisted applications, and other applications
that require some state to be maintained by the server but
are not fundamentally storage-oriented (i.e., their pro-
cessing component dominates the system performance
costs). Our system supports applications that require ac-
cess to a storage back-end, by maintaining a “lifeline”
between the new and the old location of the service. The
service can access the storage back-end over this life-
line, with some loss of performance, which we measure
in Section 4. We discuss the lifeline in more detail in
Section 2.2.1.

Note that applications that do not require any state
to be maintained can simply be load-balanced across
several sites and contacted using Anycast, RR-DNS,
etc.. Likewise, content-delivery applications can use
data replication services such as Akamai to increase
availability.

Finally, we assume that there exists a number of host-
ing sites that can accept the migrating service. These can
be statically provisioned, e.g., through a co-operative
agreement among various service providers, or allocated
on demand from a commercial entity selling (or renting)
CPU time. In either case, we assume that there exist
enough such hosting sites that an attacker cannot sim-
ply overwhelm all of them with a coordinated DoS at-
tack. Instead, the attacker can successfully attack some
(small) percentage of such sites. Note that these hosting
sites are not part of the overlay itself. They only host
migrated services, presumably under some contractual
agreement with the owners of such services.

2.2 MOVE Architecture

The overall architecture of our system is shown in Fig-
ure 1, and shares several similarities with the architec-
ture of WebSOS [30, 7]. For the remainder of the discus-
sion, we will focus on web clients and servers, although
our approach can easily be generalized to other services.

2.2.1 Servers In MOVE

Servers that are to be protected inform the overlay
of their current location. Such servers are also au-
thenticated using a standard security protocol such as
SSL/TLS [10] with client certificates, or IPsec [20].
When a server migrates to a new location, it simply in-
forms the overlay of its new location. Note that multiple
servers, belonging to different organizations, may be us-
ing the system at the same time; the certificates they hold
allow them to change the location status only for them-
selves, i.e., they cannot cause the overlay to redirect and
capture a competitor’s traffic. We assume the existence
of enough locations to choose as the new destination that
it is impractical for an attacker to simply attack each
site and determine (based on service response latency)
which one is hosting a particular service; that is, it will
take too long for an attacker to locate a service using
that (or a similar) approach, compared to how quickly
the system can migrate to a new location. We experi-
mentally quantify this delay in Section 4.

However, notice that the process migration mecha-
nism itself uses the network, which is presumed to be
under a DoS attack. In keeping with the spirit of the
e2e design, we preclude use of any form of QoS provi-
sioning (although such arrangements can be very effec-
tive and do not require a lot of overhead, since the end-
points are fixed and known a priori). Instead, we assume
that each hosting site has a secondary, potentially low-
bandwidth connection to the Internet with a different IP
address (either with the same or, better yet, with another
ISP), which is not advertised through BGP. Thus, attack
traffic from outside the home ISP cannot reach that in-
terface, even if the attacker knows this alternate address.

We also require “stepping stones” in the same home
ISP (but not necessarily operated by the ISP, i.e., they
can be located in end-networks), which allow the mi-
grating process to reach a host that can communicate
with other nodes outside the home ISP. During process
migration, the server binary and state are saved (as we
shall describe in Section 2.3), transfered to one of the
stepping stones, and thence to a “random” hosting site,
where the service is restarted. The service will then no-
tify the overlay of its new location. The overlay will then
redirect traffic from legitimate clients to this new loca-
tion. The stepping stones can be part of the overlay (ad-
mitting new clients and routing their traffic), dedicated
nodes, hosting sites that use the same home ISP, or any
combination of these. The only important characteristic
is that they can communicate beyond the local ISP, and
with the ISP-specific address of the attacked site. For ex-
ample, the ISP may be using internally a net-10 address



Figure 1. Migrating Overlay system architecture.

(i.e., an address in the private 10.0.0.0/8 prefix) for
the secondary address of stepping stones and protected
sites. The stepping stone node also uses a temporary ad-
dress that belongs to the ISP, that is globally routable.
This address is changed periodically, such that an at-
tacker cannot target a stepping stone with attack traf-
fic. Thus, we have created an one-way communication
channel through the stepping stone (outside connections
through it are possible, incoming ones are not).

Finally, a “lifeline” connection is maintained between
the new location and the old location via the stepping
stone, such that the migrated service can access any stor-
age that is attached to the old location. For example,
consider a typical web server such as the one shown
in Figure 2. In MOVE, we will migrate the front-end
web server component, and use the lifeline connection
to communicate to the business logic and database com-
ponents. Although the stepping stone’s address may
change over time, we can use tunneling to maintain the
connection with the new location. We eventually intend
to use SCTP for this connection, since this allows us to
easily do live-connection migration to a new IP address.
Since the secondary link connects to another ISP (or we
ensured that it uses a different set of links than the main
Internet attachment point), the DDoS attack will not af-

fect the lifeline. To avoid adding up to the lifeline over-
heads when a server is migrated several times, we col-
lapse the lifeline by instructing the previous (original)
stepping stone to connect to the new location.

2.2.2 Clients in MOVE

When the service is not under attack, clients can contact
it directly. Once an attack is detected or suspected (e.g.,
through loss of connectivity), traffic is diverted through
MOVE. Clients that want to access the attacked service,
contact any overlay node (an updated list of which can
be published periodically) and authenticate using one of
several techniques. The most straightforward approach,
used in the initial version of MOVE, is to use SSL with
client certificates that are signed by the entity operating
the overlay, and authorize the holders to access either
specific or any applications or servers using the overlay.

The drawback of using an authentication protocol is
that we must know in advance who the legitimate users
are, so they can be provisioned with the appropriate au-
thentication credentials. This is not a problem for appli-
cations such as VNC, where we only want the authorized
user (owner) to access the service. In countering DoS at-
tacks, however, we are often more interested in whether
a particular request (e.g., HTTP connection) originated



network L
ogic

B
usiness

(e.g., A
pache)

Front−
end

W
eb Server

Requests
from the

Web Server

Component that is migrated by MOVE

IPC is "stretched" over "lifeline" connection

(PH
P, T

om
cat, Java B

eans, etc)

Database

Backend

Figure 2. Typical model of a web server.

Figure 3. Web-based Graphic Turing Test using
GIMPY. The challenge in this case is “wqyw”.

from a human user or from a “DoS zombie” process,
that is under the control of the attacker. Fortunately, it
is possible to do so using Graphic Turing Tests (GTTs)
[54], an example of which is shown in Figure 3. For
vision-impaired users, it is possible to use audible tests
of a similar nature (e.g., type the word spelled in this
audio clip); we do not consider such tests further in this
paper. MOVE can support both authenticated and GTT-
admitted clients simultaneously, as we describe in Sec-
tion 3.2.

The particular GTT realization we use is GIMPY,
which concatenates an arbitrary sequence of letters to
form a word and renders a distorted image of the word
as shown in Figure 3. GIMPY relies on the fact that
humans can read the words within the distorted image
and current automated tools cannot. The human authen-
ticates herself by entering as ASCII text the same se-
quence of letters as what appears in the image. Although
recent advances in visual pattern recognition [31] can
defeat GIMPY, there is no solution to date that can rec-
ognize complicated images or relation between images
like Animal-PIX. Although for demonstration purposes
in our prototype, described in Section 3, we use GIMPY,
we can easily substitute it with any other instance of a
GTT. Once a client has passed the GTT, they are pro-
vided with a short-expiration certificate that can be used
to access the overlay with TLS. We describe the imple-
mentation details in Section 3. Note that it is possible
to provision users with longer-lived credentials, or just
provide them with long-lived certificates, skipping GTT
authentication altogether; the drawback of that approach

is that the users must be known and provisioned a priori.
We believe that with these two authentication methods
(certificate-only and GTT), we can cover the majority
of usage scenarios. Although we are aware of social-
engineering attacks against CAPTCHAs, note that we
are not limited to these as the only form of authentica-
tion; as we already mentioned, we can use certificate
(and even password-based) authentication. We can in-
tegrate additional authentication mechanisms in the in-
frastructure as they are developed.

Authenticated clients then route all their traffic over
the overlay, which redirects it to the current location of
the protected service. Note that the actual location of
a server is no longer implied by the host-name compo-
nent of the URL, or the IP address this resolves to. An
attacker that has no access to the overlay can try to at-
tack a hosting site at random, or the IP address the URL
resolves to. In that case, the server and all associated
state is migrated to a new location. Alternatively, the
attacker can target the overlay itself. However, as has
been shown by other work on which we base our ap-
proach [21, 1], doing so is more difficult as the overlay
size increases.

2.3 Process Migration

Process migration is the ability to transfer a process
from one machine to another. It is a useful facility in dis-
tributed computing environments, especially as comput-
ing devices become more pervasive and Internet access
becomes more ubiquitous. Although many approaches
have been proposed [27], achieving process migration



functionality has been difficult in practice.
For our system, we use an approach based on [33], by

effectively providing a thin virtualization layer, called
a POD, on top of the operating system that provides
a group of processes with a private namespace. The
sandboxed process group always sees the same virtual-
ized view of the system, which associates virtual iden-
tifiers with operating system resources such as process
identifiers and network addresses. This decouples sand-
boxed processes from dependencies on the host oper-
ating system and from other processes in the system.
This virtualization is integrated with a checkpoint-restart
mechanism that enables the sandboxed processes to be
migrated as a unit to another machine. These process
groups are independent and self-contained, and can thus
be migrated freely without leaving behind any residual
state after migration, even when migrating network ap-
plications while preserving their network connections.
We can therefore allow applications to continue execut-
ing after migration even if the machine on which they
previously executed is no longer available. To sup-
port transparent network-connection migration, client-
side support is required, which is straightforward to im-
plement on the overlay nodes (i.e., no changes to client
(user) software are necessary). For our prototype imple-
mentation, this was not required, since the web model
allows for temporary TCP connection failures. For ap-
plication domains where this is not an option, we can
augment the overlay nodes accordingly. We do not ex-
plore this option further in this paper.

The process migration system is designed to support
migration of unmodified legacy applications while min-
imizing changes to existing operating systems. This is
done by leveraging loadable kernel module functional-
ity in commodity operating systems that allows us to
intercept system calls as needed for virtualization and
save and restore kernel state as needed for migration.
The system’s compatibility with existing applications
and operating systems makes it simple to deploy and
use. The system is implemented as a kernel module, al-
lowing transparent migration among separate machines
running independent versions of Linux (with unmodified
kernels). Note that these systems do not need to share a
single-system image.

In our web server experiments, all the server processes
were contained in the same POD. When migrating the
VNC environment, a number of different processes were
contained inside the same POD: the VNC server itself,
X11 terminals, a web browser, and a few other applica-
tions. We describe the configuration in more detail in
Section 4.

2.4 Example of System Operation

To illustrate the use of our architecture by servers and
clients, we describe the steps both sides must undertake
to protect their communication channel:

• A server contacts any overlay node and informs
it of its location. The connection is protected by
SSL/TLS, and the server presents a certificate that
proves to the overlay its right to specify a location
for a particular hostname/URL. The overlay node
confirms the validity of the certificate and informs
other nodes in the overlay of the new location of
the service. We will discuss in Section 3 the mecha-
nism used in our prototype. The server periodically
re-affirms its current location.

• A client that wants to communicate with the service
contacts a random overlay node. After authenticat-
ing and authorizing the request via the CAPTCHA
test, the overlay node securely proxies all traffic
from the source to the target. Alternatively, a pre-
authorized client that possesses a valid certificate
can connect to the overlay without requiring any
user interaction. As explained in [48], this step may
also involve some type of payment (by the end user
or the service owner) to the entity managing the
overlay infrastructure. Following the discussion of
[1], a number of overlay nodes may be involved in
the routing, depending on the precise threat model
and performance requirements. For example, to
avoid the situation where an attacker can eavesdrop
on an overlay node and determine the location of
the service, we may want to use a two-hop overlay
routing approach; if this is not a concern, we may
use one-hop redirection instead. Alternatively, we
can use full Chord-like routing [50] as in SOS [21],
obscuring traffic patterns.

• When an attack is detected, the server process
is suspended and migrated, using the system de-
scribed in Section 2.3. A random hosting site is
selected and, after querying its current status with
respect to DoS attacks and other suspicious activ-
ity, the server is migrated there. To perform the
migration, a “stepping stone” host that resides in
the same ISP as the source hosting site is used,
to achieve routability from an unpredictable source
address (one that cannot be attacked from outside
the ISP).

Following the analyses of [21] and [1], the scheme is
robust against DoS attacks because there exists no de-
pendency on any individual link, router, overlay node,



or hosting site. If a node within the overlay is attacked,
the node simply exits the overlay and clients switch to
a new node. No node is more important or sensitive
than others. Given “enough” redundancy, an attacker
is left with the options of splitting their attack among all
possible hosting sites and stepping stones, or trying to
guess the currently used location and focus their attack
there. How much constitutes “enough” depends on the
expected severity of attacks; we intend to quantify this
in future work. Intuitively, and given the attacks that
have been seen on the Internet so far, we expect 15 to
20 distinct and well connected hosting sites plus a small
number of stepping stones for each to be sufficient in
making even large attacks infeasible. We intend to ex-
tend our preliminary analysis from [21] for this scenario.

In [21], we performed a preliminary analysis using
simple networking models to evaluate the likelihood that
an attacker is able to prevent communications to a par-
ticular target. This likelihood was determined as a func-
tion of the aggregate bandwidth obtained by an attacker
through the exploitation of compromised systems. The
analysis included an examination of the capabilities of
static attackers who focus all their attack resources on a
fixed set of nodes, as well as attackers who adjust their
attacks to “chase after” the repairs that their system im-
plements when it detects an attack. We demonstrated
that even attackers that are able to launch massive at-
tacks are very unlikely to prevent successful communi-
cation. For instance, attackers capable of launching de-
bilitating attacks against 50% of the nodes in the overlay
have roughly one chance in one thousand of stopping a
given communication from a client who can access the
overlay through a small subset of overlay nodes. The
same security analysis applies to MOVE, by reducing
it to an instance of SOS: let the hosting site be equiv-
alent to the SOS “secret servlet” nodes; in both SOS
and MOVE, an attacker must correctly guess the iden-
tity of the location/servlet, both of which lie in the same
name space (IP address). Keeping the details of the over-
lay itself the same between the two approaches, it is
easy to see the equivalence of the two from an analysis
viewpoint. However, unlike SOS and Mayday, MOVE
achieves its properties without any support from the net-
work infrastructure.

3 Implementation

Since our MOVE prototype uses Chord [50] as the un-
derlying overlay network, we first briefly describe Chord
and then expand on the implementation of MOVE.

3.1 Chord

Chord can be viewed as a routing service that can
be implemented atop the existing IP network fabric,
i.e., as a network overlay. Consistent hashing [18] is
used to map an arbitrary identifier to a unique destina-
tion node that is an active member of the overlay. In
Chord, each node is assigned a numerical identifier (ID)
via a hash function in the range [0, 2m] for some pre-
determined value of m. The nodes in the overlay are
ordered by these identifiers. The ordering is cyclic (i.e.,
wraps around) and can be viewed conceptually as a cir-
cle, where the next node in the ordering is the next node
along the circle in the clockwise direction.

Each overlay node maintains a table that stores the
identities of m other overlay nodes. The ith entry in
the table is the node whose identifier x equals or, in re-
lation to all other nodes in the overlay, most immediately
follows x+2i−1 (mod 2m). When overlay node x re-
ceives a packet destined for ID y, it forwards the packet
to the overlay node in its table whose ID precedes y

by the smallest amount. The Chord algorithm routes
packets around the overlay “circle”, progressively get-
ting closer to the desired overlay node. O(m) overlay
nodes are visited. Typically, the hash functions used to
map nodes to identifiers do not attempt to map two ge-
ographically close nodes to nearby identifiers. Hence, it
is often the case that two nodes with consecutive identi-
fiers are geographically distant from one another within
the network. The Chord service is robust to changes in
overlay membership, and each node’s list is adjusted to
account for nodes leaving and joining the overlay such
that the above properties continue to hold.

MOVE uses the hostname of the target (i.e., web
server) as the identifier to which the hash function is
applied. Thus, Chord can direct traffic from any node
in the overlay to the node that the identifier is mapped
to, by applying the hash function to the target’s host
name. This node is simply a unique node that will be
eventually be reached, after up to m = log N overlay
hops, regardless of the entry point. For any particular
service, this node will always know its current location.
If this node is for some reason dropped from the over-
lay, a new node (the one with an address closest to the
hash of the service’s hostname) will subsume its role,
and provide location-resolution services for that target.
The new node will learn of the service’s current loca-
tion through the periodic re-confirmation message sent.
Thus, location information does not need to be flooded
to all nodes of the overlay network, which would make
it difficult to support large numbers of services, without
compromising reliability and robustness to attack.



3.2 MOVE Implementation

Our prototype system is based on WebSOS [30, 7].
Each overlay node is responsible for resolving the loca-
tion of the requested service and creating a security com-
munication tunnel with it. To that end, we use Chord to
distribute the location information for each site: when a
service informs MOVE of its current location, its host-
name is hashed and the node thus indicated is informed
of the location. In that sense, this node acts in a man-
ner analogous to SOS beacon nodes. Similarly, when a
MOVE node needs to forward a legitimate user’s request
to the service, it hashes the service hostname and sends a
query to the Chord node whose address is closest to the
hash result. Thus, in contrast to [7] and [21], rather than
transporting the request and response through the Chord
overlay, only routing information travels through it; data
connections are proxied directly to the protected ser-
vice’s location. The information is cached and period-
ically refreshed by consulting the authoritative MOVE
node for that target.

When a new request (in the form of a new TCP con-
nection) is received, the MOVE node to which the client
is connected (called an access point) first checks the
local cache database for the current location of the re-
quested service. If the lookup succeeds, the access point
opens a new SSL connection to a random overlay node
(to borrow from SOS terminology, a “secret servlet”),
which allows us to avoid some of the eavesdropping at-
tacks identified in [1]. Thus, a two-way communication
channel is established between the client and the service,
through the overlay. Authentication of the user by the
overlay is accomplished through SSL. Authorized users
are issued X.509 [5] certificates signed by the MOVE
access point that administered the GTT. These certifi-
cates are only valid for a limited time (30 minutes),
after which the user must pass another GTT. Further-
more, the certificates are bound to the IP address from
which the GTT authentication came, and can only be
used with the specific MOVE access point. Thus, an at-
tacker cannot simply authenticate once and redistribute
the same certificate to a large number of attack zom-
bies. Each overlay node also communicates with other
MOVE nodes over SSL connections. If the lookup fails,
the access point queries the resolving node, as described
previously.

When a request is issued by the client for a specific
service, it is tunneled through a series of SSL-encrypted
links to the target, allowing the entire transmission be-
tween the requester and target to be encrypted. The
SSL connections between MOVE nodes are dynami-
cally established, as new requests are routed. To ac-

complish this, we wrote a port forwarder that runs on
the user’s system, accepts plain-text proxy requests lo-
cally, and forwards them using SSL to the access point
node. This is implemented as a Java applet that runs
inside the browser that a user uses to authenticate him-
self. This Java applet is responsible for encrypting and
forward to the access point requests from any service
initiated by the client and can be configured to accept a
proxy. This last requirement can be removed if we use
interception of the socket communication at the operat-
ing system level.

Thus, to use MOVE, an authorized user simply has
to access any access point, successfully respond to the
Graphic Turing Test challenge, download the applet, and
set the service proxy settings to the localhost, as shown
in Figure 4. Java applets typically cannot communicate
with any host other than the one they were downloaded
from, but this is not a problem in our case. If the user
replies successfully, the web server connects to a DBMS
system (local or remote) and associates an RSA key and
a certificate with the host. The key/certificate are unique
per IP and have an expiration time that can be config-
ured by the system administrator. The user is prompted
to download a signed applet that runs locally using one
browser window and contacts the Web Server via a tem-
porary HTTPS connection to fetch the X.509 certificate.

The applet then starts listening for service connections
on a local ports (e.g., 8080) and establishes an SSL-
tunnel connection with the server running on the access
point (or elsewhere, since the signed applet has the abil-
ity to connect to any server by changing the Java Policy
files on the users’ machine). The proxy server matches
the X.509 certificate and the IP from client to the pri-
vate key obtained from the DBMS system and allows
the connection to be proxied. The only imposition on
the user is that he/she must change the Proxy settings of
the local browser to point to the socket that listens for
the applets. The same configuration is used when us-
ing VNC, with the proxy forwarding VNC rather than
HTTP traffic.

The access point caches the server’s location for use in
future requests. That information is timed out after a pe-
riod of time to allow changes to propagate correctly. The
same basic mechanism is used by services to announce
their presence to (and periodically update the informa-
tion stored by) their corresponding resolving nodes.

In a DoS attack, the target server migrates to a
randomly-chosen location and, once there, notifies the
overlay of its new location. The migration is done using
the process migration mechanism we described in Sec-
tion 2.3. System migration is largely implemented as a



Figure 4. MOVE client session initiation diagram.

loadable Linux kernel module. In our system, this mech-
anism was used to load and checkpoint the Apache and
VNC servers respectively, creating the necessary images
of the running processes. These process images, which
included the current process state, were then transfered
to the remote server and restarted.

4 Experimental Results

To evaluate MOVE’s impact on performance and
availability, we deployed the prototype implementation
on a number of PlanetLab nodes [36], distributed across
the Internet. We measured (1) the impact of using
MOVE to the client’s end-to-end latency, (2) the delay
in making a server available again at a new site once
a DoS attack has been launched, and (3) the impact of
the lifeline connection to the server’s performance. In
our experiments, we used the following entities (see Fig-
ure 4):

• A node acting as the client, using an off-the-shelf
web browser.

• An http target server (Apache) and a VNC server,
in two separate experiments.

• A set of PlanetLab nodes participating in the over-
lay network and providing the necessary traffic
redirection facilities.

• A migration server, to which the server is migrated
from its original location when attacked.

In our experiments, the legitimate client was located
inside Columbia University’s network and the traffic
was redirected from various nodes inside the PlanetLab
network toward the web and VNC servers, which were
initially located on the local (Columbia) network. We
deployed the MOVE implementation on 76 PlanetLab
nodes, which formed a Chord ring, per our discussion in
Section 3.

To determine the end-to-end latency experienced by
a client using our system, we used the MOVE overlay
to contact various web servers and download the initial
page. The results are shown in Table 1. The difference
in performance over previous work that used the same
benchmark [7] is due to the fact that traffic in MOVE
only traverses two overlay nodes, as opposed to the
full Chord overlay, meaning fewer redirections between
overlay nodes. As shown in [28], the increase in latency
is typically dominated by the end-to-end communica-
tion overheads. An additional delay cost is the SSL-



Table 1. Latency (in seconds) when contacting a
number of web servers directly and while using
MOVE; in all cases, we download the initial web
page. The last column shows the factor increase in
latency The testing was performed on a 76 node sub-
set of the PlanetLab testbed using the Chord overlay.
The numbers are averaged over 25 requests.

Server Direct MOVE Ratio
Yahoo! 1.32 3.67 2.78
VeriSign 3.41 6.77 1.98
BBC News 1.11 3.17 2.85
Microsoft 1.51 4.01 2.65
Slashdot 3.66 7.21 1.96
FreeBSD 1.49 3.81 2.55

Table 2. Delay in re-establishing availability after
disruption (due to DDoS) for an httpd server, mi-
grated from the initial site to a co-located server (us-
ing NFS/UDP and SHFS/TCP), and to a remote site
(using SHFS). The size of the server state was 9.8MB
on average. We also include the round-trip latency
between the target and migration servers in all cases.

Migration RTT Migration
Server Latency Time
Co-located (NFS) 1.02ms 0.761s
Co-located (SHFS) 1.02ms 1.162s
U. Penn (SHFS) 10.6ms 6.632s

processing overhead from the generation of the SSL tun-
nel and the encryption of the data from client to the over-
lay and inside the overlay; use of cryptographic acceler-
ators may further improve performance in that area [23].

To measure the delay in re-establishing the server’s
availability, which is the time during which a client us-
ing MOVE experiences service disruption, we used an
Apache httpd server running under the default configu-
ration. The server, initially located inside our local net-
work, was moved to the migration server. The state of
the server processes amounted to 9.8 MBytes on aver-
age. We measured the migration time in the following
cases: when the migration server was located inside our
local network, and when the migration server was lo-
cated at the University of Pennsylvania, approximately
11 hops or 10ms ping time away (over Internet2). In
both scenarios, the state files were transfered using the
(Secure) SHell FileSystem (SHFS) [46], which operates
over the popular SSH/SCP protocol suite. We chose

SHFS because of its ease of installation and use; other
filesystems, such as LBFS [32] or CODA [41] can also
be used instead SHFS. For the local-migration case, we
used NFS (over UDP) as a second way of transferring
state. We show the results in Table 2. The availability
delay varies between 1 second to 6.6 seconds, as round-
trip times increase from 1ms (for the local-migration
case) to 10ms. We believe that this level of disruption
is acceptable in the presence of a DoS attack, when the
alternative is total loss of service. One may observe that
an attacker may be considered successful in some sce-
narios if they can cause service downtime of 7 seconds
even few minutes, if only because the end users will be
annoyed. One possibility we plan to examine in future
work is the use of “hot spares” that are kept synchro-
nized with the live service and to which we can divert
traffic at sort notice through MOVE.

To better analyze the contribution of the lifeline con-
nection to the overall latency for large interactive, non-
caching applications like thin clients, we constructed
the following experiment: initially, a VNC [39] server
is located on the target server. The client connects
via MOVE and creates a VNC session consisting of
Mozilla browser, Gaim Instant Messenger, Kword, a
PS/PDF viewer and two terminals connected to the tar-
get server. Upon detection of the attack, we check-
pointed the POD containing the VNC session and server,
transfered the state to the migration server and restarted
it. The state transfered to the migrate server amounted
to 55.9 MBytes. For the migration, we used a co-located
server, Site 1, and two remote servers, Site 2 and Site
3, with different network proximity to the target server.
Figure 5 shows the average availability delay for this
scenario, which is dominated by the transfer of the POD
state; the relatively small checkpoint and restart over-
heads remain constant for all experiments.

In addition, the underlying file-access mechanism
seems to play a significant role, especially when we
establish a low-bandwidth link between the target and
the migration server. Accessing the target’s database or
file system via the lifeline can also increase the end-to-
end latency. For servers that are either co-located or
connected through a low-latency link (<5ms), we can
use NFS/UDP since it is fast and reliable. However, if
the established connection is of high latency (and low
bandwidth), NFS/UDP becomes unresponsive. To mea-
sure the performance of our system when using a high-
latency connection, we instead used SHFS. Figures 6
and 7 show the average round trip time (RTT) and effec-
tive throughput respectively for all the migration sites.
We can see that as we increase the distance between



Figure 5. Average migration time (in seconds) for a VNC server migrates to a co-located server (Site 1) and to remote
servers (Site 2 and Site 3) using NFS/UDP and SHFS/TCP using a tunnel through the lifeline. We observe that the
total time is dominated by the transfer time. Prior to the migration the VNC server was running Mozilla browser,
Gaim, Kword, PS/PDF viewer and two terminal applications.

the target and the migration server, we have a propor-
tional decrease in the average data throughput. Figure 7
shows that when we use NFS to connect the target and
migration servers for Site 1, we achieve better through-
put compared to using SHFS.

Choosing a file-access method to connect through the
lifeline depends both on the network proximity of the
migrating site and the maximum network latency al-
lowed by the application we migrate. For thin-client
applications like VNC, all the applications are already
loaded prior to migration and the user communicates
with the target server only to read or write data from
within an application. Thus, the lifeline utilization is
relatively low, allowing for relatively smooth operation
under conditions of high network latency. For applica-
tions that access the filesystem frequently, such as HTTP
servers, it is necessary to use a network file system with
good caching characteristics. For database applications,
we need to ensure that the lifeline can sustain the load
from the migrated middleware server to the back-end
database server.

5 Related Work

As a result of its increased popularity and usefulness,
the Internet contains both interesting targets and enough

malicious and ignorant users that DoS attacks are simply
not going to disappear on their own; indeed, although
the press has stopped reporting such incidents, recent
studies have shown a surprisingly high number of DoS
attacks occurring around the clock throughout the Inter-
net [29]. Worse, the Internet is increasingly being used
for time-critical applications. A further compounding
factor is the susceptibility of the basic protocols (i.e., IP
and TCP) to denial of service attacks [45, 14, 42].

The need to protect against or mitigate the effects of
DoS attacks has been recognized by both the commer-
cial and research world. Some work has been done
toward achieving these goals, e.g., [16, 8, 44, 43, 13,
47, 51, 26]. These mechanisms focus on detecting the
source of DoS attacks in progress and then countering
them, typically by “pushing” some filtering rules on
routers as far away from the target of the attack (and
close to the sources) as possible. The motivation behind
such approaches has been twofold: first, it is concep-
tually simple to introduce a protocol that will be used
by a relatively small subset of the nodes on the Internet
(i.e., ISP routers), as opposed to requiring the introduc-
tion of new protocols that must be deployed and used by
end-systems. Second, these mechanisms are fairly trans-
parent to protocols, applications, and legitimate users.
Unfortunately, these reactive approaches by themselves



Figure 6. Round Trip Time (RTT) between the
target server and the migration sites when using
the lifeline tunnel. Note that the Y axis uses loga-
rithmic scale.

Figure 7. Average data throughput in MB/sec
when accessing target server files from the migra-
tion sites using the lifeline tunnel. Notice that as
we increase the network distance, we have a pro-
portional decrease in the average data through-
put

are not adequate, since large-scale coordination across
multiple administrative domains is not always practical.

The D-WARD system [38] monitors outgoing traffic
from a given source network and attempts to identify at-
tack traffic by comparing against models of reasonable
congestion control behavior. The amount of throttling
on suspicious traffic is proportional to its deviation from
the expected behavior, as specified by the model. In
COSSACK [34], participating agents at edge networks
exchange information about observed traffic and form
multicast cliques to coordinate attack suppression. An
interesting approach is that of [17], which proposes an
IP hop-count-based filter to weed out spoofed packets.
The rationale is that most such packets will not have a
hop-count (TTL) field consistent with the IP addresses
being spoofed. In [15], the authors use a combination of
techniques that examine packet contents, transient ramp-
up behavior and spectral analysis to determine whether
an attack is single- or multi-sourced, which would help
focus the efforts of a hypothetical anti-DoS mechanism.

A variant of the packet marking approaches creates
probabilistically unique path-marks on packets without
requiring router coordination; end-hosts or firewalls can
then easily filter out packets belonging to a path that
exhibits anomalous behavior [57]. Although this ap-
proach avoids many of the limitations of the pure mark-
ing schemes, it requires that core routers “touch” packets

(rather than simply switch them), and assumes that the
limited resource is the target’s CPU cycles, rather than
the available bandwidth (i.e., preventing the DoS attack
is “simply” a matter of quickly determining which pack-
ets the server should ignore). In our work, we assume
that the scarce resource is bandwidth. Collins and Re-
iter [6] present an empirical analysis of several different
anti-DoS techniques (including Pi [57] and Hop-Count
Filtering [17]) that use filters near the target of an attack,
using traces of real DDoS attacks to simulate the impact
of the filters on the attack traffic.

[35] describes filtering out source-spoofed packets in-
side the Internet core, and discusses the effectiveness of
this approach. The authors suggest piggy-backing on
BGP to propagate the necessary information. DDoS at-
tacks using real IP addresses are not affected by this
scheme.

[19] proposes using Class-Based Queuing on a web
load-balancer to identify misbehaving IP addresses and
place them in lower priority queues. However, many of
the DDoS attacks simply cause congestion to the web
server’s access link.

Another approach to mitigating DoS attacks against
information carriers is to massively replicate the con-
tent being secured around the entire network, e.g., [49].
To prevent access to the replicated information, an at-
tacker must attack all replication points throughout the



entire network — a task that is considerably more diffi-
cult than attacking a small number of, often co-located,
servers. Replication is a promising means to preserve in-
formation that is relatively static, such as news articles.
However, there are several reasons why replication is not
always an ideal solution. For instance, the information
may require frequent updates complicating large-scale
coherency (especially during DoS attacks), or may be
dynamic by its very nature (e.g., a live web-cast). An-
other concern is the security of the stored information:
engineering a highly-replicated solution without leaks of
information is a challenging endeavor.

An extension of the ideas of SOS [21, 7, 30] appears in
[1]. There, the two main facets of the SOS architecture,
filtering and overlay routing, are explored separately,
and several alternative mechanisms are considered. It is
observed that in some cases, the various security proper-
ties offered by SOS can still be maintained using mech-
anisms that are simpler and more predictable. How-
ever, some second-order properties, such as the ability
to rapidly reconfigure the architecture in anticipation of
or in reaction to a breach of the filtering identity (e.g.,
identifying the secret servlet) are compromised. In most
other respects, the two approaches are very similar.

A system similar to MOVE is proposed in [24], where
servers are hidden among a large number of honepots. A
continuously changing subset of the servers is active and
providing service, switching to honeypot mode when an
attack is detected. An overlay is responsible for routing
legitimate clients to the currently active servers, and the
system is evaluated via a set of simulations.

Gligor [12] proposes the use of a server that can
produce tickets at line speeds. Clients must obtain a
ticket from this server before they are allowed to ac-
cess a protected service. The approach is geared to-
wards application-level DoS protection, with some other
mechanism, such as SOS or Pushback, used to address
network-level DoS attacks. Anderson et. al [2] sub-
sequently proposed a similar system for use at the net-
work layer of an Internet-like architecture designed with
a clean slate, assuming a distributed token server archi-
tecture and rate-limiting/filtering traffic on routers based
on these tokens. Another similar idea appears in [25].

The NetBouncer project [53] considers the use of
client-legitimacy tests for filtering attack traffic. Such
tests include packet-validity tests (e.g., source address
validation), flow-behavior analysis, and application-
specific tests, including Graphic Turing Tests. However,
since their solution is end-point based, it is susceptible to
large link-congestion attacks. [58] is the first system to
create stateless flow filtering by having each router add

“capabilities” to packets that traverse them; the receiver
of these packets is then responsible for sending these
capabilities to its peers, which will allow them to send
traffic at higher rates (privileged traffic). Unprivileged
traffic is limited to a fraction of the available bandwidth;
thus, although a DoS attack can prevent new connec-
tions from being established (by overloading the control
channel used to communicate these capabilities), exist-
ing connections will be unharmed.

[3] examines several different DDoS mitigation tech-
nologies and their interactions. Among their conclu-
sions, they mention that requiring the clients to do some
work, e.g., [9], can be an effective countermeasure, pro-
vided the attacker does not have too many resources
compared to the defender. Wang and Reiter [55] intro-
duced the idea of a puzzle auction as a way to ease some
of the practical deployment difficulties, e.g., selecting
the appropriate hardness for the puzzles. Their intuition
is to let clients bid for the resources by tuning the diffi-
culty of the puzzles they solve. When the server is at-
tacked, legitimate clients gradually increase their bids
(puzzle difficulty), eventually bringing the cost outside
the adversary’s capabilities. The authors envision com-
bining their scheme with some anti-DoS mechanism that
counteracts volume-based attacks [16, 57, 21].

6 Conclusions

We described MOVE, an architecture for protecting
specific classes of software services, such as a web
server, from network-based denial of service (DoS) at-
tacks, without requiring any additional functionality to
be placed inside the network. We believe our work to
be the first to demonstrate that it is possible to counter
network DoS attacks without requiring support from the
infrastructure itself.

MOVE combines a network overlay with a
lightweight process-migration mechanism. The
overlay nodes accept connections from legitimate users,
and route their traffic to the current location of the
service. Our definition of legitimate is flexible, and
can vary from users authenticated with cryptographic
credentials to Graphic Turing Tests, which simply
distinguish between humans and automated zombies. If
a service is attacked, it is migrated to a new, randomly
selected location. An attacker is left with the option
of splitting the attack traffic to all potential targets, or
trying to guess the current active location.

We use our prototype implementation on the Planet-
Lab testbed, which allows us to distribute the MOVE
nodes across the Internet. In a series of experiments, we
show that the end-to-end latency imposed by MOVE can



be as low as a factor of 2 to 3 higher than direct commu-
nication between client and server, which we believe is
an acceptable cost when dealing with DoS attacks. The
service disruption to the end user, that is the time to mi-
grate an attacked service, ranges from 10 to 25 seconds,
depending on the location of the migration server. Our
plans for future work include eliminating (or minimiz-
ing) the need for stepping stones, and analyzing the se-
curity of the system against different adversarial models
[56].

Acknowledgements

We would like to thank the anonymous reviewers for
their comments and suggestions that helped improve this
paper.

This work is supported in part by DARPA contract
No. F30602-02-2-0125 (FTN program) and by the Na-
tional Science Foundation under grants ANI-0117738
and ITR CNS-0426623, and CAREER Award ANI-
0133829, with additional support from Cisco and Intel
Corporation. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the National Science Foundation.

References
[1] D. G. Andersen. Mayday: Distributed Filtering for In-

ternet Services. In 4th USENIX Symposium on Internet
Technologies and Systems USITS, March 2003.

[2] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
Internet Denial-of-Service with Capabilities. In Pro-
ceedings of the 2

nd Workshop on Hot Topics in Networks
(HotNets-II), November 2003.

[3] W. J. Blackert, D. M. Gregg, A. K. Castner, E. M. Kyle,
R. L. Hom, and R. M. Jokerst. Analyzing Interaction
Between Distributed Denial of Service Attacks and Mit-
igation Technologies. In Proceedings of DISCEX III,
pages 26–36, April 2003.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and
S. Jamin. Resource ReSerVation Protocol (RSVP) –
Version 1 Functional Specification. Internet RFC 2208,
1997.

[5] CCITT. X.509: The Directory Authentication
Framework. International Telecommunications Union,
Geneva, 1989.

[6] M. Collins and M. Reiter. An empirical analysis of
target-resident DoS filters. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2004.

[7] D. L. Cook, W. G. Morein, A. D. Keromytis, V. Misra,
and D. Rubenstein. WebSOS: Protecting Web Servers
From DDoS Attacks. In Proceedings of the 11

th IEEE
International Conference on Networks (ICON), pages
455–460, September 2003.

[8] D. Dean, M. Franklin, and A. Stubblefield. An Alge-
braic Approach to IP Traceback. In Proceedings of the
Symposium on Network and Distributed System Security
(SNDSS), pages 3–12, February 2001.

[9] D. Dean and A. Stubblefield. Using Client Puzzles To
Protect TLS. In Proceedings of the 10

th USENIX Secu-
rity Symposium, August 2001.

[10] T. Dierks and C. Allen. The TLS protocol version 1.0.
RFC 2246, January 1999.

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The Second-Generation Onion Router. In Proceedings
of the 13

th USENIX Security Symposium, pages 303–
319, August 2004.

[12] V. D. Gligor. Guaranteeing Access in Spite of Dis-
tributed Service-Flooding Attacks. In Proceedings of the
Security Protocols Workshop, April 2003.

[13] M. T. Goodrich. Efficient Packet Marking for Large-
Scale IP Traceback. In Proceedings of the 9

th ACM
Conference on Computer and Communications Security
(CCS), pages 117–126, November 2002.

[14] L. Heberlein and M. Bishop. Attack Class: Address
Spoofing. In Proceedings of the 19

th National Informa-
tion Systems Security Conference, pages 371–377, Octo-
ber 1996.

[15] A. Hussain, J. Heidemann, and C. Papadopoulos. A
Framework for Classifying Denial of Service Attacks. In
Proceedings of ACM SIGCOMM, pages 99–110, August
2003.

[16] J. Ioannidis and S. M. Bellovin. Implementing Push-
back: Router-Based Defense Against DDoS Attacks. In
Proceedings of the ISOC Symposium on Network and
Distributed System Security (SNDSS), February 2002.

[17] C. Jin, H. Wang, and K. G. Shin. Hop-Count Filter-
ing: An Effective Defense Against Spoofed DoS Traffic.
In Proceedings of the 10

th ACM International Confer-
ence on Computer and Communications Security (CCS),
pages 30–41, October 2003.

[18] D. Karger, E. Lehman, F. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent Hashing and Ran-
dom Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Proceedings of
the ACM Symposium on Theory of Computing (STOC),
pages 654–663, May 1997.

[19] F. Kargl, J. Maier, and M. Weber. Protecting Web
Servers From Distributed Denial of Service Attacks. In
Proceedings of the W3C World Wide Web Conference
(WWW), pages 514–524, 2001.

[20] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol. RFC 2401, November 1998.

[21] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS:
Secure Overlay Services. In Proceedings of ACM SIG-
COMM, pages 61–72, August 2002.

[22] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS:
An Architecture For Mitigating DDoS Attacks. IEEE
Journal on Selected Areas of Communications (JSAC),
33(3):413–426, January 2004.



[23] A. D. Keromytis, J. L. Wright, and T. de Raadt. The
Design of the OpenBSD Cryptographic Framework. In
Proceedings of the USENIX Annual Technical Confer-
ence, pages 181–196, June 2003.

[24] S. M. Khattab, C. Sangpachatanaruk, D. Moss, R. Mel-
hem, and T. Znati. Roaming Honeypots for Mitigat-
ing Service-Level Denial-of-Service Attacks. In Pro-
ceedings of the 24

th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 238–337,
March 2004.

[25] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Sto-
ica. Taming IP Packet Flooding Attacks. In Proceed-
ings of the 2

nd Workshop on Hot Topics in Networks
(HotNets-II), November 2003.

[26] J. Li, M. Sung, J. Xu, and L. Li. Large-Scale IP Trace-
back in High-Speed Internet: Practical Techniques and
Theoretical Foundation. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2004.

[27] D. Milojicic, F. Douglis, and R. Wheeler. Mobility: Pro-
cesses, Computers, and Agents. Addison Wesley Long-
man, February 1999.

[28] S. Miltchev, S. Ioannidis, and A. D. Keromytis. A Study
of the Relative Costs of Network Security Protocols. In
Proceedings of the USENIX Annual Technical Confer-
ence, Freenix Track), pages 41–48, June 2002.

[29] D. Moore, G. Voelker, and S. Savage. Inferring Internet
Denial-of-Service Activity. In Proceedings of the 10

th

USENIX Security Symposium, pages 9–22, August 2001.
[30] W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis,

V. Misra, and D. Rubenstein. Using Graphic Turing
Tests to Counter Automated DDoS Attacks Against Web
Servers. In Proceedings of the 10

th ACM International
Conference on Computer and Communications Security
(CCS), pages 8–19, October 2003.

[31] G. Mori and J. Malik. Recognizing Objects in Adversar-
ial Clutter: Breaking a Visual CAPTCHA. In Computer
Vision and Pattern Recognition (CVPR.

[32] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system. In Proceedings of the
18

th ACM Symposium on Operating Systems Principles
(SOSP), pages 174–187, Chateau Lake Louise, Banff,
Canada, October 2001.

[33] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The De-
sign and Implementation of Zap: A System for Migrat-
ing Computing Environments. In Proceedings of the
5

th Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 361–376, December 2002.

[34] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain,
and R. Govindan. COSSACK: Coordinated Suppression
of Simultaneous Attacks. In Proceedings of DISCEX III,
pages 2–13, April 2003.

[35] K. Park and H. Lee. On the Effectiveness of Route-based
PAcket Filtering for Distributed DoS Attack Prevention
in Power-law Internets. In Proceedings of ACM SIG-
COMM, pages 15–26, August 2001.

[36] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into the
Internet. In Proceedings of the 1

st Workshop on Hot
Topics in Networks (HotNets-I), October 2002.

[37] M. Reed, P. Syverson, and D. Goldschlag. Anony-
mous Connections and Onion Routing. IEEE Journal on
Selected Areas in Communications (JSAC), 16(4):482–
494, May 1998.

[38] P. Reiher, J. Mirkovic, and G. Prier. Attacking DDoS
at the source. In Proceedings of the 10

th IEEE Inter-
national Conference on Network Protocols, November
2002.

[39] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing. In Pro-
ceedings of IEEE Internet Computing, volume 2, Jan-
uary/February 1998.

[40] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end ar-
guments in System Design. ACM Transactions on Com-
puter Systems, 2(4):277–288, November 1984.

[41] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki,
E. Siegel, and D. Streere. Coda: A Highly Available
File System for Distributed Workstation Environments.
IEEE Transactions on Computers, 39(4), April 1990.

[42] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson.
TCP Congestion Control with a Misbehaving Receiver.
ACM Computer Communications Review, 29(5):71–78,
October 1999.

[43] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical Network Support for IP Traceback. In Pro-
ceedings of ACM SIGCOMM, pages 295–306, August
2000.

[44] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Network Support for IP Traceback. ACM/IEEE Trans-
actions on Networking, 9(3):226–237, June 2001.

[45] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram,
and D. Zamboni. Analysis of a Denial of Service Attack
on TCP. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, pages 208–223, May 1997.

[46] SHFS Development Team. SHell File System, SHFS.
http://shfs.sourceforge.net/.

[47] A. Snoeren, C. Partridge, L. Sanchez, C. Jones,
F. Tchakountio, S. Kent, and W. Strayer. Hash-Based IP
Traceback. In Proceedings of ACM SIGCOMM, August
2001.

[48] A. Stavrou, J. Ioannidis, A. D. Keromytis, V. Misra, and
D. Rubenstein. A Pay-per-Use DoS Protection Mech-
anism For The Web. In Proceedings of the Applied
Cryptography and Network Security (ACNS) Confer-
ence, pages 120–134, June 2004.

[49] A. Stavrou, D. Rubenstein, and S. Sahu. A Lightweight,
Robust P2P System to Handle Flash Crowds. IEEE
Journal on Selected Areas in Communications (JSAC),
22(1):6–17, January 2004.

[50] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-To-Peer Lookup Ser-
vice for Internet Application. In Proceedings of ACM
SIGCOMM, August 2001.

[51] R. Stone. CenterTrack: An IP Overlay Network for
Tracking DoS Floods. In Proceedings of the USENIX
Security Symposium, August 2000.



[52] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A Survey of Active Net-
work Research. IEEE Communications Magazine, pages
80–86, January 1997.

[53] R. Thomas, B. Mark, T. Johnson, and J. Croall. Net-
Bouncer: Client-legitimacy-based High-performance
DDoS Filtering. In Proceedings of DISCEX III, pages
14–25, April 2003.

[54] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using Hard AI Problems For Security. In
Proceedings of EUROCRYPT, 2003.

[55] X. Wang and M. K. Reiter. Defending Against Denial-
of-Service Attacks with Puzzle Auctions (Extended Ab-
stract). In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, May 2003.

[56] D. Xuan, S. Chellappan, and X. Wang. Analyzing the
Secure Overlay Services Architecture under Intelligent
DDoS Attacks. In Proceedings of the 24

th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 408–417, March 2004.

[57] A. Yaar, A. Perrig, and D. Song. Pi: A Path Identification
Mechanism to Defend against DDoS Attacks. In Pro-
ceedings of the IEEE Symposium on Security and Pri-
vacy, May 2003.

[58] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless In-
ternet Flow Filter to Mitigate DDoS Flooding Attacks.
In Proceedings of the IEEE Symposium on Security and
Privacy, May 2004.


