
gore: Routing-Assisted Defense Against DDoS Attacks

Stephen T. Chou1, Angelos Stavrou1, John Ioannidis2, and Angelos D. Keromytis1

1 Department of Computer Science, Columbia University, New York, NY
2 Center for Computational Learning Systems, Columbia University, New York, NY

{schou,angel,ji,angelos}@cs.columbia.edu

Abstract. We present gore, a routing-assisted defense architecture against dis-
tributed denial of service (DDoS) attacks that provides guaranteed levels of ac-
cess to a network under attack. Our approach uses routing to redirect all traffic
destined to a customer under attack to strategically-located gore proxies, where
servers filter out attack traffic and forward authorized traffic toward its intended
destination.
Our architecture can be deployed incrementally by individual ISPs, does not re-
quire any collaboration between ISPs, and requires no modifications to either
server- or client- software. Clients can be authorized through a web interface
that screens legitimate users from outsiders or automated zombies. Authenticated
clients are granted limited-time access to the network under attack. The gore
architecture allows ISPs to offer DDoS defenses as a value-added service, pro-
viding necessary incentives for the deployment of such defenses. We constructed
a PC-based testbed to evaluate the performance and scalability of gore. Our pre-
liminary results show that gore is a viable approach, as its impact on the filtered
traffic is minimal, in terms of both end-to-end latency and effective throughput.
Furthermore, gore can easily be scaled up as needed to support larger numbers of
clients and customers using inexpensive commodity PCs.

1 Introduction

Denial-of-Service (DoS) attacks can take many forms, depending on the resource the
attacker is trying to exhaust. For example, an attacker may cause a web server to per-
form excessive computation, or exhaust all available bandwidth to and from that server.
In all forms, the attacker’s goal is to deny use of the service to other users. Apart from
the annoyance factor, such an attack can prove particularly damaging for time- or life-
critical services, or when the attack persists over several days: in one instance of a
persistent DoS attack, a British ISP was forced out of business because it could not pro-
vide service to its customers. Of particular interest are link congestion attacks, whereby
attackers identify “pinch points” in the communications infrastructure and render them
inoperable by flooding them with large volumes of traffic. We concentrate our interests
on this form of attacks because there is little, if anything, the victim can do to protect
itself; what is being attacked is not any particular vulnerability of the target, but rather
the very fact that said target is connected to the network.

There are many reasons why, despite extensive research work on the subject, we
have seen very little deployment of effective anti-DDoS technology by Internet Service
Providers. An important one is the lack of financial incentives for ISPs to deploy such



2

services: they cannot easily sell a premium service to high-value customers whereby
these customers are better protected. However, it is precisely these high-volume, high-
value customers who often attract the more serious DDoS attacks, and whom the ISP
would want to keep better protected, either by charging more, or by considering the
expense of the extra protection as the cost of attracting these high-value customers (or
even protecting their own network from the attacks these customers would attract).

Many previous approaches that address the general network DoS problem ([1–3])
are reactive: they monitor traffic at a target location, waiting for an attack to occur. Once
the attack is identified, typically via analysis of traffic patterns and packet headers, fil-
ters may be established in an attempt to block the offenders. The two main problems
with this approach are the accuracy with which legitimate traffic can be distinguished
from the DoS traffic, and the robustness of the mechanism for establishing filters deep
enough in the network so that the effects of the attack are minimized. Approaches such
as WebSOS [4, 5] protect particular kinds of services (web traffic in this case) by in-
troducing additional processing elements into the network infrastructure and introduc-
ing ways of identifying legitimate, human-originated web sessions and only processing
those in times of heavy attack.

We introduce gore, an architecture that individual ISPs can use to protect customers
under attack. Some prior architectures assume that ISPs collaborate in order to quench
DDoS attacks. This appears to be an unrealistic approach, since the security and policy
problems that crop up far outweigh the putative benefits of quenching attacks in that
way. In our approach, when an attack against a particular customer is detected, all traffic
to that customer’s IP address prefix is redirected to strategically-located gore proxies
inside the ISP’s network. This redirection is accomplished by properly advertising the
customer’s prefix from the appropriate gore proxy over the ISP’s Intradomain Routing
Protocol (OSPF, IS-IS, etc. ).

Such a proxy is not necessarily a single computer; it can be a cluster, and there
can be many such clusters throughout the ISP’s network, subject to cost constraints.
However, it is possible to take advantage of a form of statistical multiplexing: since only
a very small fraction of an ISP’s customers are typically attacked at any particular time,
the ISP need only provide proxies and capacity to handle this smaller set of attacks.

gore proxies use some method for differentiating real traffic from attack traffic.
The specific approach we use involves Graphical Turing Tests (GTTs) [6] if no prior
agreements between the customer and its potential clients exist; authentication based on
customer-provided credentials to the users may be used instead, or in addition to GTTs.
Traffic that is characterized as legitimate is tunneled to the customer’s access router(s)
over a GRE [7] tunnel; all other traffic is dropped. Return traffic from the customer to
its clients is simply routed back to the client without passing through gore.

As gore centers are not normally addressable from outside the ISP (and, presumably,
a well-managed ISP can detect and quench portions of an attack that originate within its
own network), they cannot be independently attacked. The only times that traffic from
outside the ISP reaches the gore proxies is when a customer is under attack. Naturally,
the proxies are located where there is a lot of link capacity, and must be provisioned to
handle at least as much raw traffic as the customer’s access link.



3

The contributions of our work are threefold. First, we present a novel architecture,
gore, that significantly extends and improves best current practices currently used by
ISPs (blackholing, as discussed in Section 4) to maintain connectivity in the face of
large DDoS attacks. Second, contrary to other proposed work that does not allow ISPs
to recoup the costs associated with installing, enabling, and managing DDoS defenses,
gore can naturally be offered as a value-added service to customers. Third, we charac-
terize the impact on end-to-end latency and throughput that gore imposes on commu-
nication flows that traverse it, which we determine to be less than 2% in either case for
experiments involving up to 2,000 clients. It is important to note that these overheads
are only incurred when an attack is taking place; otherwise, gore does not have any im-
pact on network traffic. Furthermore, communications would be otherwise halted when
a DDoS attack occurs. Thus, we believe gore offers a particularly attractive mechanism
for ISPs to counter the increasing threat of denial of service attacks.

The remainder of this paper is organized as follows: Section 2 describes the gore
architecture in detail. Section 3 gives the details of an actual implementation of the
architecture, along with performance results over a simple testbed. We conclude with
related work in Section 4 and a summary directions for future work in Section 5.

2 Architecture

We propose an architecture that provides a scalable router- (and routing-) assisted mech-
anism to protect ISP customers from DDoS attacks. The architecture is transparent, in
the sense that no additional software needs to be deployed on either the customer web
servers or web clients. Our DDoS defense is reactive and is enabled only when cus-
tomers are under attack, and then only for those customers. Our scheme does not af-
fect any transit traffic through the ISP, nor does it affect the way the ISP advertises its
customers’ prefixes over BGP. Since the mechanism works entirely within an ISP’s net-
work, it allows the ISP to retain full control of its defense policies, for example, turning
them on only for specific customers, e.g., those who have subscribed to a hypothetical
“DDoS Protection” plan.

Central to our architecture is a gore center, in which two pieces of functionality
are present: a firewall/forwarder, and a proxy. We shall limit this discussion to showing
how to protect web traffic, although nothing precludes generalizing our techniques to
other kinds of identifiable traffic. We also assume that the ISP has the ability to detect
a DDoS attack and report it to some management agent. Such ability is common, but
it can even be as crude as the customer noticing the attack and calling up the ISP’s
Network Operations Center. Once the attack is detected, it is communicated by the
NOC (or some automatic mechanism) to one or more gore centers.

Figure 1 illustrates a customer network under DDoS attack. Attack traffic converges
from all over the Internet, overwhelms the customer network’s access links, and legit-
imate clients are not able to communicate with the (web) servers in the network under
attack. Furthermore, if the attack is severe enough, the links from the ISP’s backbone to
the access router where the customer connects may get congested, or the access router
itself may be overloaded, causing other customers who are not themselves under attack



4

to suffer. For this reason, it is common when one customer is under attack to blackhole3

that customer’s IP prefix at the ISP’s border routers so that attack traffic gets dropped
before it enters the ISP’s network. While this practice protects the innocent bystanders,
it also means that the customer is not getting any connectivity to the Internet while the
attack lasts, rendering the attack even more effective.

Fig. 1. (Left) DDoS attacks on an ISP customer’s network: the attackers can render cus-
tomer’s the low bandwith connection and its servers unusable. (Right) DDoS Attacks when
gore gets activated: customer’s traffic is redirected and filtered through the gore servers.

Instead of indiscriminately blackholing all traffic to the customer, we want to instead
“whitehole” traffic we know to be good. As soon as an attack on a prefix is reported,
a gore center with farm of dedicated gore servers start handling all traffic to that pre-
fix. gore centers participate in the ISP’s interior routing protocol (for example, OSPF),
and when they decide to “take over” a prefix, they advertise the two more-specific-
by-one-bit prefixes over the routing protocol. For example, if the customer’s prefix is
135.207.0.0/16, the gore centers will advertise 135.207.0.0/17 and 135.207.128.0/17.
Because routers forward based on longest-match, the gore center will receive traffic for
135.207.0.0/16, regardless of how close or far to the access router such traffic enters the
ISP’s network. In this case, the access router must be configured to filter out such more-
specifics for a prefix it knows it handles4. Furthermore, peering routers are configured
to not announce these more-specifics over BGP, as there is no change in the way outside
traffic should reach the ISP5.

The gore center does not use addresses that are routable outside the ISP, and thus
cannot be directly targeted. The reason is that, although the center has enough capacity
to handle a worst-case scenario attack, individual servers (if they can be identified and
targeted as such) can be overwhelmed; thus, an attacker that could somehow determine

3 In a nutshell, blackholing means that border routers are told to drop all traffic destined to the
blackholed prefix rather than forwarding it to the next-hop router. This is typically accom-
plished by including a routing entry for the blackholed prefix pointing to the null interface.

4 We ignore the limit case of traffic entering the ISP’s network from the same access router that
the customer under attack is connected to. Access routers are almost never peering routers.
Traffic from another customer, even if it is attack traffic, is probably negligible.

5 This practice may lead to suboptimal paths to be taken inside the ISP, but we consider this a
second-order effect; how it should be handled is beyond the scope of this paper.



5

that a particular gore server happened to carry legitimate users’ traffic, would be able to
direct an attack against that server and disrupt client-customer traffic.

To balance the load among gore servers, the gore center dynamically assigns each
server a specific range of source addresses of outside traffic. Since the origin of at-
tack traffic spread evenly in the IP address space, the dynamic assignment prevents any
individual server from overwhelmed by the attack traffic for an extended period of time.

Most traffic entering the gore center at the firewall/forwarder will get dropped. The
first exception is connection attempts to TCP ports 80 and 443 (web traffic). These con-
nections are passed on to a gore proxy, much like the proxy in WebSOS [5], whose pur-
pose is to differentiate between human users and automated processes (such as DDoS
zombies), or to identify legitimate users that are provisioned with authentication ma-
terial (e.g., a username/password or a public key certificate) by the customer. The hu-
man/process separation is carried out by using a test that is easy for human users to
answer, but would be difficult for a computer. For a brief description of these tests,
see Section 2.1. If necessary, gore can ask additional questions to validate the client’s
identity and authorization before granting a transit through the gore center.

Once the client has passed the test, the proxy installs a firewall rule on the fire-
wall/forwarder that allows all traffic from the source IP address of the client that passed
the authentication to reach the customer’s servers. In order for that to happen, the gore
firewall/forwarder maintains a Generic Routing Encapsulation (GRE) [7] tunnel, typi-
cally created in advance with the access routers, over which it forwards all traffic from
the authenticated clients. The tunnel creates a transparent virtual link between a gore
firewall/forwarder and an access router such that traffic routed through the tunnel will
be unaffected by route redirections. These firewall rules are set to expire after either
a fixed amount of time, or after a period of inactivity. Note that the firewall/forwarder
only sees traffic from the client to the server; return traffic is independently routed and
never goes through the gore, as shown in Figure 2. In essence, we have what is usu-
ally referred to as triangular routing: when the defense mechanism is enabled, traffic to
customer servers is first routed to gore centers; authorized traffic is then passed on to
its intended destination; return traffic travels along the path that it would be travelling
before the attack.

Clients

gore center
Customer
web and file
servers

ISP Border
Router

gore Router

access router

GRE

access router

Internet

Clients

ISP

10 kilobit links

T1 links

Gigabit links

Customers
web and file
servers

Clients

GRE tunnels

Fig. 2. Details of gore architecture.



6

The gore router and the various customer routers need not be directly connected
to each other; since authorized traffic from the gore router to the customer router is
tunneled, they can be anywhere in the ISP’s network. Also, an ISP with multiple gore
servers and with multiple customer networks is possible, and in fact should be common.
Ingress traffic destined to customer under attack will simply be routed to the near gore
center from an ISP border router. In this configuration, the ISP will need to set up
tunnels between every gore server and every customer access router. Although such
tunnels can also be constructed as needed, the resources needed for “dormant” tunnels
are so limited that it may be simpler to establish them in advance.

One limitation of our approach is that attack traffic is carried over the ISP’s network
to the gore center. Thus, it is conceivable that legitimate users’ traffic that happens to
use some of the same links will experience degraded performance, if the attack volume
is high enough. However, the vast majority of attacks we have seen to date do not cause
problems in the major ISPs’ backbone networks. Thus, we believe that the impact on
legitimate traffic of routing attack traffic to the gore center would be relatively small.

2.1 Client Legitimacy Tests

In order to prevent automated attacks from going past the gore center, we need a mech-
anism with which to differentiate between legitimate users and (potential) attacks. One
obvious way of doing this is via authentication (e.g., client-side certificates). The gore
center would use RADIUS [8] or a similar protocol to connect to the customer’s au-
thentication server and verify the validity of the client’s authentication credentials. This
traffic would be carried over the GRE tunnel, and thus would not be subject to the
routing-based redirection.

In many cases, however, customers may not have a well-defined client base (i.e., one
that can be identified through traditional network-based authentication), or may simply
want to provide service to all users. Fortunately, there exist mechanisms to differentiate
between human users and unsupervised programs, which under a DDoS attack can be
presumed to be zombies. Although this would prevent legitimate automated processes
(e.g., a web-indexing “spider”) from accessing the customer’s network, this may be a
price that the customer is willing to pay, when a DDoS attack is in progress. If these
automated processes are known a priori, then it is possible to supply them with crypto-
graphic credentials that allow them to bypass any human-legitimacy tests (see previous
paragraph).

In our system, we decided to use Graphic Turing Tests (GTTs) to identify traffic that
is under direct human supervision. A CAPTCHA [6] visual test is implemented when a
web connection is attempted in order to verify the presence of a human user. CAPTCHA
(Completely Automated Public Turing test to Tell Computers and Humans Apart) is a
program that can generate and grade tests that most humans can pass, but automated
programs cannot. The particular CAPTCHA implementation we use is GIMPY, which
concatenates an arbitrary sequence of letters to form a word and renders a distorted
image of the word. GIMPY relies on the fact that humans can read the words within
the distorted image and current automated tools cannot. Humans authenticate them-
selves by entering as ASCII text the same sequence of letters as what appears in the



7

image. Updating the GIMPY interface can be performed without modifying the other
architectural components.

Although recent advances in visual pattern recognition [9] can defeat GIMPY, there
is no solution to date that can recognize complicated images or relation between im-
ages like Animal-PIX. Although for demonstration purposes in our prototype we use
GIMPY, we can easily substitute it with any other instance of Graphical Turing Test.

2.2 gore Center Details

As we have already explained, a gore center consist of a gore router and one or more
gore servers. The purpose of the router is to participate in the OSPF process of the
ISP and announce the customer prefix(es) to protect when called to do so, and also
to distribute arriving traffic to the gore servers as evenly as possible. The gore server,
in turn, consists of a firewall/forwarder and a proxy. The firewall/forwarder accepts
incoming traffic sent to it by the gore router; if it is from a previously unseen source,
it passes it on to the proxy so it can be authenticated. Otherwise, it is either attack
traffic, in which case it is blocked, or it is good traffic, in which case it is tunneled to
the appropriate customer’s access router. These two functions could be implemented on
different boxes, but since each modifies the other’s behavior, we prefer to implement
them on the same box, namely a commodity x86 PC. While a high-end router can
filter and forward packets more efficiently than a commodity PC, the latter are much
cheaper. Also, unlike typical firewall operations, the rules in a gore firewall/forwarder
need not be traversed in a linear manner — a hash table or a trie, or even a simple
bitmap, can be used instead for much faster matching. Also, the only functions that
the firewall/forwarder performs are inspecting the protocol field, source and destination
IP addresses, and the destination TCP port; there is no stateful packet inspection, or
per-connection state to maintain (which would be impossible to do anyway since the
firewall never sees the return traffic).

gore servers run two sets of packet filtering rules. The first set has network address
translation (NAT) rules that redirect web traffic to the proxy function, which administers
the GTT. The second set contains rules to forward traffic from authorized sources to the
corresponding customer’s network. At initialization, the NAT rules redirect all arriving
web traffic to the gore proxy; forwarding rules deny any transit through a gore server.
A client needs to pass a challenge before it is granted access to the customer network.
Once a source has passed the GIMPY challenge, the gore server disables NAT redi-
rection and enables the forwarding for all traffic with the specific source address. This
enables web traffic, as well as other traffic from that source, to reach the customer’s
network through a gore center without further redirection. Traffic from unauthorized
sources will be dropped by gore servers. This approach is similar in nature to what
most commercial pay-per-use 802.11 networks and hotel room networks do: when the
user first attempts to connect to anything, the request is redirected to a local authenticat-
ing web proxy; once a credit card number or other authentication mechanism is entered,
the user’s IP address (or, in some cases, the MAC address) is allowed to connect to the
Internet.

To reduce the possibility of unauthorized exploits of known authorized hosts by
spoofers, gore servers limit the duration of access to customer network from any autho-



8

rized source. This is achieved by running a periodic process to purge the installed NAT
and forwarding rules for each timed-out client. Clients that wish to continue access
can seek a re-authorization by repeating the authentication procedure. Even if the at-
tacker can monitor communication between the customer server and authorized clients
by sniffing network traffic, time-limited access can curtail the duration of an attack.

Given the limited number of authorized sources admitted by gore, the attacker’s
chances of making a good pick are slim. Time-limited authorization will reduce the
probability of randomly succeeding to attack (by guessing an authorized source address)
even futher. It is conceivable that an attacker could first connect as a legitimate client,
then communicate his source IP address to his zombies, who would then all spoof their
source IP address to be the authorized one. As more ISPs are finally obeying RFC-2267
(making sure that their customers only send packets from IP addresses they own), this
may not turn out to be a big concern. If this indeed is a concern, stronger authentication
methods than just checking the source IP address may be used, e.g., establishing IPsec
tunnels between the clients and the gore nodes. Furthermore, since traffic is naturally
aggregated at the gore center, it is fairly easy to rate-limit all traffic flows that traverse
gore toward a customer. Thus, attackers that have guessed or acquired an authorized
address can do limited damage.

However, a single computer, no matter how powerful, cannot handle all attack traf-
fic. Fortunately, the gore architecture scales in two ways: multiple gore centers can be
deployed around an ISP’s network, and each gore center can employ many individual
computers to perform the firewall/forwarder function and the authentication fuction.
No state-sharing is necessary between gore centers. An issue that arises when multiple
gore centers are used is that traffic from a particular source is not guaranteed to always
follow the same path through an ISP, and thus may not always go through the same gore
center. There would be two reasons why this may happen; either because traffic from a
particular source enters the ISP through more than one border router, or different paths
are followed inside the ISP itself. The latter is not a concern; paths change only when
links change state, or when traffic-engineering decisions change link weights. Neither
is a frequent event, and is something that is easily tolerated. The former could be a
concern if it were a persistent situation, but packets that are part of the same short-lived
flow almost always take the same path. If a major BGP instability causes this path to
change, the user may need to re-authenticate, but this is an acceptable price to pay in or-
der to provide service during DDoS attacks. In either case, this is only a problem during
an attack, and we assume that most clients will not be affected by such problems.

To fully utilize multiple packet filtering servers, we need a router (or switch) that
can fairly evenly distribute the traffic among them. Since we have no way of finding out
attackers in advance, we assume that the attackers are evenly spread among the IPv4
address space. Each gore is responsible for the defense against attacks originating from
its allotment. The access router in front of a cluster of gore machines is responsible
for this load-balancing; the details on how to achieve it are router-architecture-specific,
but are efficiently implemented in most modern routers. Various methods of farming
out traffic to individual forwarders or proxies can be used, but the details are not of
particular importance to the system architecture.



9

3 Experimental Evaluation

Our goal is to evaluate the effectiveness and scalability of the gore architecture. In
particular, we want to know the highest attack intensity we can defend against using the
gore architecture when implemented on inexpensive commodity hardware (e.g., x86
boxes running a Unix clone). This will allow us to directly calculate the deployment
and management costs necessary to defend against a DoS attack of specific size and
intensity. Additionally, we would like to estimate our system’s service capacity in terms
of legitimate client requests when under attack. Most of all, we want to identify possible
resource bottlenecks, if any, that limit the scalability of our system. Answers to these
questions are crucial for judiciously deploying defenses against DDoS attacks.

3.1 Testbed

To evalute the overall system architecture, we assembled a testbed that resembles a
simplified ISP using gore system for a single customer as shown in Figure 3. The ISP
has a border router connected to the “Internet” where clients reside. This border router
is also connected to a customer access router, serving a customer network that, for
simplicity, contains only a web/file server. Furthermore, the border router is connected
to a protected network where a gore center consisting of one or more units resides.
When the NOC detects an attack on the customer’s network, traffic from the border
router to the customer is redirected to the gore network. There, the gore farm admits
authorized traffic and rejects the rest.

Initially, we used a single server configuration to test limitation of our system. To
investigate scalability of our architecture, we proceeded with a testbed of multiple gore
servers. Each gore server handles its own range of source IP addresses. when an attack
is initially, the traffic is evenly distributed to all gore servers using the load-balancing
aspect of the gore router. Thus, traffic destined to the customer’s network will be ap-
propriately filtered and forwarded by the gore servers. This works efficiently when we
employ load-balancing based on the source ip address and per-flow, not per-packet. 6

For Linux, this is the default definition of a flow whereas in commercial routers is a
configurable parameter.

We conducted experiments in both single server and multi-server testbed configura-
tions. The focus of the single-server experiments was to measure the performance and
to identify possible bottlenecks. Then, we investigated the load-balancing on the multi-
server testbed and how the capacity of our system scales as we vary both the number of
legitimate clients and the attack intensity.

For the gore server farm, we used Dell 750 servers with 2.4GHz Pentium4 pro-
cessors and 512MB of memory running Debian Linux with the 2.4 kernel. These ma-
chines were equipped with 1 Gbps Ethernet interfaces and interconnected with a gigabit
switch. Both attack and legitimate traffic were generated by machines residing outside
our testbed, connected to a border router. We used two different metrics to measure the
impact of the attacking traffic to a legitimate client: throughput and end-to-end latency.

6 A flow in this case is defined as all packets with the same protocol, source and destination IP
addresses. In some routers the definition of a flow includes the TCP or UDP port numbers.



10

gore
center

ISP Border
Router

gore router

Customer
Router

GRE

Customer
web and file
servers

Clients

attackers

100Mb links

1 Gb links

ISP
192.168.0.0/16

192.168.10.0/24

192.168.20.0/24

Fig. 3. gore experimental testbed activated for a single customer.

These two metrics capture the characteristics of a link for both interactive and time
critical applications. They also quantify the effective capacity of the link when under
attack.

The internal ISP network used OSPF to maintain its routing paths among the three
routers: the border router, the customer’s access router and the gore router. All routers
were configured as a single OSPF area. While the routing mechanism would also work
with other interior routing protocols, the use of a link-state protocol helps reduce con-
vergence time when the routing information changes. For the customer’s access router,
we used a PC-based router running Zebra 0.94 with ospfd. In addition, we used the
iproute Linux kernel package and corresponding utilities to create a GRE [7] tunnel
between the gore machine and the customer’s router. Each of the gore servers has two
role: it acts both as firewall/forwarder but also as a web server authenticating users for
a limited time. The Linux kernel’s netfilter facility is used for packet filtering, Network
Address Translation (necessary to communicate with the proxy) and other packet pro-
cessing. Iptables provides the user-level utility to install and remove firewall rules from
netfilter. By default, all web traffic passing through a gore server is directed to its own
web server for the graphical turing test. All other traffic is considered malicious and is
discarded.

Deploying gore farms in different network locations inside the same ISP requires
a mechanism to redirect traffic destined for the customer’s network not to one but to
many gore routers. This is handled easily by having the gore routers advertise the same
most specific address prefix and letting the routing protocol decide where to redirect the
traffic based on shortest path routing.

In the multiserver configuration, each gore server maintains its own set distinct set
of admissible clients. In an idea scenario, each server gets an equal share of incoming
traffic. Since the origins of incoming traffic change from time to time, static address
block assignments are unlikely to divide properly incoming traffic among available
servers. This calls for a dynamic address assignment scheme to reduce load imbalances
between the servers. This calls for frequent reconfiguration of the gore router, which
can be achieved by simply loading a new configuration file.

We can thus assume each gore servers gets an equal share of incoming traffic and
equal shares of burden of legitimate clients. The file containing the firewall rules is
kept on an a shared file system to keep the gore servers in sync. Each server polls the



11

rules file periodically to get the latest set of filtering rules and apply only rules assigned
to it. To prevent simultaneous modification of the rules file, a server has to acquire and
release a lock file before and after making changes to the rules file. This approach works
reasonable well with a small number of gore servers. We did not observe any problems
related to lock contention, but keeping synchronized copies of data across a network is
a solved problem, and we did not worry about this part of the implementation too much.

Since different gore servers process different sets of legitimate clients, gore server
must be deterministically associated with incoming traffic from a specific source ad-
dress. To achieve this, we use a Cisco router with policy-based routing (PBR) on source
address prefixes to forward incoming traffic to gore servers. Using fast-switch PBR, the
Cisco router can forward at line rate.

3.2 Experimental Results

Our first goal after deploying our testbed was to quantify our system’s capacity and
performace under normal (non-attack) conditions. To that end, we measured latency and
throughput from legitimate clients outside the ISP network, to a server running inside
the customer’s network. We used Iperf to measure the capacity of the line, i.e., the
maximum TCP throughput between a client and the server. Furthermore, we computed
the round-trip delay using a combination of traceroute and ping. The term “round-trip”
is somewhat misleading, because traffic originated from the client is routed through
gore when redirection is turned on, while the reply traffic uses a direct path. As we
expected, there was no measurable impact on the tcp throughput observed between
the direct connection and when we enabled gore. Moreover, we measured a minimal
increase of 0.2ms in latency due to the addition of GRE tunnel. The effects of non-
optimal routing were below our measurement threshold.

Next, we measured the performance of our system under attack, with multiple
clients trying to access the customer’s server. Figure 4 shows the measured through-
put and round-trip latency as we increased the number of firewall rules. The change
in throughput and latency between non-redirected and redirected traffic is mostly at-
tributable to the overhead of delivering packets through the GRE tunnel. Each admitted
legitimate client adds a NAT “prerouting” rule and a “forward” rule to netfilter. This
implies two additional rules are evaluated per packet arrival for each admitted client.
To ensure that we are measuring worst-case performance, the source address of the le-
gitimate traffic is added at end of iptables chain to ensure traversal of the entire set of
packet filter rules. Even when two chains of over 2,000 rules were each added to the
system, gore was able to maintain a throughput almost identical to effective line capac-
ity. The drop in TCP throughput on a gore with 10,000 rules indicated a CPU overload
on the gore server. This overload was due to fact that netfilter stores the rules in a linked
list requiring linear time to search for a matching firewall rule. As a consequence, when
we increase the size of the firewall rules we also increase the amount of time required
to process each packet. Given the size of the filtering rules, we can compute the max-
imum threashold of packets a machine can process per second. A hash- or trie-based
implementation would have an almost constant access time regardless of the number
of sources, and should be used in a production system, as demonstrated by Hartmeier



12

[10]. Thus, our results should be viewed as a lower bound. Although we cannot mea-
sure latency directly, we could infer from the round-trip measurements that it increased
linearly.

Fig. 4. (Left) Throughput of legitimate traffic with an average DDoS attack packet size of
1024 bytes vs. the number of legitimate clients. (Right) Round-trip time of traffic with an
average DDoS attack packet size of 1024 bytes for different numbers of clients.

Next, we measured the throughput and latency to the server when the customer is
under DDoS attack. We use the traffic generator tg7 from ISI to create attack traffic. We
measured performance by varying the arrival rate of the attack traffic. We set up tg to
generate CBR traffic at different rates.

Figures 4 shows the measured throughput and latency for legitimate client traf-
fic of a DDoS attack. In this case, the attacker uses an average packet size of 1024.
The figures show a scenario where the performance is mostly CPU-bound instead of
network-bound. An ISP’s internal links have enough capacity to carry a large amount
of both attack and legitmate traffic. DDoS traffic pushes the legitimate client traffic
aside and introduces a precipitous drop in throughput. The legitimate client traffic with
1,500 clients is on the verge of overload when the DoS traffic arrives at a rate of 50,000
packets per second (pps). At lower packet rate, a gore server can service many more
clients before it gets overloaded. Of course, without activating the gore system the at-
tack traffic would have congested the customer’s network completely. With gore only
the filtered traffic is allowed to pass through and thus only authorized clients are allowed
to exchange data with the customer’s network.

For our multiserver study, we focused on the scalability of the system. We generated
legitmate traffic along with DDoS traffic from multiple sources. Since the gore server
selection is based on the source address, we assigned source addresses of attackers such
that the attack traffic spread evenly among gore servers. The legitmate traffic gets the
remaining capacity through one of the gore server.

Figure 5 left shows throughput of legitimate traffic under an attack rate of 50,000
pps. We ran the experiments with 1, 2, 4, and 8 gore servers. Assuming the legitmate
client traffic is is a small percentage of overall incoming traffic, the legitimate client’s

7 www.ip-measurement.org/tools/trag.html



13

Fig. 5. (Left) Throughput of legitimate traffic under DDoS arrival rate of 50,000 packets per
second. (Right) System performance contour graphs: we measured the maximum traffic
threashold for different number of legitimate clients as we increase the amount of servers
in a gore farm.

bandwidth with two servers is roughly equivalent to the bandwidth of a single server at
half of the attack rate, yet twice as many clients are protected. Doubling the number of
servers protected roughly four times as many legitimate clients for the same traffic rate.
We repeated these experiments under different attack rates and observed similar scaling
factors.

Figures 5 right shows number of legitimate clients that can be supported for a given
attack traffic rate and number of servers. The experiement demonstrated the scalability
of our gore solution to multiple servers. As long as internal link capacity of the ISP
is large enough to handle attack traffic, the ISP can always add more gore servers and
centers throughout its network to handle DDoS attacks.

The experiments with DDoS traffic demonstrate that performance is mostly CPU-
bound until the network becomes saturated. To determine the number of gore centers
to deploy in the system, we need to know the expected arrival rate of attack as well
as desirable number of legitimate clients. These can be provisioned in advance, using
measurements done by either the customer or the ISP under normal load conditions.

4 Related Work

The need to protect against or mitigate the effects of DoS attacks has been recognized
by both the commercial and research world. Some work has been done toward achieving
these goals, e.g., [1, 11, 3, 12, 2, 13]. These mechanisms focus on detecting the source of
DoS attacks in progress and then countering them, typically by “pushing” some filtering
rules on routers as far away from the target of the attack (and close to the sources) as
possible. The motivation behind such approaches has been twofold: first, it is concep-
tually simple to introduce a protocol that will be used by a relatively small subset of the
nodes on the Internet (i.e., ISP routers), as opposed to requiring the introduction of new
protocols that must be deployed and used by end-systems. Second, these mechanisms
are fairly transparent to protocols, applications, and legitimate users. Unfortunately,
these approaches by themselves are not always adequate.



14

The approach most similar to ours is a commercial offering by Riverhead [14]. It
tries to characterize and detect bad traffic, and “scrub” it before forwarding the clean
traffic to the customer. Also, it employs MPLS rather than a combination of OSPF and
GRE to redirect traffic,

Blackhole filtering is a popular technique against DDoS attacks and is employed by
many ISPs. The scheme sets up a redirection to a pseudo-interface null0 by advertising
routes for hosts or networks under attack. The techique avoids the use of packet filtering
through access lists, which could impact the performance of router. The scheme requires
deployment of a network intrusion detection system to activate the routing change. The
main concern with the approach is that it effectively disconnects the network it is trying
to protect from the rest of the Internet, essentially achieving what the DDoS attackers
try to achieve in the first place. In addition, the scheme does not support filtering of
packets at layer 4 or above.

The NetBouncer project [15] considers the use of client-legitimacy tests for filter-
ing attack traffic. Such tests include packet-validity tests (e.g., source address valida-
tion), flow-behavior analysis, and application-specific tests, including Graphic Turing
Tests. However, since their solution is end-point based, it is susceptible to large link-
congestion attacks.

The SOS architecture [16, 17] combines the notions of a distributed firewall [18]
inside the network, overlay routing, and aggressive packet filtering near the target of
the attack to only allow traffic from “good” sources to reach the protected site. Traf-
fic from legitimate users, who can be authenticated by any of the overlay nodes, is
routed over the overlay to a specific node that is allowed to forward traffic through the
filtering router(s). WebSOS [4] is a specific instantiation of the SOS architecture for
web services, and uses Graphic Turing Tests [5] to discriminate between zombies and
human-directed accesses to a web server. In gore we use Graphic Turing Tests to enable
access to the attacked site for all types of traffic (not just web traffic). Unlike WebSOS,
gore uses a centralized approach; while deployment in a piece-meal fashion without the
ISP’s collaboration (as was the goal with SOS) becomes impossible, it offers a natural
model for a service offered by an ISP that has control over their network topology and
internal routing.

5 Concluding Remarks

We presented gore, a routing-assisted defense architecture against distributed denial of
service (DDoS) attacks. The goal of our system is to provide guaranteed access to a
network under attack. gore routes all traffic destined to the network under attack to
pre-constructed, ISP-controlled gore proxies, where servers filter out attack traffic and
pass authorized traffic onward. We use web-based client legitimacy tests to identify
legitimate users, where the definition of legitimacy is left to the customer; once the test
is passed, gore transparently redirects all traffic from the user (not just web traffic) to
the network under attack using GRE tunnels. In this manner, our approach is similar to
the way mobile users currently access commercial wireless networks.

Our experimental results using a PC-based testbed show that gore is a viable ap-
proach, as its impact on the filtered traffic is minimal, in terms of both latency and



15

throughput. gore can be scaled up as needed to support larger numbers of clients and
customers. Our architecture can be deployed incrementally by individual ISPs, does not
require any collaboration between ISPs, and requires no modifications to either server-
or client- software. Furthermore, our system allows an ISP to offer DDoS defense as a
value-added service, providing an incentive missing from other proposed mechanisms.

References

1. Dean, D., Franklin, M., Stubblefield, A.: An Algebraic Approach to IP Traceback. In:
Proceedings of ISOC NDSS. (2001) 3–12

2. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Network Support for IP Traceback.
ACM/IEEE Transactions on Networking 9 (2001) 226–237

3. Ioannidis, J., Bellovin, S.M.: Implementing Pushback: Router-Based Defense Against DDoS
Attacks. In: Proceedings of ISOC NDSS. (2002)

4. Cook, D.L., Morein, W.G., Keromytis, A.D., Misra, V., Rubenstein, D.: WebSOS: Protecting
Web Servers From DDoS Attacks. In: Proceedings of the 11th IEEE International Confer-
ence on Networks (ICON). (2003) 455–460

5. Morein, W.G., Stavrou, A., Cook, D.L., Keromytis, A.D., Misra, V., Rubenstein, D.: Us-
ing Graphic Turing Tests to Counter Automated DDoS Attacks Against Web Servers. In:
Proceedings of the 10th ACM International Conference on Computer and Communications
Security (CCS). (2003) 8–19

6. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI Problems
For Security. In: Proceedings of EUROCRYPT. (2003)

7. Farinacci, D., Li, T., Hanks, S., Meyer, D., Traina, P.: Generic Routing Encapsulation (GRE).
RFC 2784 (2000)

8. Rigney, C., Rubens, A., Simpson, W., Willens, S.: Remote Authentication Dial In User
Service (RADIUS). Request for Comments (Proposed Standard) 2138, IETF (1997)

9. Mori, G., Malik, J.: Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA. In: Computer Vision and Pattern Recognition CVPR’03. (2003)

10. Hartmeier, D.: Design and Performance of the OpenBSD Stateful Packet Filter (pf). In:
Proceedings of the USENIX Technical Conference, Freenix Track. (2002)

11. Goodrich, M.T.: Efficient Packet Marking for Large-Scale IP Traceback. In: Proceedings of
ACM CCS. (2002) 117–126

12. Li, J., Sung, M., Xu, J., Li, L.: Large-Scale IP Traceback in High-Speed Internet: Practi-
cal Techniques and Theoretical Foundation. In: Proceedings of the IEEE Symposium on
Security and Privacy. (2004)

13. Snoeren, A., Partridge, C., Sanchez, L., Jones, C., Tchakountio, F., Kent, S., Strayer, W.:
Hash-Based IP Traceback. In: Proceedings of ACM SIGCOMM. (2001)

14. Riverhead Networks, Inc.: Centralized Protection — Riverhead Long Diversion Method
Using MPLS LSP. (http://www.riverhead.com/re/cprotection.pdf)

15. Thomas, R., Mark, B., Johnson, T., Croall, J.: NetBouncer: Client-legitimacy-based High-
performance DDoS Filtering. In: Proceedings of DISCEX III. (2003) 14–25

16. Keromytis, A.D., Misra, V., Rubenstein, D.: SOS: Secure Overlay Services. In: Proceedings
of ACM SIGCOMM. (2002) 61–72

17. Keromytis, A.D., Misra, V., Rubenstein, D.: SOS: An Architecture For Mitigating DDoS
Attacks. IEEE Journal on Selected Areas of Communications (JSAC) 33 (2004) 413–426

18. Ioannidis, S., Keromytis, A., Bellovin, S., Smith, J.: Implementing a Distributed Firewall.
In: Proceedings of Computer and Communications Security (CCS). (2000) 190–199


