
Adding a Flow-Oriented Paradigm to Commodity Operating Systems

Cristian Soviani Stephen A. Edwards Angelos Keromytis
Department of Computer Science, Columbia University in the City of New York

Abstract

The speed of CPUs and memories has historically outstripped
I/O, but emerging network and storage technologies promise to
invert this relationship. As a result, fundamental assumptions
about the role of the operating system in computing systems
will have to change.

We propose an operating and application architecture that
removes the CPU and memory from the path of high-speed
I/O. In our model, the operating system becomes a data-flow
manager and applications merely direct this flow instead of
directly participating in it.

Our proof-of-concept prototype, which we implemented on
an FPGA board, nearly doubled the throughput of a simple
cryptographic networking application, suggesting our model
can provide a substantial improvement.

1 Introduction

Traditional computing assumes I/O speeds are substantially
slower than CPU-memory speed. Emerging network and stor-
age technologies have been stretching this assumption to its
limits. Optical wire-speeds already range from 10–40 Gbps, on
par with CPU memory bandwidth, while hard-disk drives are
delivering 2.5 Gbps. With both wire-speed and storage density
technologies scaling at faster Moore’s exponents than silicon,
it is not unreasonable to assume that raw I/O speeds can con-
tinue to outgrow CPU-memory speeds this decade. This speed
inversion will have a profound impact on computing.

We propose an operating system and application architec-
ture that removes the memory and CPU from the data path
for applications that handle high-bandwidth data flows. The
role of the operating system becomes that of data-flow man-
agement, while applications are concerned purely with sig-
nalling. This design parallels the evolution of modern network
routers and has the potential to enable high-performance I/O
for end systems, as well as fully exploit recent trends toward
programmable peripheral (I/O) devices. An alternative view
is that hardware devices are composed into virtual processing
pipelines, completely removing the CPU and main memory
from the data-intensive tasks for which they are increasingly
unsuitable due to performance considerations. Our hypothe-
sis is that application-specific data-flow handling policies can
be executed inside the operating system kernel, which com-
poses and configures peripherals, manages flows, and handles
exceptions. We further hypothesize that such functionality can
be retrofitted to existing operating systems and applications,
instead of requiring a complete redesign.

Memory−I/O bus (e.g., PCI)

Main memory

Web

Server

DATA

OS Kernel

Hard
Disk

MPEG
encoder Accelerator

Crypto Network

Interface

Network

Figure 1: The status quo: main memory as data cache.

Flow initialization

Main memory

Web

Server

OS Kernel

Hard
Disk Accelerator

Crypto Network

Interface

Network

Memory−I/O bus (e.g., PCI)

FPGA board

JPEG encoding

IPsec processing
+

Figure 2: Our approach: operating system as a data switch.
Here, we use an FPGA to accelerate some processing.

Our proposed architecture is a first step toward abandon-
ing the concept of memory-centric computing, a paradigm in-
grained in computer scientists for several decades. This shift in
architectural thinking is both necessary for performance rea-
sons and natural, given the increasing use of task-specific and
programmable hardware. Our proof-of-concept prototype in-
dicates that our system can at least double I/O throughput for
large flows, and is orthogonal to other performance optimiza-
tion approaches (e.g., faster interconnection buses).

After reviewing related work, we present our model in Sec-
tion 3 and some experimental evidence that it can provide sub-
stantial throughput gains (Section 4).



2 Related Work

Despite considerable work in reducing the amount and cost of
memory copying, the focus of all such efforts has been only
to remove the operating system from the data path; the appli-
cation remains responsible for handling data. Such approaches
only partially address the memory-as-bottleneck problem; our
architecture completely removes memory from the data path.

The Scout OS [17] represents I/O transactions using the
concepts of paths [18]. System code is divided into software
modules, like IP or ETH, (for the IP module and the Ether-
net device driver, respectively), which are arranged into paths
along which packets travel. Paths are defined at build time, so
when a module receives an incoming packet it does not have
to expend cycles determining where to route the packet; that
information is encoded in the path itself. Our proposed archi-
tecture essentially extends the concept of the Scout path to op-
erate across multiple peripherals (with the OS managing flow
scheduling), completely eliminating memory as a data-staging
area and allowing for non-network-oriented data processing.

Aron and Druschel [10] describe a mechanism for optimiz-
ing high-bandwidth I/O called fbufs. Fbufs combine a page
remapping technique with dynamically mapped, group-wise
shared virtual memory to increase performance during multi-
ple domain crossings (e.g., from user to kernel space). Essen-
tially, data to be migrated across multiple domains are placed
in an fbuf, and that fbuf is a memory buffer that is made ac-
cessible to each domain. Their experiments show that fbufs
can offer an order of magnitude better throughput than page
remapping. However, memory remains a key component in
the data processing cycle, thus remaining a processing bottle-
neck. Pai et al.’s IO-Lite [20] is closely related to fbufs, but
contains additional support for file system access and a file
cache. One problem with such systems is their poor perfor-
mance when dealing with small data buffers, since the fixed
overhead for handling a message becomes the dominant cost,
eclipsing memory copying. Other zero-copy approaches in-
clude Pasquale et al.’s “container shipping” [21], and the work
of O’Malley and Peterson [19]. These mechanisms were de-
signed to minimize data copying between peripheral devices,
kernel memory and user-process address space, thus do not
directly address the problems of bus contention and memory
bandwidth limitations. Brustoloni [4] addresses the problem
of data transfers between the network interface and the filesys-
tem, which requires data buffers to be cached for later use and
is thus incompatible with most zero-copy mechanisms. The
author proposes the combination of mapped file I/O, using the
standard Unix mmap() system call, and copy avoidance tech-
niques to minimize data copying at the server. This approach
requires synchronization between the client and server pro-
cesses for proper alignment of data buffers on reception. Be-
cause of the requirement that data must reside in the file cache,
at least one copy to memory (two PCI transactions) is needed.

The Exokernel operating system [9] separates protection of
hardware resources from management of hardware resources.
This allows applications to perform their own management;
hence, they can implement their own disk schedulers, memory
managers, etc. Under an Exokernel architecture, a web server

can, for example, serve files to a client while avoiding all in-
memory data touching by the CPU by transmitting files di-
rectly from the file cache. Engler et al. [12] propose the elim-
ination of all abstractions in the operating system, whose role
should be to securely expose the hardware resources directly to
the application. The Nemesis operating system [16] provided a
vertically-structured single-address-space architecture that did
away with all data copying between kernel and applications.

Krishnamurthy [14] examines new hardware architectures
for meeting the QoS requirements of different streams at wire
speeds, without need for special-purpose ASICs. He developed
an architecture, SharedStreams, that uses programmable net-
work interfaces to implement various packet scheduling dis-
ciplines that enforce different QoS parameters for different
data streams. To achieve 10 Gbps Ethernet performance, the
architecture uses FPGA cards and programmable network in-
terfaces that implement the packet disciplines, as well as direct
network-to-network interface data transfers to avoid CPU and
main memory overheads (they also use disk-to-card transfers,
although the disks are directly attached to the network cards
through a SCSI interface — the cards are fully-programmable
computers on a PCI board). The focus of the work is on packet
schedulers, whereas our work is looking at the intersection of
flow scheduling and data computation, managing data flows
across a series of peripherals that transform the data.

NodeOS [22] introduced the concept of short-cuts in do-
mains (software modules implementing certain types of pro-
tocol processing), which is used to quickly forward packets
to another domain or another node. This notion is conceptu-
ally similar to, albeit much simpler than our direct card-to-card
data transfer approach, which operates directly on hardware.

3 Our Approach

We propose a new operating system architecture that removes
or minimizes the role of the memory and CPU from the data
path for applications that handle large flows of data. The role of
the operating system becomes that of data-flow management,
while applications operate purely at the signalling level. This
design parallels the evolution of modern network routers, and
has the potential to enable high-performance I/O for end sys-
tems, as well as fully exploit recent trends in programmability
of peripheral (I/O) devices.

Our architecture, Figure 2, eliminates all data copies to main
memory, including those between peripherals and RAM, and
reduces the number of data transfers over the shared bus (e.g.,
PCI) by half. In this architecture, the application simply spec-
ifies the data path in terms of requirements (e.g., “transfer
file /html/index.html to remote host 128.59.19.56 using HTTP
1.0 over SSL; the remote TCP port is 32156”). The operat-
ing system translates these requirements to specific configu-
ration directives to the various peripheral devices, which may
include configuring the devices, downloading code to perform
some data processing, scheduling the data transfers, and deal-
ing with failures and other exceptional situations. Data then
flows directly between the various peripherals, which may be
connected via a shared bus (e.g., PCI) or via direct intercon-
nects (e.g., FireWire, USB, Rapid I/O). In some sense, our



proposal generalizes the concept of a path, first introduced in
ScoutOS [18], to span multiple peripheral devices, completely
eliminate memory as a data-staging area, and allow for non-
network-oriented data processing. By design, our approach is
not applicable to certain classes of applications, e.g., interac-
tive applications such as a text editor.

In our architecture, applications specify their data process-
ing policies using a simple API that sends flow-control re-
quests to the operating system kernel. Such applications con-
trol all aspects of data flow management, such as scheduling,
exception handling, and resource composition. The runtime
environment in which these programs will be executed will
ensure the safety of the kernel and enforce isolation between
different flows. We define a flow to be any stream of data,
possibly as small as a single packet. However, since there are
costs associated with creating and tearing down a flow, we will
only consider those flows where the number of packets is high
enough to make the flow creation cost negligible. We plan to
quantify this cut-off point eventually.

Operating systems and applications often perform opera-
tions on the data they move around, which might appear to
make our architecture unrealistic. However, many modern pe-
ripheral devices support a considerable amount of programma-
bility, e.g., the Intel IXP family of network processors. Simi-
lar functionality has been proposed for hard drives and con-
trollers [2, 3, 24]. We utilize such functionality to inject code
snippets that implement simple operations such as header pro-
cessing or database-record matching. Preliminary work in this
direction has been promising [13].

We envision the operating system offloading certain parts of
data-flow processing to programmable hardware ranging from
network processors (such as the LANI processors on Myrinet
systems, or Intel IXP cards) to Field-Programmable Gate Ar-
rays (FPGAs), as shown in Figure 2, which represents a simple
web-based Video-on-Demand service. Here, the FPGA board
is configured by the operating system to subsume the role of
a specialized JPEG encoder and IPsec header-processing en-
gine. Data flows from the hard disk to this card, from there
to a hardware accelerator, and on to a network interface for
transmission. Of course, such programmability may be avail-
able on the network interface or the hard disk controller—the
exact location is not important from an architectural viewpoint.
We do not envision re-programming the FPGAs and other pro-
grammable components very frequently, since the serial inter-
face though which reprogramming is usually done is slow. As
stated before, our architecture is oriented toward large data-
flow applications where configurations change infrequently.

Our proposed scheme can easily take advantage of program-
mable peripherals, as opposed to the awkward way current op-
erating systems access them. Even when programmability is
not a feature, scatter-gather I/O can be used to compose the
data with network headers without having to copy the data
into main memory. Our architecture can also take advantage
of point-to-point interconnection buses such as FireWire.

Our approach works even better when entire systems can be
integrated on a chip, where multiple busses are the rule. Our
approach will use such flexibility for an additional speed-up.

3.1 Server Model

Figure 2 captures our model of the underlying hardware: the
system is composed of a series of peripheral devices classi-
fied into three categories: data sources, data sinks, and data
transformers. Hard drives and network interfaces are both data
sources and sinks, although they will assume a single role in
the context of an individual data flow. Video cameras are an
example of a data source, while a sound card is an example
of a data sink. Data transformers include crypto accelerators,
DSPs, MPEG encoder/decoders, and general-purpose FPGAs.
Some devices may fall under all three categories (e.g., a pro-
grammable network card).

These devices are interconnected using topologies such as
shared-bus (e.g., PCI/PCI-X) and daisy-chain (e.g., FireWire
devices). When FPGAs are needed, they are either attached to
the shared bus or are part of a chain. Of course, in some inter-
connection strategies (e.g., daisy-chains) device locations can
affect both performance and possible functionality. Although
our ideas would be best implemented on hardware specifically
designed to support our configurable flows, FPGAs are an ex-
cellent alternative to completely custom hardware, especially
when mixed with existing programmable peripherals such as
network interfaces with on-board processors. Applications and
the OS kernel reside in main memory and otherwise operate
much as they do in current systems, with the exception of the
changes in functionality imposed by our architecture.

3.2 New Operating System Components

Our architecture needs several new components: a signalling
API, a resource scheduler, programmable peripheral support,
legacy device handling, and exception handling. Here, we de-
scribe the required functionality of each component and the
challenges in designing and implementing them.

Signalling API The first component is a signalling API that
applications such as web servers use to initialize flows across
a series (pipeline) of peripheral devices, and specify the per-
formance requirements of such flows. This API must be able
to accommodate a wide variety of devices accessible through a
small number of different bus architectures (PCI/PCI-X, USB,
etc.). Such an API and runtime environment can be used to
both effectively manage all aspects of a data flow and express
interesting application policies with respect to data transmis-
sion requirements.

To begin with, applications that use our architecture will be
associated with kernel modules that capture their data flow
needs as interactions between the hardware components and
download these into the operating system kernel. The modules
will control the data flow in terms of flow control, require-
ments, initialization, and teardown. The modules will interact
with devices through the runtime environment and a standard-
ized driver-side API. We believe an API through which appli-
cations can specify their needs in terms of data flow manage-
ment and scheduling is the best approach.

The driver-side API must support at minimum device sta-
tus and capability sensing, programming the direct memory
access (DMA) controllers on the various peripherals, and ex-
ception handling.



Resource Scheduler Since we expect multiple applications to
run on the same system, we must provide a resource scheduler
to coordinate the various virtual pipelines that process differ-
ent data flows. The scheduler must take into consideration not
only the performance requirements of each individual flow and
application and the relative priorities of the various applica-
tions, but also the relative speeds of the various devices that
process a flow. Generally speaking, the peak performance of
a flow will be ultimately limited by the speed of the slowest
device that must process the data (discounting bus contention,
interrupt latency, and other external factors as other potential
performance-limiting factors).

However, if there are considerable discrepancies among the
maximum throughputs of various devices (e.g., a 10 Gbps net-
work interface supported by a 1 Gbps cryptographic acceler-
ator), multiple copies of the the slow component can be run
in parallel to increase performance. Even if a particular flow
must run on a specific device, e.g., because processing requires
state dependent on previous operations, we can improve aggre-
gate throughput through replication and load balancing. Thus,
our scheduler must be able to consider the potential for par-
allel scheduling as well as global system requirements [15].
Whether this can be done efficiently is an open question.

Programmable Peripherals Our approach uses and sometimes
requires programmable peripherals such as smart network in-
terface cards (e.g., the IXP family of NICs) and hard drive
controllers. Such capabilities can be used to avoid using the
main processor altogether, or to implement needed functional-
ity that is not otherwise available in the system, e.g., crypto-
graphic processing on a programmable network interface [13].
Dynamic code generation (DCG) techniques can be used to
program these peripherals on the fly, and adapt them to spe-
cific tasks. Maintaining the original semantics of the operating
system network stack is an obvious challenge.

While few of today’s peripherals support the programmabil-
ity we demand, the number is increasing; we hope our archi-
tecture is compelling enough to encourage many more.

We envision using FPGAs as co-processors for data trans-
formation tasks such as video transcoding, cryptographic oper-
ations, network protocol header processing. These will be con-
figured at flow set-up time by the scheduler and multiplexed
across different flows with the same functionality requirements
(i.e., one such board may be able to do IP processing for the
majority of data flows in the system). FPGAs can also be used
as stepping stones for legacy peripherals, which often require
data transfers to involve memory. While this would imply that
direct card-to-card data transfers are impossible with such pe-
ripherals, an FPGA can masquerade as a high-speed memory
buffer directly attached to the I/O bus.

The magnitude of benefits conferred by programmability re-
mains an open question. An obvious approach is to use pre-
compiled customizable modules that implement the various
pieces of functionality we may want to download to the FPGA,
making our environment mostly static and avoiding the over-
heads involved in frequent re-programming of FPGAs (and
other programmable peripherals). But we suspect dynamic code
generation techniques can be applied in our approach.

Legacy Device Handling Even when programmable periph-
erals are not available per se, features such as TCP data check-
summing and NIC/crypto integrated processing can be found
on modern network interfaces. Such features allow the op-
erating system to avoid touching the data, which otherwise
requires its transfer to main memory. Instead, the operating
system can use scatter-gather DMA to compose and decom-
pose packets as they travel across devices. Depending on the
specifics of the network protocols used, this composition can
be done in two ways. First, protocol headers can be attached to
the data as they are DMA’ed between devices, if the receiving
device (and all subsequent devices of that flow) supports pass-
through processing. However, some devices, such as certain
ones for image processing, do not support pass-through. For
these, the operating system must build the appropriate headers
separately from the data, and join the two at the last step before
it is transmitted to the network.

Exception Handling Finally, the operating system must be
able to handle exceptions. Such exceptions generally fall in
one of two categories: data-processing errors (e.g., device fail-
ure or data corruption) or external exceptions (e.g., a TCP Re-
set or a Path MTU Discovery ICMP response from a router).
The former category is the easier one to handle. The module
managing a flow can address the exception in several ways:

1. It can try to re-start the device, or re-issue the data, if
the fault was transient. In some cases (e.g., corrupt data
from a video camera), the error may simply be ignored
if it is not persistent.

2. The flow can be redirected to use a different device. This
can be another instance of the failed device, or it may be
a different type of device which, when re-programmed,
can provide the lost functionality.

3. The application can be notified about the failure and left
to determine the appropriate course of action.

4. The flow may be switched to using the operating sys-
tem code for data processing, trading functionality for
performance.

5. If everything else fails, the flow will be terminated and
a notification will be sent to the application.

The second type of exception can be handled by the mod-
ule itself, the application, or the operating system stack. We
believe it will be possible to move state between the operating
system network stack and the module to migrate data flows be-
tween different peripherals and the network stack. This should
be transparent to the application, provided that the applica-
tion’s requirements are met.

Note that the traditional network stack implemented by cur-
rent operating systems will remain useful for a number of rea-
sons: as a fail-over when a device fails, for processing requests
involving small amounts of data (which does not justify the
overhead of setting up a flow and using up the relevant re-
sources), for exception handling, and as a template for dy-
namic code generation [8, 23] and specialization [1, 6, 25].



Interrupt

controller

VGA

controller

2MB
ZBT SRAM

off - chip

CPU0

SRAM 16kB

LRU

arbiter

M

S S S S

SRAM 8kB

NIC CPU

8kB
dual ported

SRAM

private
circuitry

bridge

M S

S

S

S

OPB

SRAM 8kB

8kB
dual ported

SRAM

private
circuitry

bridge

M S

S

S

S

OPB

SRAM 8kB

8kB
dual ported

SRAM

private
circuitry

bridge

M S

S

S

S

OPB

SRAM 8kB

8kB
dual ported

SRAM

private
circuitry

bridge

M S

S

S

S

OPB

M M M M

CRYPTO

CPU

SNIC CPUHDC CPU

JTAG

UART

S

USER

I / O

A

NIC device CRYPTO device HDC device SNIC device

General purpose peripherals

main system
memory

system CPU

Figure 3: Block diagram of the proof-of-concept prototype, which uses a Xilinx Virtex-2 XC2V2000-4 FPGA board and an
81 MHz system clock. The whole architecture, which includes three peripherals (network interface, crypto card, hard drive),
main CPU and memory, and a trivial OS supervising the simulated data flows, was implemented on an FPGA board. The fourth
peripheral was not used.

3.3 Designing and Implementing Custom Peripherals

Especially when using FPGAs, our approach needs the abil-
ity to quickly design and implement bus-resident peripherals
and their corresponding device drivers. Our starting point is
a domain-specific language (developed at Columbia) for de-
scribing Unix device drivers [7] and a hardware/software co-
design language that allows a peripheral and its device driver
to be specified and synthesized simultaneously [11].

Given our goal of using FPGAs as highly programmable
flow processors, it will be necessary to greatly simplify the
task of creating data processors that communicate via existing
communication protocols such as buses and serial links. We
believe that a combination of domain-specific languages able
to describe the hardware/software boundary with a particular
eye toward communication protocols coupled with high-level
synthesis tools is the solution for this problem.

4 Preliminary Experiments

To estimate the performance improvement we can expect from
our approach, we built a proof-of-concept prototype of the ar-
chitecture. Rather than implement the necessary drivers and
OS extensions, on a large FPGA board we assembled a system
with a CPU, main memory, and several peripherals communi-
cating over a PCI-like bus. Figure 3 depicts the architecture we
implemented. The system ran a mock OS kernel that managed
data transfers to/from RAM and between peripherals, based on
the scenario.

We simulated a system where the network interface (left-
most NIC) receives packets that are decrypted by a crypto-
graphic accelerator board (CRYPTO), with the results stored
on the hard drive (HDC). The fourth device (SNIC) is idle. At
a high level of abstraction, the data flows correspond to those
found in a secure web or file server. Each device has a com-
mand queue; when a command is finished, the device inter-
rupts the CPU and immediately starts the next command. The

CPU tries to keep the command queues full (if possible), to
avoid stalls in data processing. The transfers between devices
are done via ring buffers, a common control-register configu-
ration in high-performance peripherals, and are also managed
by the CPU.

The devices implement some abstract commands specific
to their functionality. The NIC simply needs to be told where
in memory (whether main memory or another board’s PCI-
addressable buffers) the next received packet should be placed.
The CRYPTO device is told where to receive data, which key
to process them with, and where to place the output (again,
in terms of memory locations). Finally, the HDC writes data
found at a specific memory location to the drive, and fetches
data from the drive to a specific memory address.

We ran two sets of experiments, one simulating memory-
centric data processing (Figure 1) and another using our pro-
posed architecture (Figure 2). In each, we streamed 1 mil-
lion packets through all peripherals. When the stream con-
sisted of 64-byte packets, the times were 15.5 and 13.6 seconds
for the memory-centric and our approach respectively, a mod-
est 13% speedup. However, when we used 1024-byte pack-
ets, the times were 114.6 and 59.2 seconds (9,150 vs. 17,700
packets/sec) respectively, corresponding to nearly twice the
throughput. We expect even better performance with larger
data packets—a reasonable upper bound would be 1460 bytes
(a maximum-size Ethernet frame minus IP and TCP headers).
Although this is only a rough estimate, we believe that it illus-
trates the potential performance improvements inherent in our
proposed architecture.

We also experimented with pushing application-layer logic
inside the kernel, partially implementing the scenario from
Figure 2. Our preliminary results [5] show that simply remov-
ing the application from the data path (but without otherwise
minimizing bus and memory utilization), throughput increases
by up to 25%.



5 Conclusions

He have proposed a new architecture for operating systems,
one that departs from the memory-centric approach of the past
40 years. Our architecture structurally resembles that of a net-
work switch, enabling for fast data flows between peripherals,
removing the CPU and (more importantly) the main memory
from the data path, as these have proven to be the limiting fac-
tors in modern architectures.

Our architecture will enable high-performance applications
and allow more efficient use of server resources, beyond the
limits of modern operating systems. It will allow experimenta-
tion and deployment of new types of system architectures, al-
lowing use of novel hardware designs, device interconnection
strategies, and load-balancing and scheduling algorithms. Our
approach will also eliminate one commonly perceived prob-
lem with the wide-spread use of secure protocols and cryp-
tography, that of performance, and it will enable a new class
of systems that are able to support high-performance applica-
tions across a wide range of areas of computer science that are
currently economically infeasible.

While to fully realize our vision represents a substantial
development project, preliminary results are promising. Our
proof-of-concept prototype (Figure 3) ran at nearly double the
throughput with our approach, which we think of as a lower
bound because of the simplicity of the prototype.

We are proposing nothing less than a new way of thinking
about operating systems, one that enables high-performance
applications and allows efficient use of server resources, be-
yond the limits of current systems. Our architecture will not
only improve application performance, but will allow the use
of security protocols with very low performance impact, as
well as enable experimentation and deployment of new types
of system architectures, novel hardware designs, device inter-
connect strategies, scheduling algorithms, and so on.

References

[1] M. B. Abbott and L. L. Peterson. Increasing Network Through-
put by Integrating Network Layers. IEEE/ACM Transactions on
Networking (ToN), 1(5), October 1993.

[2] A. Acharya, M. Uysal, and J. Saltz. Active Disks. In Proceed-
ings of the 8th Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS VIII),
October 1998.

[3] K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson. Dy-
namic Function Placement for Data-intensive Cluster Comput-
ing. In Proceedings of the USENIX Annual Technical Confer-
ence, pages 307–322, June 2000.

[4] J. C. Brustoloni. Interoperation of Copy Avoidance in Network
and File I/O. In Proc. INFOCOM, pages 534–542, 1999.

[5] M. Burnside and A. D. Keromytis. The Case For Crypto Pro-
tocol Awareness Inside The OS Kernel. ACM SIGARCH Com-
puter Architecture News, 33(1):57–64, March 2005.

[6] D. Clark and D. Tennenhouse. Architectural Considerations for
a New Generation of Protocols. In Proceedings of ACM SIG-
COMM, September 1990.

[7] Christopher L. Conway and Stephen A. Edwards. NDL: a
domain-specific language for device drivers. In Proceedings
of Languages, Compilers, and Tools for Embedded Systems
(LCTES), Washington, DC, June 2004.

[8] D. R. Engler and M. F. Kaashoek. DPF: Fast, Flexible Message
Demultiplexing using Dynamic Code Generation. In Proceed-
ings of ACM SIGCOMM, August 1996.

[9] D. R. Engler, et al. Exokernel: An Operating System Archi-
tecture for Application-Level Resource Management. In Pro-
ceedings of the 15th ACM Symposium on Operating Systems
Principles (SOSP), December 1995.

[10] P. Druschel and L. L. Peterson. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. In Proc. Symposium on Op-
erating Systems Principles (SOSP), pages 189–202, 1993.

[11] Stephen A. Edwards and Olivier Tardieu. SHIM: A determinis-
tic model for heterogeneous embedded systems. In Proceedings
of Emsoft, Jersey City, New Jersey, September 2005.

[12] D. R. Engler and M. F. Kaashoek. Exterminate All Operating
System Abstractions. In Proceedings of Hot Topics in Operating
Systems (HotOS), pages 78–85, 1995.

[13] L. George and M. Blume. Taming the IXP Network Proces-
sor. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), June 2003.

[14] R. B. Krishnamurthy. Scalable Real-time Architectures and
Hardware Support for High-Speed QoS Packet Schedulers. PhD
thesis, Georgia Institute of Technology, April 2003.

[15] K. Lakshman, R. Yavatkar, and R. Finkel. Integrate CPU and
Network-I/O QoS Management in the Endsystem. Computer
Communications, pages 325–333, April 1998.

[16] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and Im-
plementation of an Operating System to Support Distributed
Multimedia Applications. IEEE Journal on Selected Areas in
Communications, 14(7):1280–1297, September 1996.

[17] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson,
T. A. Proebsting, and J. H. Hartman. Scout: A Communications-
Oriented Operating System (Abstract). In Proceedings of Oper-
ating Systems Design and Implementation (OSDI), 1994.

[18] D. Mosberger and L. L. Peterson. Making Paths Explicit in
the Scout Operating System. In Proceedings of the 2nd Sympo-
sium on Operating Systems Design and Implementation (OSDI),
pages 153–167, 1996.

[19] S. O’Malley and L. L. Peterson. A Dynamic Network Architec-
ture. ACM Transactions on Computer Systems, 10(2):110–143,
May 1992.

[20] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified
I/O buffering and caching system. ACM Trans. Computer Sys-
tems, 18(1):37–66, 2000.

[21] J. Pasquale, E. Anderson, and P. K. Muller. Container Shipping:
Operating System Support for I/O-intensive applications. IEEE
Computer, 27(3):84–93, March 1994.

[22] L. Peterson, Y. Gottlieb, M. Hibler, P. Tullman, J. Lepreau,
S. Schwab, H. Dandekar, A. Purtell, and J. Hartman. An OS
Interface for Active Routers. IEEE Journal on Selected Areas
in Communications (JSAC), 19(3):473–487, March 2001.

[23] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek.
’C and tcc: A Language and Compiler for Dynamic Code Gen-
eration. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(2):324–369, 1999.

[24] E. Riedel, G. Gibson, and C. Faloutsos. Active Storage For
Large-Scale Data Mining and Multimedia. In Proceedings of
the Conference on Very Large DataBases, August 1998.

[25] E. N. Volanschi, G. Muller, C. Consel, L. Hornof, J. Noye, and
C. Pu. A Uniform and Automatic Approach to Copy Elimina-
tion in System Extensions via Program Specialization. Techni-
cal Report RR-2903, Institut de Recherche en Informatique et
Systemes Aleatoires, France, 1996.


