
Application Communities: Using Monoculture for Dependability

Michael E. Locasto, Stelios Sidiroglou, and Angelos D. Keromytis
Network Security Lab, Computer Science Department, Columbia University

{locasto, stelios, angelos}@cs.columbia.edu

Abstract

Artificial diversity is one method for mitigating the se-
curity risks of software monoculture. Introducing diversity
increases resilience by obfuscating the system parameters
an attacker must control for a successful exploit. We take
a different approach to resilience and introduce the concept
of Application Communities (AC): collections of indepen-
dent instances of the same application that cooperatively
monitor their execution for flaws and attacks and notify the
community when such events are detected.

We propose a set of parameters that define an AC and
explore the tradeoffs between the minimal size of an AC, the
marginal overhead imposed on each member, and the speed
with which new faults are detected. We provide a sketch of
both analytical and experimental results that show ACs are
feasible for current applications: an AC of 15,000 members
can monitor Apache for new faults with a 6% performance
degradation for each member.

1 Introduction

Software monoculture has been identified as a major
problem for networked computing environments [7, 6, 12].
Monocultures act as force amplifiers for attackers, allowing
them to exploit the same vulnerability across thousands or
millions of instances of the same application. Such attacks
have the potential to rapidly cause widespread disruption,
as evidenced by several recent incidents. However, creat-
ing a large number of different systems manually [1] not
only presents certain practical challenges but can result in
systems that are not diverse enough [4].

As a result, research has focused on creating artificial
diversity by introducing “controlled uncertainty” into sys-
tem parameters that the attacker must govern in order to
carry out a successful attack. Such parameters include the
instruction set [2], the high-level implementation [9], the
memory layout [3], and the operating system interface [5],
with varying levels of success [10]. However, diversity cre-
ates its own set of problems involving configuration, man-

agement, and certification of each new platform [13]. In
certain cases, such environments can decrease the overall
security of the network [8].

Little attention has been paid to the question of whether a
large, homogeneous software base can improve security and
reliability relative to a single isolated application instance.
Given a large number of autonomous application instances,
is it possible to employ a collaborative distributed scheme
that improves overall group security?

To answer this question, we introduce the concept of an
Application Community1 (AC), a collection of autonomous
application instances running across a wide area network.
The members of an AC collaborate in identifying previously
unknown flaws or attacks and exchange information so that
failures are prevented from recurring. Individual members
may succumb to new flaws; however, over time the AC con-
verges to a state of immunity against that specific fault. The
system learns new faults and adapts to them, exploiting the
AC size to achieve both coverage (in detecting faults) and
fairness (in distributing the monitoring task).

This definition raises several questions. First, is the ap-
proach feasible and, if so, for what types of faults? Second,
how expensive can the monitoring, coordination, and reac-
tion mechanisms be, and is it possible to share the burden
equitably across the AC? Third, what is the performance im-
pact of the additional computation on individual members?
Fourth, how small can an AC be to achieve coverage and
fairness at the same time? Fifth, how robust is this scheme
in the presence of mutually untrusted (or subverted) partic-
ipants?

This paper does not answer all of these questions, al-
though directions for future work are outlined. Instead, we
provide an analysis of the parameters that govern an AC
and apply it to a prototype AC using our Selective Transac-
tional EMulator (STEM) [11] for both fault-monitoring and
immunization. AC members emulate different “slices” of
the application, monitoring for failures such as buffer over-
flows or illegal memory accesses. When a fault is detected,
information about the fault is transmitted to the rest of the

1The term first appeared in the title of the DARPA Application Com-
munities Workshop, in October 2004.

AC so they too can supervise the code area containing the
fault. Furthermore, members that have succumbed to the
fault can be reconstituted with the appropriate fix. These
measures prevent the AC from continuously degrading.
STEM STEM is an x86 emulator that can be selectively
invoked for arbitrary code segments, allowing us to mix em-
ulated and non-emulated execution inside the same process.
The emulator lets us (a) monitor for the specific type of fail-
ure prior to executing the instruction, (b) undo any memory
changes made by the code function inside which the fault
occurred, and (c) simulate an error return from said func-
tion. One of our key assumptions is that we can create a
mapping between the set of errors and exceptions that could
occur during a program’s execution and the limited set of
errors that are explicitly handled by the program’s code.

In a series of experiments using a number of server appli-
cations, we showed that our “error virtualization” mapping
holds for more than 88% of the cases we examined. Testing
with real attacks against Apache, OpenSSH, and Bind, we
showed that our technique can be effective in automatically
protecting against zero day attacks (attacks that exploit a
previously unknown or unpatched vulnerability). Although
full emulation is prohibitively expensive (a 30-fold slow-
down), using selective emulation imposes between a 1.3X
and 2X overhead, depending on the size of the emulated
code segment and assuming the fault is localized within a
small code region. Due to space limitations, the reader is
referred to [11] for details.

Our analysis indicates that AC’s are an achievable goal.
A moderately sized application (about 200 functions) with a
normal distribution of faults requires an AC of about 17,000
members. Our experimental evaluation shows that an AC of
size 15,000 can execute Apache with a performance degra-
dation of only 6% at each member. An AC of 15 hosts
can run Apache with a performance degradation of approx-
imately 73%.

2 Analysis

The primary contribution of this paper is an analysis of
the properties that govern the AC. We also consider the
problem of distributing work to the AC members and the
probability of catching new faults by duplicating monitor-
ing responsibilities.

We formalize the notion of total work in the AC, W , by
examining the cost of executing discrete slices of the appli-
cation. Assuming a set of functions F that comprise an ap-
plication’s callgraph, we denote the ith member of F as fi.
The cost of executing each fi is a function of the amount of
computation present in fi (we call this component xi) and
the amount of risk in fi (we denote this risk as vi).

The calculation of xi can be driven by at least two met-
rics: oi, the number of machine instructions executed as part

of fi, or ti, the amount of time spent executing fi. Each
metric has advantages and drawbacks. For example, while
oi is an intuitive work unit, there is a clear difference in
computation between the same number of different types of
instructions (e.g., logical operations and floating point op-
erations). On the other hand, using only ti can obscure the
effects of nondeterminism or interaction with other systems
even though it may provide a more realistic sense of system
response. Both oi and ti can vary as a function of time or
application workload according to the application’s internal
logic. For example, an application may perform logging
or cleanup duties after it passes a threshold number of re-
quests. Future work can explore functions that approximate
xi’s value at a given time for either metric.

The risk factor vi is somewhat harder to characterize, as
it is more likely to vary during runtime, and it is not clear
how to classify risk in terms of execution time or number of
machine operations. Its purpose is to weight a function such
that more members monitor it. We approximate the risk by
a simple scaling factor α based on a statistical measure of
vulnerability2. Since other measures, such as static source
code analysis tools, may be used, exploring the range of risk
assessment metrics is interesting future work.

We provide a cost function in two phases. The first phase
calculates the cost due to the amount of computation for
each fi. The second phase normalizes this cost and applies
the risk factor vi to determine the final cost of each fi and
the total amount of work in the system. Let T =

∑n

i=1
xi.

If we let C(fi, xi) = xi

T
∗ 100, then we can normalize each

cost by grouping a subset of F to represent one unit of work.
Membership in this subset can be arbitrary, but is meant to
provide a flexible means of defining what a work unit trans-
lates to in terms of computational effort. A good heuristic
is to group the k lowest cost functions together and declare
the sum of their work as the base work unit, Z. Every other
function cost is normalized to Z, and ri represents the rela-
tive weight of each fi.

We must also account for the measure of a function’s
vulnerability. We can treat vi as a discrete variable with a
value of α (where α can take on a range of values according
to the amount of risk):

vi =

{

α if fi is vulnerable, α > 1;
1 if fi is not vulnerable. (1)

Given vi for each function, we can determine the total
amount of work in the system and the total number of mem-
bers needed for monitoring:

W = Nvuln =

n
∑

i=1

vi ∗ ri (2)

Work Distribution After each AC member has calcu-
lated the amount of work in the system, work units must

2http://serg.cs.drexel.edu/projects/cosak/

be distributed. In the simplest scenario, a central controller
assigns each node approximately W

N
work units. A more

robust distribution method would be for each member to
determine their own work set. Each member can iterate
through the list of work units, flipping a coin weighted with
the value vi ∗ ri. If the result of the flip is “true” then the
member adds that work unit to its work set. A member stops
when its total work reaches W

N
. Such an approach offers sta-

tistical coverage of the application. A more elegant method
of work distribution is possible; since a full treatment of it
is beyond the scope of this paper, Appendix A provides an
overview.
Overlapping Coverage While full coverage means that
every application slice is being monitored for the given time
unit, it does not mean that every AC member’s individual
application is being fully monitored. Consider the situation
where Alice monitors function fi and Bob monitors func-
tion fj . If fi contains a fault, Bob will miss it. Even though
the community may catch the fault (by virtue of Alice’s will-
ingness to monitor fi), there may be members that have not
yet detected the fault (i.e., Bob). There is a tradeoff be-
tween the level of individual coverage and how quickly the
AC identifies a new fault.

If AC members monitor more than their share, then we
have increased coverage and made sure that the fault is de-
tected as quickly as possible. Assuming a uniform random
distribution of new faults across AC members, the probabil-
ity of a fault happening at a member k is: P (fault) = 1

N
.

Thus, the probability of k detecting a new fault is the proba-
bility that the fault happens at k and that k detects the fault:
P (fault at k∧ detection) = 1

N
∗ ki, where ki is the percent-

age of coverage at k. The probability of the AC detecting
the fault is

P (AC detect) =
N

∑

i=1

1

N
∗ ki (3)

As each ki goes to 100%, Equation 3 becomes
∑N

i=1

1

N
,

or N
N

, a probability of 1 that the fault is detected when it
first occurs. The worst case in terms of performance is the
best case in terms of rapid detection and requires N ∗ 100%
coverage.
Analytical Results Our simulations explore the influ-
ence of several parameters: (a) the size of the application
(in number of functions), (b) the distribution of work be-
tween functions, (c) the level of work present in each func-
tion, and (d) the policy for determining each function’s α

score.
We simulate applications with sizes that range from 20

to 20000 functions. The level of work for each function
ranges from 50 to 50000 work units. We examine three
types of distributions of ri. The even distribution defines an
equal work level for every function. The norm distribution

is a “normal” distribution centered on an average work level
value. The skew distribution sets the cost of most functions
relatively low, but includes a few functions that account for
a large part of the execution cost.

We determine α according to two policies: exp and flat.
The flat policy applies a static factor of 10 for every function
deemed vulnerable. The exp policy exponentially increases
the value of α for “more vulnerable” functions. For both
policies, we determine a function’s risk score by examining
the distance of the function (in the callgraph) from a read()
system call, using the heuristics of the COSAK project. Fig-
ure 1 shows the relationship between a program’s size and
the AC workload. While the values for workload are quite
large, they are based on a program where each function per-
forms about 50000 work units. Our simulations for smaller
workloads show the same relationship with lower total cost.
We also consider a more realistic case for an Apache-like
application of medium size (200 functions) with a normal
distribution of xi. A flat policy for determining α causes W

to scale from 2020 to 16897.

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

10 100 1000 10000 100000 1e+06 1e+07

W
 (s

iz
e

of
 w

or
kl

oa
d)

program size (# of functions)

Comparison of Actual and Weighted Workloads

unweighted workload (norm)
unweighted workload (even)
unweighted workload (skew)

weighted workload (norm-exp)
weighted workload (even-exp)
weighted workload (skew-exp)
weighted workload (norm-flat)
weighted workload (even-flat)
weighted workload (skew-flat)

Figure 1. A logscale comparison of workloads given a
vulnerability policy. Note that the raw values are quite
high, but are drawn from data that assumes a massive
workload value (50000). More important is how the
relationship between program size and workload is af-
fected by the choice of vulnerability policy.

3 Evaluation

In this section, we quantitatively measure the tradeoffs
presented in Section 2. Measurements are conducted using
Apache as the protected application and STEM as the mon-
itoring and remediation component. A detailed analysis of
Apache’s runtime characteristics was obtained by running
a profiled version against a set of test suites and examining
the call graph generated with gprof and Valgrind. The graph

was analyzed in order to extract the time spent doing work
for each function. Using the corresponding costs, we evalu-
ate Apache’s performance in requests per second for 10000
requests at a concurrency level of 5 for 100 trials.

Slice size Requests/sec Number of servers
10.34 148 (27%) 15
5.24 333 (62%) 30
0.25 380 (70%) 635
0.14 497 (92%) 1135
0.04 471 (87%) 3973
0.01 506 (94%) 15893

Table 1. Work-time quantums and their effects on
Apache performance and AC size

As illustrated in Table 1, we examine the use of a va-
riety of work-time quantums on raw Apache performance
and coverage. As expected, emulating large slices using
STEM translates into lower performance for each partic-
ipating member but requires the smallest community size
for 100% coverage. Using the largest work-time quantum
translates into a performance degradation of 73% per mem-
ber and an AC size of 15 members. As the slice size is re-
duced (using a less expensive function as the base), the per-
formance overhead per member is decreased at the cost of
a larger community. For the smallest work-time quantum,
a performance overhead of 6% is experienced per member
while the size of the AC grows to 15893. These results are
encouraging and closely follow the intuition in Section 2.

Figure 2 illustrates the effect of varying the vulnerability
index on the size of the community for 100% coverage. This
example doubles the number of servers required to cover an
α region. We start with the case where 25% of the code is
considered potentially vulnerable and increment the α value
until the entire code base is covered. As expected, when
a higher percentage of the code base is deemed vulnera-
ble, the community needs to be larger to realize fair cover-
age. The effect on Apache performance is linear despite an
aggressive protection policy. Our experiments demonstrate
that an AC can alleviate the problems associated with using
an invasive protection mechanism by distributing work.

4 Conclusions

The growing concern about computing monoculture has
engendered a body of research focused on increasing arti-
ficial diversity. Introducing diversity is no easy task, and it
is often hampered by the complexity of extra management.
While we actively research the use of artificial diversity, this
paper contravenes the idea of monocultures as dangerous
and introduces the concept of Application Communities.

 0

 200

 400

 600

 800

 1000

 1 10 100 1000 10000
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

re
qs

/s
ec

N
um

be
r

of
 s

er
ve

rs

Slice Size

STEM: Evaluation

Reqs/sec
Number of servers
with alpha at 20%

50%
75%

100%

Figure 2. Influence of the vulnerability index on AC
size and performance.

We provide a method for exploiting the resources avail-
able in large monocultures to provide protection for each
community member. As faults are detected, members can
proactively monitor code areas containing the faults to pre-
vent further failures, and members who have succumbed to
the fault can be restarted with the protection mechanisms
in place. Our experimental and analytical results show that
members of an AC can reasonably deploy our monitoring
framework STEM and collaborate to share the overhead of
its protection mechanisms, thus inoculating the community
at the cost of a few failed members.

References

[1] A. Avizienis. The n-version approach to fault-tolerant
software. IEEE Transactions on Software Engineering,
11(12):1491–1501, 1985.

[2] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer,
D. Stefanovic, and D. D. Zovi. Randomized Instruction Set
Emulation to Disrupt Binary Code Injection Attacks. In Pro-
ceedings of the 10

th ACM CCS, pages 281–289, October
2003.

[3] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfus-
cation: an Efficient Approach to Combat a Broad Range of
Memory Error Exploits. In Proceedings of the 12th USENIX
Security Symposium, pages 105–120, August 2003.

[4] S. Brilliant, J. C. Knight, and N. G. Leveson. Analysis of
Faults in an N-Version Software Experiment. IEEE Transac-
tions on Software Engineering, 16(2), February 1990.

[5] M. Chew and D. Song. Mitigating Buffer Overflows by Op-
erating System Randomization. Technical Report CMU-CS-
02-197, Carnegie Mellon University, December 2002.

[6] D. E. Geer. Monopoly Considered Harmful. IEEE Security
& Privacy, 1(6):14 & 17, November/December 2003.

[7] G. Goth. Addressing the Monoculture. IEEE Security &
Privacy, 1(6):8–10, November/December 2003.

[8] V. Prevelakis. A Secure Station for Network Monitoring and
Control. In Proceedings of the 8

th USENIX Security Sympo-
sium, August 1999.

[9] J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line
Intrusion Detection and Attack Prevention Using Diversity,
Generate-and-Test, and Generalization. In Proceedings of
the 36th Annual Hawaii International Conference on System
Sciences (HICSS), January 2003.

[10] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh. On the Effectiveness of Address-Space Random-
ization. In Proceedings of the 11

th ACM Conference on
Computer and Communications Security (CCS), pages 298–
307, October 2004.

[11] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building A Reactive Immune System for Soft-
ware Services. In Proceedings of the 11th USENIX Annual
Technical Conference (to appear), April 2005.

[12] M. Stamp. Risks of Monoculture. Communications of the
ACM, 47(3):120, March 2004.

[13] J. A. Whittaker. No Clear Answers on Monoculture Issues.
IEEE Security & Privacy, 1(6):18–19, November/December
2003.

A Distributed Bidding

The problem of assigning work to AC members can be seen
as an instance of the general KNAPSACK problem. Each node in
the callgraph G has a weight vi ∗ ri. Some subset of the nodes in
F must be assigned to each AC member such that each member
does no more than W

N
work. We can relax the threshold to be

within some range ε of W

N
. Thus, ε is a measure of system fairness.

Once the globally fair amount of work W

N
is calculated, each AC

member can adjust their workload by bargaining with other AC
members via a distributed bidding process.

Two considerations impact the assignment of work units to AC
members. First, we should preferentially allocate work units with
higher weights, as these work units likely have a heavier weight
due to an high vi. Even if the weight is derived solely from the
performance cost, assigning more members to it is beneficial be-
cause these members can round-robin the monitoring task so that
any one member does not have to assume the full cost. Second, in
some situations, vi ∗ ri will be greater than the average amount of
work W

N
. Achieving fairness means that vi∗ri defines the quantity

of AC members that must be assigned to it, and the sum of these
quantities defines the minimum number of members in the AC.

Our algorithm works in two rounds. First, each member cal-
culates a table similar to Table 2. Then, AC members enter into a
distributed bidding phase to adjust their individual workload. The
distributed algorithm uses tokens to bid; tokens map directly to
the number of time quanta that an AC member is responsible for
monitoring a work unit. A node accumulates tokens by taking on

fi xi ri vi T C(fi, xi) ri ∗ vi

a() 100 1 α1 600 16 α1

b() 200 2 α2 600 33 2α2

c() 300 3 α3 600 50 3α3

Table 2. An example of AC work calculation.

extra computation. The algorithm makes sure that each node does
not accumulate more than the total number of tokens allowed by
the choice of ε. Since we currently assume a collaborative AC,
useful future work can address protecting the bidding process in
the face of various threats (e.g., insider accumulating tokens) and
constraints (e.g., anonymity for AC members).

