
Abstract of “Learning from ambiguous examples” by Stuart J. D. Andrews, Ph.D., Brown University, August

2006.

The main drawback of the supervised learning approach to solving pattern classification problems is that

the initial instance-label pairs are often expensive to collect due to required human effort or comprehensive

testing. In many applications however, it is evidently more practical and sometimes essential to collect train-

ing examples that are ambiguous due to polymorphism or missing labels. Since these ambiguous examples

have a small number of interpretations as instance-label pairs, they are still informative. It is therefore of

great interest to practitioners and machine learning researchers alike to develop principled methods that can

utilize such examples. This thesis demonstrates that the burden of collecting a large number of examples

may be supplanted with algorithms that learn from readily available inputs that are ambiguous. This thesis

presents a statistical learning theoretic framework for learning from ambiguous examples that is based on a

novel formalization of disambiguation consistency. Intuitively, a valid interpretation and concept hypothesis

must be mutually reinforcing. Using this principle, disambiguation and learning are jointly formulated as a

non-convex maximum-margin problem. The first presented algorithmic approach for solving the disambigua-

tion and learning problem uses a 2-stage mixed-integer local search technique that leverages state-of-the-art

support vector machine software. The subsequent two algorithms use novel specializations of methods from

disjunctive programming, a branch of combinatorial optimization. The first and third algorithms are of prac-

tical importance because they are efficient and scale to large data sets. Empirical results on benchmark data

sets from the multi-instance and transductive learning domains are provided. These results demonstrate that,

by accounting for ambiguity explicitly, classifier accuracy does not degrade and can improve significantly

over techniques that ignore ambiguity. The results also suggest that our approach is best suited for tasks in

which one and only one interpretation of each ambiguous example is valid, which is a reasonable assumption

when the ambiguity is due to missing labels in the training data.
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Chapter 1

Introduction

1.1 Learning from ambiguous examples

This thesis is concerned with pattern classification; loosely speaking, the study of categorizing things. Things

will be referred to as instances, and their categories will be given labels. Supervised learning refers to a

process in which examples are used to infer a rule for guessing the category of things (predicting instance

labels). A basic requirement of traditional supervised learning algorithms is that the inputs consist of instance-

label pairs that are examples of the concept to be learned.

The main drawback of the supervised learning approach to solving pattern classification problems is that

the training data are often expensive to collect. This is because the training data must include categorizations

for a large number of items of interest. These must be provided by a human supervisor or verified through

comprehensive testing. Moreover, confounding the task is the general experience that, the more specific a

categorization is, the more difficult it is for a human to provide it. In this situation, it is difficult and sometimes

impossible to collect the data required to train the classifier.

In many applications however, it is evidently more practical and sometimes essential to collect training

examples that are ambiguous due to polymorphism or missing labels. Some examples are given below.

1. In text classification [4], a first step toward classifying a document is the classification of individual

paragraphs. When a document is decomposed into paragraphs, it is said to have a polymorphic repre-

sentation. However, when a human is labeling documents for supervised learning, it is more typical,

intuitive and convenient to provide binary or keyword labels at the document level, than it is to annotate

the topics of individual paragraphs within documents. The assumption is that such labels are derived

from individual paragraphs. Such labeled documents are ambiguous since the association between

the label and the particular paragraph from which the label was derived is lost. In other words, there

are several ways to interpret the label as a paragraph-level label. The distinct interpretations arise by

associating the label with each paragraph in turn.

2. In content-based image categorization [4, 12, 16, 60], a first step toward classifying an image is the

1
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categorization of individual image segments. Polymorphic representations of images are typically ob-

tained by running a keypoint detector over the image or by segmenting the image into regions. On the

other hand, when a human is labeling images for supervised learning, it is more typical, intuitive and

convenient to provide binary or keyword labels at the image-level than it is to provide geometric anno-

tations for segments or keypoints within images. The assumption is that such labels are derived from

individual segments or keypoints. Such labeled images are ambiguous since the association between

the label and the particular segment or keypoint from which the label was derived is lost. In other

words, there are several ways to interpret the given label as a segment-level or keypoint-level label.

The distinct interpretations arise by associating the label with each segment or keypoint in turn.

3. In data mining applications [50, 56], ambiguous examples of the relationships between data items

are readily available, or can be inferred directly from data base entries. For example, a polymorphic

representation consisting of the purchases of an credit card cardholder can be associated with a profile

of the cardholder. In this case, the assumption is that the profiles are derived from individual purchases

made by the cardholder.

4. In drug-design applications [27], it is sometimes convenient to utilize a polymorphic representation

for molecules. This is because a molecule is dynamic, assuming many different molecular conforma-

tions (shapes) that are either reactive and un-reactive, but cannot be distinguished during a chemical

reaction. The assumption, proposed by organic chemistry, is that the molecular reactivity is derived

from individual conformations. A polymorphic representation of the molecule is obtained by sampling

conformations. Distinct interpretations arise by associating the reactivity with each conformation.

5. In stock portfolio prediction [47] and protein family modeling [66], it is natural to decompose the input

sequences to detect an event or motif at an arbitrary position. Here, the polymorphism is analogous

to that considered for content-based image categorization. Similarly, the assumption is that the labels

provided at the sequence-level by humans are derived from individual events or motifs within the

sequence. Distinct interpretations arise by associating the label with each event or motif in turn.

In the previous examples, the source of ambiguity is the polymorphic representation of the input. In the next

and last example, ambiguity comes from not knowing the labels for a subset of the inputs.

6. Finally, in practically any pattern classification application, from optical character recognition to dia-

betes prediction [14, 17, 39], it is trivial to collect unlabeled inputs. Unlabeled inputs are ambiguous

because their label is not specified. There are several ways to interpret such unlabeled inputs. Unla-

beled examples clearly have labels, only their true identity is not known. The distinct interpretations

arise by associating each possible label with the input.

In these examples, the inputs that are readily available are called ambiguous examples, since they have

multiple interpretations as unambiguous examples (instance-label pairs). The fact that these inputs are am-

biguous does not mean that the inputs are vague. Ambiguity is modeled explicitly in a manner that reflects

explicit identifiable structures or meaningful invariants of an input.
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While there are many applications where ambiguous examples are relatively easy to collect in comparison

to fully labeled examples, this is not always the case. Typically there is a trade-off between the quantity and

specificity of training data that can be obtained with fixed resources such as patience, time or energy. One

can collect either: 1) a small set of unambiguous examples, 2) a large set of ambiguous examples, or 3) some

combination of unambiguous and ambiguous examples in between. The relative costs involved in choosing

the number and type of examples are application-specific. In some cases, there are constraints inherent in

the application that dictate that examples are ambiguous. In other applications, when potential sources of

ambiguity are known and there are resources to deal with them, it may be possible to collect fully labeled

unambiguous examples. The basic fact stands that for several applications, it is evidently more practical to

collect ambiguous examples. It is therefore of great interest to practitioners and machine learning researchers

alike to develop principled methods that can utilize ambiguous examples.

The work in this thesis is based on a simple observation, which is the following: Despite the fact that

ambiguous examples have multiple interpretations, they are still informative. This is especially true when

considering any number of ambiguous examples at once, since the valid interpretations of all ambiguous ex-

amples must be mutually consistent. Unfortunately, supervised learning is not directly applicable. Moreover,

the task of selecting interpretations is fundamentally distinct from feature selection, because interpretations

must be chosen on an example by example basis whereas features are chosen in parallel. The key question

then is: Is it possible to recover the implicit categories underlying a collection of ambiguous examples? This

thesis answers in the affirmative. The burden of collecting a large number of instance-label pairs may be

supplanted with algorithms that learn from readily available ambiguous examples. As in the supervised case,

the goal is to infer a rule for predicting individual instance labels. This rule will be called a classifier.

This thesis is concerned with learning from examples that are ambiguous, as observed in several semi-

supervised learning problems. Specifically the problems are multiple-instance learning, transductive infer-

ence and semi-supervised inductive inference. Multiple-instance learning addresses the problem of learning

from inputs that are ambiguous due to polymorphism. Examples of polymorphic inputs are:

1. multiple instances of the same modality

2. multiple segments from a part-whole decomposition

3. multiple samples from a stochastic process

There are two common terms for such inputs: multi-instances, and bags. The first term multi-instances cap-

tures the direct meaning of an input consisting of many things of the same type. The second term bag evokes

the image of a container holding the individual instances in a jumbled and meaningless order. The multi-

instance and label comprise an ambiguous example. The multi-instance label models a 1-of-N relationship.

In other words, the assumption is that one of the instances within a multi-instance is responsible for the label.

While each instance within a multi-instance belongs to a category, these instance-level individual labels are

not included directly in the input. However, for true/false (T/F) labels, the multi-instance label is a logical

disjunction of the instance-level labels. Therefore, as outlined in the examples given in this section, it is

natural to consider a labeled multi-instance as having several interpretations as an example (instance-label

pair) of the concept to be learned.
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Transductive learning and semi-supervised inductive inference deal with the problem of learning from

a small collection of examples (instance-label pairs) that is augmented by a large collection of unlabeled

inputs. The unlabeled inputs are ambiguous. Each unlabeled input belongs to a category although its label is

not provided in the input. Assuming T/F labels, an unlabeled input has two interpretations as an example of

the concept to be learned and only one is valid. Transductive inference focuses only on making predictions

for the finite set of inputs that are unlabeled, while the goal of semi-supervised inductive inference is to infer

a rule for predicting arbitrary instance labels.

Interestingly, under certain weak assumptions, transductive learning and semi-supervised inductive infer-

ence can both be reduced to multi-instance learning. The reduction follows by converting the unlabeled and

ambiguous inputs from these problems, into polymorphic inputs (multi-instances) with specific labels. This

reduction to multi-instance learning aligns all sources of ambiguity under one framework.

A systematic treatment of ambiguity has the promise of extending the utility of traditional pattern clas-

sification techniques. In order to derive useful information from ambiguous examples requires inferences

involving the interpretations of ambiguous examples. The process of selecting an interpretation is called dis-

ambiguation. The key intuition is that the true interpretation is self-reinforcing. To formalize this idea, this

thesis proposes a risk minimization principle for learning from ambiguous examples. Several algorithms are

developed within the framework for learning from ambiguous examples, and subsequently analyzed. Learn-

ing from ambiguous examples is a principled way to make specific and plausible inferences about ambiguous

inputs in a pattern classification system. The significance of this framework is evident from the number and

diversity of annotation-starved domains to which it has been applied.

Contributions of this thesis include:

1. Two data sets

2. A structural risk minimization / maximum-margin framework for learning from ambiguous examples

This framework encompasses multi-instance learning, semi-supervised learning and transductive infer-

ence

3. A pictorial framework for conveying principles of risk minimization and convex programming

4. One algorithm for learning from ambiguous examples using a 2-norm formulation of the maximum-

margin problem

(a) Multi-instance support vector machine (MI-SVM): this algorithm is characterized by integer dis-

ambiguation variables and a greedy local search heuristic.

5. Three algorithms for learning from ambiguous examples using a 1-norm formulation of the maximum-

margin problem

(a) Disjunctive programming boosting (DPBoost): this algorithm is derived using geometric concepts

from disjunctive programming and convex programming resulting in a very large linear program.

(b) 1-norm multi-instance support vector machine (1-norm MI-SVM): similar to the first algorithm

but using the 1-norm formulation.



5

(c) Lift and project boosting (LNPBoost): this algorithm is characterized by an efficient cutting-plane

approximation strategy and theoretical performance guarantees.

6. Empirical evaluations on multi-instance learning and transductive learning domains.



Chapter 2

Examples

Some concrete applications of learning from ambiguous examples are discussed below.

2.1 Automatic image annotation

Content-based image retrieval based on subject matter is a valuable tool for artists as a means to stimulate

their creativity. Some art schools provide students with archives of photographs and other artwork that has

been collected from current periodicals and indexed by subject matter. As a result of the careful indexing

of this collection, a student who wishes to develop an artistic theme based on tigers or elephants can easily

retrieve relevant source material and thus inspiration.

Building image archives is generally done by scavenging resources such as the world wide web, unless

one has the funding and patience required to send professional photographers around the world. Two popular

methods for building image archives are described. The first technique is to bootstrap a text-based search

engine. The second is to leaf through image-laden periodicals. In the first technique, assuming one wants to

collect images of the Siberian tiger species, one proceeds by: 1) searching by text query, and 2) separating

positives from negatives by hand, as depicted in Figure 2.1. This process can be repeated for as many

categories as desired. The second popular technique used to build image archives requires, at one art school,

several full-time librarians and many periodical subscriptions. The employees cut images from the periodicals

and file them into one of a wide range of categories based on their own judgements of dominant subject matter.

Both approaches require a significant amount of human labeling effort; especially when considering that

search engines can return a large number of query results, and periodicals are practically limitless. Then there

is the issue of updating these collections over time. In order to relieve the humans required for annotation,

the idea of automatic image annotation is to design a classifier to identify the images of a category using a

learning algorithm. Since there are potentially many subject categories, the advantage of using a learning

algorithm is great.

Automatic classification of images based on their subject matter is a difficult problem. In computer vision,

the problem is called object or scene recognition. In data mining, it is called image retrieval. The recognition

6
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Figure 2.1: Text-based image retrieval. Query results that do not contain a Siberian tiger must be detected by
hand.

of images containing tigers, for example, is nontrivial due to the variations of tiger appearance and pose, as

well as the variations in external viewing conditions that affect these images. A further confounding problem

is that several objects beside a tiger may appear in the image. The image may also contain grass, trees,

water, or in some cases maybe, a zebra. Arguably, the only way to “recognize” the tiger is to focus on

the image segment occupied by the tiger. In other words, recognition depends on some form of part-whole

decomposition of the image.

As described in Chapter 1, a supervised learning algorithm requires examples (instance-label pairs) of

the concept to be learned. Thus, if the goal is to recognize image segments, then the training data should

consist of image segments and image segment labels. On the other hand, the keyword indexing scheme

is the prevailing method for indexing image databases. Keywords are relatively easy to collect for images

in a training set. Moreover, they may be inferred from a caption or other text associated with the images.

However, keywords are image-level annotations, and do not identify the image segment occupied by the

object. In contrast, one might rely on specific geometric annotations within the image, such as keypoints and

bounding boxes [36, 51, 69]. These approaches are more restrictive, and involve tedious and time-consuming

manual labeling. Moreover, in practice, this approach is typically restricted to the use of only one type of

geometric annotation which cannot be changed after labels have been collected. Furthermore, to collect the

geometric annotations, specialized software must be developed and human annotators must be trained to

use it. These reasons suggest that there is a benefit to the use of image-level keyword annotations instead
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of within-image geometric annotations. With image-level annotations, a learning algorithm can experiment

with several part-whole decompositions of images, even after labels have been collected.

With the ability to learn from ambiguous examples, the underlying classifier for image segments may be

learned from a training set consisting only of images and keywords. Then, given the learned classifier for the

segments, a new image can be classified as containing the subject matter if and only if there exists a positively

classified segment (1-of-N semantics).

In order to apply learning from ambiguous examples to this domain, a dataset with polymorphic exam-

ples was constructed. The original labeled images were color images from the Corel data set. These were

subsequently preprocessed and segmented with the Blobworld system [20]. Blobworld generates an image

segmentation by applying a clustering algorithm to the collection of pixels that comprise the image. This

yields a polymorphic representation of the image. In this representation, an image consists of a set of seg-

ments (or blobs), each characterized by color, texture and shape descriptors. Figure 2.2 demonstrates the role

of segmentation in the construction of ambiguous examples. Observe in Figure 2.3 that the average pixel

color is a suitable predictor for the tiger when the segmentation is correct.

Three different categories (“elephant”, “fox”, “tiger”) were used to generate ambiguous data sets. In each

case, the resulting data sets have 100 positive and 100 negative example images. The latter images have

been randomly drawn from a pool of photos of other animals. Due to the limited accuracy of the image

segmentation, the relative small number of region descriptors and the small training set size, this ends up

being quite a hard classification problem. These data sets are appropriate for a comparative performance

analysis of algorithms, have been made publicly available on the Internet1, and have thus become standard

test cases in the multi-instance community.

2.2 Drug activity prediction

In the process of designing drugs, candidate molecules that are believed to participate in a desired positive

reaction are tested in expensive laboratory tests. For this reason, it is only possible to test a small number

of carefully selected candidates. However, the natural conformational polymorphism of molecular structure

complicates the nomination of candidate molecules.

Nomination of candidate molecules is difficult is for the following reason. First, a molecule is composed

of a collection of atoms and connective bonds which may assume, at any given moment in time, one of several

dominant 3-dimensional arrangements which are known as molecular conformations. In addition, if there is

a reaction when a molecule comes in contact with a fixed reagent, by the theory of organic chemistry the

reactivity is hypothesized to depend on just one molecular conformation [27]. While the likely conformations

of a molecule are easy to enumerate, it is impossible to measure which of these participates in a reaction if

one occurs. Therefore, even knowing that one molecule induces a desired positive reaction, since there are

several conformations to consider, it is difficult to predict which other molecules will do the same.

With the ability to learn from ambiguous examples, a classifier for the underlying reactive molecular

conformations may be learned from a training set consisting only of molecules and their reactivities. Then,

1http://www.cs.columbia.edu/~andrews/mil/datasets.html
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Figure 2.2: Segmentations of elephant and tiger images.

Figure 2.3: The role of segmentation in recognition. The average color of pixels in each segment determines
the displayed color.
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given the learned classifier for reactive molecular conformations, a new molecule will be classified as reactive

if and only if it has a positively classified conformation (1-of-N semantics).

The authors of [27] created ambiguous data sets, called MUSK1 and MUSK2, with the above charac-

teristics. The MUSK data sets are the benchmark data sets used in virtually all research papers on this

subject. They can be downloaded from the Internet2. First the dominant conformations of a molecule had

to be sampled. This was performed by simulating molecular dynamics, and selecting multiple low-energy

conformations that occur most frequently. This yields a polymorphic representation of a molecule. Each con-

formation is represented by a 166-dimensional feature vector derived from surface properties. Two data sets

were generated in this manner. MUSK1 contains on average approximately 6 conformation per molecule,

while MUSK2 has on average more than 60 conformations in each bag. Complete details are found in the

landmark paper [27]. Figure 2.4 demonstrates the role of conformations in the construction of ambiguous

examples.

Figure 2.4: Polymorphism in molecular structure. A molecule can assume, at any given time, one of several
different dominant conformations.

2.3 Text categorization

Text categorization concerns the assignment of a document to one or more topic categories. This problem is

of paramount importance given the proliferation of document archives and repositories that are being made

publicly available. Topic-based categorization of document collections provides a structure to navigate and

access individual documents.

Categorization is easy when a document has pre-defined keywords, as is the case in carefully indexed

collections such as those found in some libraries, businesses, governments and other large institutions. Due to

the natural organization and presentation of textual information, the categories to which a document belongs

can usually be inferred from the topics of individual paragraphs. In this thesis, this property is assumed to

hold in general. On the other hand, when a document is categorized by a human, the specific paragraphs are

typically not specified. Instead, the topic annotation is assigned to the document as a whole. One approach

to learning from an annotated collection is to infer which paragraphs correspond to the topic annotations.

With the ability to learn from ambiguous examples, a classifier for the underlying paragraphs may be

learned from a training set consisting only of documents and keyword annotations. Then, given the learned

2http://www.ics.uci.edu/~mlearn/MLRepository.html
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classifier for paragraphs, a new document will be classified as belonging to the topic category if and only if it

has a positively classified paragraph (1-of-N semantics).

In order to experiment with text categorization, several ambiguous data sets were generated starting from

the publicly available TREC9 data set, which is also known as OHSUMED3. The original data consists of

several years of selected MEDLINE articles. A subset of articles from 1987, which consists of approximately

54,000 documents, was selected for the TREC9 filtering competition. This subset was therefore an appro-

priate and convenient choice to use as source data. MEDLINE documents are annotated with MeSH terms

(Medical Subject Headings). The total number of MeSH terms in TREC9 was 4904. The MeSH terms were

separated into subsets: preliminary, train and test for the filtering competition.

From the preliminary portion, the first seven MeSH annotations that individually appeared on at least 200

documents were used to define binary concepts across the collection. For each of the seven annotations, 200

documents with the annotation and 200 without the annotation were drawn at random. Documents were split

into passages using overlapping windows of maximal 50 words each, because paragraph information was not

always preserved in the TREC9 source files. This yields a polymorphic representation for documents. In this

representation, a document consists of a set of term frequency feature vectors that summarize the words in

each passage. Figure 2.5 depicts the construction of ambiguous examples from text documents.

Compared to the other data sets the representation is extremely sparse and high-dimensional, which makes

this data an interesting additional benchmark. These have also been made publicly available on the Internet4,

and have become a challenging test case for the community.

2.4 Optical character recognition

Finally, a data set for semi-supervised inductive inference was generated. The well-known database of USPS

handwritten digits5 was used, following the experiment design of [17]. A subsample containing 100 of each

of the digits “0”-”3” was randomly drawn from the entire collection. Five samples from each digit category

were labeled. “0” and “1” samples were labeled +1, while “2” and “3” samples were labeled −1. The

remaining 380 digits were used to create multi-instance examples, as is described in Chapter 3, Section 3.2.1.

2.5 Summary

A comparison of several key characteristics of these datasets is shown in Table 2.1.

3http://trec.nist.gov/data/t9_filtering
4http://www.cs.columbia.edu/~andrews/mil/datasets.html
5http://www.gaussianprocess.org/gpml/data/
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Figure 2.5: Polymorphism in text categorization. Consecutive windows of 50 words are used to form a
polymorphic representation of a text document. In the construction of the ambiguous TREC9 data sets,
overlapping windows were used. Color is used to indicate different topics.

MI examples MI size Features
ambig. unambig. max. med. total dim. %fill

MUSK1 47 45 40 4 207 166 100
MUSK2 39 63 1044 12 1017 166 100
COREL 100 100 13 6.3 1310 230 50.4
TREC9 200 200 19.5 8 3332 6.6e4 0.03
USPS 380 20 2 2 780 256 100

Table 2.1: Data set statistics. The “unambig” column reports the number of multi-instances that are consid-
ered to be unambiguous. For multi-instance learning, these are the negatively labeled multi-instances. For
semi-supervised learning and transductive inference, these are the labeled examples. All statistics for the
three Corel data sets (Tiger, Elephant and Fox) as well as the seven TREC9 data sets have been averaged
since the data sets are so similar.



Chapter 3

A learning framework

3.1 Background

Pattern classification addresses many of the questions that arise when studying the trends in a large collections

of information, in particular, questions of association. Associations are mappings between inputs and outputs,

and a rule for computing the mapping is called a classifier. Much attention in pattern classification research

concerns the construction of classifiers in an automatic fashion in the context of supervised learning. To see

how supervised methods can be generalized to ambiguous examples, some basic concepts and notation are

required.

3.1.1 Inputs and outputs

First, it is assumed that inputs are encoded digitally in some fashion. Let I ∈ I denote a raw encoding of

the input. This encoding is captured using domain specific sensors such as a digital camera, a digital video

camera, a mass spectrometer, etc.

A preprocessing stage converts the input I into a feature vector which is denoted by x ∈ X ⊆ Rd. The

space of feature vectors X is called the input space or feature space. The task of selecting meaningful features

to represent objects is called feature engineering. The similarity of two objects is measured by comparing

their feature vectors. When the input features span a vector space with a Euclidean metric, the inner product

from this space may be used as a measure of similarity. It is also possible to use non-metric representations,

and to define a measure of similarity by other means.

The output of the association is an integer indicating the category to which the object belongs. The set of

possible labels is called the output space and is denoted Y. Let y ∈ Y denote the label. Binary classification,

where Y consists of two labels, is most prevalent. Since there are ways to reduce multi-class classification

problems to the binary case, it is arguably of primary importance.

Definition 1. An example of a concept is denoted (x, y).

Figure 3.1 shows a collection of examples.

13



14

Figure 3.1: Examples (x, y) of a concept to be learned. The axes correspond to dimensions of the feature
vectors x. Color indicates the value of the binary label y for the inputs, where blue and grey indicate y = 1
and y = −1 respectively.

3.1.2 Supervised learning

Supervised learning refers to the general pattern classification problem of deriving a classifier ŷ : X → Y
from a finite set of examples of input-output pairs D = {(xi, yi)} , i = 1, . . . ,m. This is also known as

learning by example and inductive inference. It is assumed that a subset of features is sufficient to discriminate

classes to some reasonable degree.

Formally, examples are assumed to be independently and identically distributed according to a stationary

but unknown probability distribution (x, y) i.i.d.∼ p (X, Y). This reflects the stochastic nature of the world.

The goal then is to produce a classifier that will generalize; in other words predict the correct label ŷ (x) for

previously unseen inputs x in accordance with p (X, Y).

3.1.3 Risk minimization

Supervised learning algorithms are frequently derived from the principle of risk minimization [68]. For

simplicity, this overview assumes that classifications are binary and misclassification costs are equal. The

general idea is to select, from a large collection of candidates, a classifier that is expected to make few errors.

For convenience of notation in this section, binary labels belonging to Y = {+1,−1} are assumed, with +1

corresponding to a true (T) logical truth value.

This thesis focuses on a family of threshold classifiers of the form

ŷ (x) = sgn f (x) (3.1)

where f : X → R is a real-valued discriminant function. Furthermore, it is typical to restrict the set of



15

admissible discriminant functions f ∈ F to be linear

f (x) = 〈w,x〉+ b (3.2)

parameterized by a weight vector w with ‖w‖ = 1. The parameters (w, b) describe a hyperplane through the

point −bw/ ‖w‖2 = −bw that is perpendicular to w.

A classification error occurs whenever the predicted label ŷ (x) = sgn f (x) for an input x does not

match the true label y (x). To quantify the number of errors made by a classifier, the zero-one loss is defined

as follows.

Definition 2. The zero-one loss L : Y× R→ R is defined as

L (y, f (x)) =

{
1 yf (x) < 0

0 otherwise
. (3.3)

Using this notation, the expected number of errors made by a classifier ŷ is quantified by the risk.

Definition 3. The risk associated with the classifier is defined as

Rp (f) =
∫
L (y, f (x)) dp (3.4)

where the integral is evaluated over the assumed but unknown joint probability distribution p (X, Y).

Figure 3.2 shows two examples of classifiers that obtain minimal (zero) risk on the given examples.

Figure 3.2: Low risk separating hyperplanes. Shown are two linear classifiers that obtain the minimal (zero)
risk. Lines perpendicular to the hyperplanes indicate examples with the minimal functional margin.

The risk can be approximated using the training examples by a quantity called the empirical risk

Definition 4. The empirical risk associated with the classifier is defined as

RD (f) =
m∑

i=1

L (yi, f (xi)) . (3.5)
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Unfortunately, minimizing the empirical risk alone does not guarantee that the resulting classifier will gen-

eralize. The problem is that the resulting classifier may perform well only on the training data, and not in

general. To obtain a classifier that generalizes with high probability, it is necessary to also minimize its

capacity. In order to define the capacity, the concept of margins is introduced.

Definition 5. The functional margin of an unambiguous training example is defined by

γ (x, y) = γf (x, y) = yf (x) . (3.6)

The subscript f is usually omitted to simplify notation. However, the margin is always understood to be

defined in terms of the discriminant function f (x).

The functional margins of two selected points are displayed in Figure 3.2. A positive margin value for an

example (x, y) indicates that the loss for the example is zero; i.e. it is correctly classified by the threshold

classifier. For linear classifiers, the functional margin is proportional to the distance from the point x to the

hyperplane described by (w, b). This distance is referred to as the geometric margin.

Definition 6. For linear classifiers, the geometric margin of an unambiguous training example measured

with respect to the p-norm ‖·‖p is the following value

|〈w,x〉+ b|
‖w‖q

. (3.7)

Definition 7. The overall functional margin for the training set is defined by

γ (D) = γf (D) = min
1≤i≤m

γf (xi, yi) . (3.8)

For a given margin γ, the capacity or Vapnik-Chervonenkis (VC) dimension h of the set of discriminant

functionsH (γ) = {f ∈ F|γf (D) = γ} that obtain a margin γf (D) = γ is bounded

h ≤ min
(

R2

γ2
, d

)
+ 1 (3.9)

where R is the radius of a ball that contains all instances x in the training set D. The bound on the VC

dimension decreases as the margin increases.

Proposition 1. [Vapnik][68] With probability 1− δ, δ > 0 that the true risk is bounded by the empirical risk

plus the width of a confidence interval around this estimate

Rp (f) ≤RD (f) + Φ
(m

h
, δ
)

, (3.10)

where the width of the confidence interval Φ (s, δ) is an increasing function of its first argument.

In this way, the width of the confidence interval Φ (s, δ), and hence the bound on the risk Rp (f), decrease

as the margin γ increases. Details (uniform convergence of means to their expectations, entropy and growth

functions, Chernoff bounds, law of large numbers, ....) are not covered. Other bounds apply. See [68].

The empirical risk is often zero, especially when the training sets is small. For supervised learning,

therefore, the confidence interval Φ of Equation (3.10) is most significant. The key observation is that the

width of the confidence interval can be controlled through the overall margin γ.
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Definition 8. Structural Risk Minimization (SRM) The optimal discriminant function f ∈ F is the one that

maximizes the minimum functional margin of examples over the training set γf (D) = min1≤i≤m γf (xi, yi).

Figure 3.3 shows the maximum-margin separating hyperplane for the given examples.

Figure 3.3: Maximum margin separating hyperplane. The dashed lines in this figure are used to emphasize
the margin.

3.1.4 Maximum-margin separating hyperplanes

The maximum-margin separating hyperplane is the solution of an optimization problem defined in terms of a

training data set. The input is a set of examples D = {(xi, yi) , i = 1, . . . ,m}, where x ∈ X and the labels

are binary y ∈ Y = {−1, 1}. The maximum-margin separating hyperplane is a linear discriminant function

f ∈ F that robustly separates two categories in feature space X ⊆ Rd. It is the hyperplane that minimizes the

overall margin. By the risk minimization principle, this results in a classifier having a bounded generalization

error.

Definition 9. The maximum-margin separating hyperplane is defined by the following optimization problem.

Max-Margin max
w,b

γ (D) (3.11)

s.t. yi (〈w,xi〉+ b) ≥ γ (D) , ∀i, (3.12)

‖w‖ ≤ 1 . (3.13)

The weight vector is restricted to unit length, since f ∈ F , ensuring that the objective function is bounded.

The norm ‖·‖ used to bound w has a significant impact on the problem, and the algorithm used to solve it.

The hyperplane defined by parameters (w, b) separates the data set D if the margin quantities γ (xi, yi) are

all positive; in other words γ(D) > 0 . A D is called linearly separable when there exists a hyperplane that

separates D.
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3.2 Dealing with ambiguity

3.2.1 Polymorphic input representations

Ambiguous signals occur frequently in pattern classification applications. As discussed in Chapter 1 and 2,

in several pattern classification applications it is most convenient to work with inputs that are ambiguous

due to polymorphism. In some cases, the raw inputs are polymorphic themselves, consisting of multiple

digital encodings from one or more sensors of the same modality. Otherwise, polymorphism is the result

of a preprocessing stage specifically designed to decompose or sample from the raw input. The first step to

dealing with these inputs is a preprocessing step that converts the raw input I into a suitable form.

Definition 10. A multi-instance is a set of feature vectors

X = {x1, . . . ,xK} ∈ 2X . (3.14)

The number of members K may vary across inputs. The notation 2X denotes the power set of X; and

X ∈ 2X implies that x ∈ X for all the multi-instance members ∀x ∈ X. The task of selecting a meaningful

polymorphic representation is called multi-instance engineering. This step parallels the feature engineering

described in Section 3.1.1. Unlike some related work [32, 34], this framework does not define a measure of

similarity between multi-instances. Instead, only the similarities among the members of a multi-instance are

used.

Individual instances x1, . . . ,xK have labels y (x1) , . . . , y (xK) where y (xk) ∈ Y, however these are

unobserved. These labels model a first-order predicate of the form y (x) =“is x an instance of category”. In

this discussion, a binary output space Y = {T, F} is implied.

Definition 11. A multi-instance label Y models a first-order predicate of the form Y (X) =“does X contain

an instance of category”.

Assuming T/F labels, a multi-instance label can be expressed as a disjunction

Y (X) =
∨
x∈X

y (x) (3.15)

over the member instance labels.

Definition 12. The rule for computing the multi-instance label given the labels of the members is called

the label semantics. The fundamental label semantics, contained in Equation (3.15), are called disjunctive

label semantics, or “1-of-N” label semantics. The label semantics can be formalized by defining a first-order

predicate that is used to compute a multi-instance label Y from the labels of members y (x1) , . . . , y (xK).

Definition 13. An ambiguous example is a pair consisting of a multi-instance X ∈ 2X and a label Y and

is denoted (X, Y ). It is understood that the label is related to the member instance labels according to an

assumed label semantics.

There is an asymmetry in the multi-instance labels due to the disjunction: if the training label Y = T

then at least one individual y (x) must be T, while if the training label Y = F then all individual labels
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Figure 3.4: Polymorphism of image segmentation. Each image on the left is converted by way of segmenta-
tion, into the multi-instance on the right. Two examples of poorly segmented tiger images have been included
to emphasize the challenges of content-based image classification, and how learning is still possible. Feature
vectors for segments are depicted in red, blue and green, according to image; henceforth, these will be re-
ferred to as the red, blue and green image. The constraint among segments of a “tiger” image is that at least
one must contain the tiger. In other words, when Y = T then the must be an x ∈ X with y(x) = T .
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must be F. Viewed another way, the ambiguous example (X, T ) has several interpretations {(x, T ) |x ∈ X}
as input-output pairs, and at least one must be valid, while the example (X, F ) has several interpretations

{(x, F ) |x ∈ X} as input-output pairs and all of them are valid. Due to this fact, multi-instances that are

labeled F are sometimes considered to be unambiguous.

Figure 3.5: Asymmetry of multi-instance labels. When an image does not contain any tigers Y = F , then
one can infer that all segments x ∈ X can not be tiger segments, and therefore y(x) = F . Each of the image
segment feature vectors is colored grey to indicate that it is a non-tiger feature vector. This examples shows
that polymorphism does not necessarily imply ambiguity. A segmented image comprises an ambiguous
example only when it contains a tiger Y = 1.

Transductive and semi-supervised inductive inference deal with the problem of learning from examples,

a subset of which are ambiguous because they are not labeled. There are two interpretations, (x, T ) and

(x, F ), for unlabeled examples. If the classifier is defined by a hyperplane through the origin, then one can

map unlabeled inputs to ambiguous examples (X, Y ) ≡ ({x,−x} , T ), reducing these problems to multiple-

instance learning.

In general, learning from ambiguous examples can include multi-label and multi-class problems. Multi-

class problems are classification problems where the outputs assume more that two different values. Multi-

label problems are classification problems where the outputs can have several members. However, the current

focus is on binary classification case.

3.2.2 Semi-supervised learning with ambiguous examples

Learning from ambiguous examples refers to the pattern classification problem of deriving a classifier Ŷ :

X → Y from a finite set of ambiguous examples of input-output pairs D = {(Xi, Yi) |i = 1, . . . ,m}. Note

that the domain of the classifier is X and not 2X. This semi-supervised learning problem encompasses

multiple-instance learning, semi-supervised inductive inference and transductive inference. As described

above, each of these problems can be treated as a multiple-instance learning problem. It is assumed that a

subset of features is sufficient to predict labels of individual member instances and, using the 1-of-N label
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semantics, to predict labels of multi-instances with reasonable accuracy.

As before, examples are assumed to be independently and identically distributed according to a station-

ary but unknown probability distribution (Xi, Yi)
i.i.d.∼ p

(
2X, 2Y), and the classifier should generalize in

accordance with p
(
2X, 2Y). Specifically, this means the classifier should predict individual instance labels

ŷ (x) , ∀x ∈ X and hence multi-instance labels Ŷ (X) =
∨

x∈X ŷ (x) consistent with the multi-instance

label Y = Y (X) for unseen examples from p
(
2X, 2Y).

1
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"non-tiger"

Figure 3.6: Learning from ambiguous examples. In order for a segment-level classifier ŷ (x) to correctly
classify each image according to the rule Ŷ (X) =

∨
x∈X ŷ (x), the classifier must ensure that at least

one segment from each “tiger” image is classified as a “tiger” segment, and all segments from “non-tiger”
images are classified as “non-tiger” segments. Assuming that the halfspace above and to the right of the
hyperplane corresponds to tigers, this classifier succeeds. Two segments from the red image and the blue
image are classified as tiger segments. Only one segment from the green image is classified as a tiger segment.
All segments from the grey image are classified as non-tiger images. Each multi-instance labels is thus
predicted correctly. This example emphasizes that it is possible to have more than one segment classified
as a tiger segment. For example, when the quality of the image segmentation is poor, there can be multiple
interpretations of the ambiguous example that are equally consistent with the remaining ambiguous examples.

3.2.3 Risk minimization with ambiguous examples

In the derivation of an optimal classifier through risk minimization, the fundamental difference between the

supervised and semi-supervised learning problems is the method used to bound the capacity of the classifier

to ensure generalization. In the supervised case, the capacity of the classifier is effectively controlled by the
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overall margin on the training data set. As defined in Equation (3.8), this is the minimum of the margins

obtained on examples (xi, yi) , 1 ≤ i ≤ m from the training set.

For ambiguous examples, which have several interpretations as input-output pairs, the definition of the

individual and overall margins must be refined. For the ambiguous example (X, T ) valid interpretations are

{(x, T ) |x ∈ X} (3.16)

each of which can be thought of as an unambiguous input-output pair. The process of selecting interpretations

is called disambiguation. Once an interpretation is chosen, computing the maximum-margin hyperplane

proceeds as in the supervised case. The margin for each example, as well as the overall margin, are computed

using Equations (3.6) and (3.8). The problem is, the number of disambiguations of the training set D =

{(Xi, Yi) |1 ≤ i ≤ m} is exponential in the number of instances. How does one disambiguate the training

data - i.e. select a set of consistent interpretations - so that the resulting classifier generalizes? To answer this

question, the SRM principle is used. The key intuition that is that the true interpretation of ambiguous inputs

is self-reinforcing.

Multiple-instance learning assumes T/F labels. For convenience of notation in the sequel, binary labels

belonging to Y = {+1,−1} are assumed, with +1 corresponding to a (T) logical truth value. An expression

for the multi-instance label that applies to ±1 labels and is equivalent to Equation (3.15) is

Y (X) = max
x∈X

y (x) . (3.17)

A family of threshold classifiers of the form ŷ (x) = sgn f (x) is assumed, where f : X → R, f ∈ F is a

linear discriminant function of the form f (x) = 〈w,x〉+ b and ‖w‖ = 1.

The classifier ŷ (x) for individual instances can be used to predict multi-instance labels, using Equa-

tion (3.17),

Ŷ (X) = max
x∈X

ŷ (x) = max
x∈X

sgn f (x) . (3.18)

The “most positive instance” has a significant role in Equation (3.18), since alone, this member of the multi-

instance is sufficient to determine the multi-instance label by thresholding. An equivalent expression for the

multi-instance label that emphasizes the role of the most-positive instance is obtained by switching the order

of the maximum and sign functions

Ŷ (X) = sgnmax
x∈X

f (x) . (3.19)

By virtue of taking the maximum operation, the implicit disambiguation of the ambiguous examples (X, Y )

is encoded in Equation (3.19). The “most positive” instance x = argmaxx∈X f (x) yields the interpretation

(x, T ) used for disambiguation. This choice of interpretations is justified by the principle of structural risk

minimization below.

Using these definitions, a modified zero-one loss is defined.

Definition 14. The multi-instance loss L : Y× R → R quantifies the number of errors made by a classifier

ŷ (x) on multi-instance label predictions

L
(

Y, max
x∈X

f (x)
)

=

{
1 Y maxx∈X f (x) < 0

0 otherwise
. (3.20)
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Note that the errors are the result of predicting incorrect labels Ŷ (X) for ambiguous examples (X, Y ) using

Equation (3.19).

Also using the above definitions, one can express the risk and empirical risk, as in Equations (3.4) and (3.5).

Finally, the functional margin and the overall functional margin can be defined for ambiguous examples.

Definition 15. The functional margin of an ambiguous example is

γ (X, Y ) = γf (X, Y ) = Y max
x∈X

f (x) (3.21)

Definition 16. The overall functional margin for the training set is defined by

γ (D) = γf (D) = min
1≤i≤m

γf (Xi, Yi) . (3.22)

The SRM principle adapted for learning from ambiguous examples is as follows:

Definition 17. Structural Risk Minimization for Ambiguous Examples, or Multi-Instance Structural
Risk Minimization (MI-SRM) The optimal discriminant function f ∈ F is the one that maximizes the

minimum functional margin of ambiguous examples over the training set γ (D) = min1≤i≤m γ (Xi, Yi).

To justify this use of the MI-SRM principle to the problem of learning from ambiguous examples, observe

that the optimal discriminant function f (x) obtains the largest functional margin (lowest capacity). The

functional margin of the optimal discriminant function f (x) under the chosen interpretation is greater than

that obtainable by any discriminant function f ∈ F under any other interpretation of the ambiguous examples.

This implies that, after disambiguation of the training data set, the classifier ŷ (x) has the lowest possible

expected error bound. Therefore, MI-SRM selects the classifier ŷ (x) that yields the lowest possible expected

error on multi-instances.

A similar justification was used in large margin methods for transductive inference [39, 25]. In the

subsequent text, the term margin will be used interchangeably with the term functional margin.

3.2.4 Maximum-margin separating hyperplanes with ambiguous examples

As before, the maximum-margin separating hyperplane is defined as the solution to an optimization problem

defined with respect to a training data set. The input is a set of examples D = {(Xi, Yi) , i = 1, . . . ,m},
where X ∈ 2X and the labels are binary Y ∈ Y = {−1, 1}. The maximum-margin separating hyperplane is

a linear discriminant function f ∈ F that robustly separates two categories in feature space X ⊆ Rd. It is

defined as the hyperplane that minimizes the overall margin on ambiguous examples. By the structural risk

minimization principle, this results in a classifier having a bounded generalization error.

Definition 18. The maximum-margin separating hyperplane for the problem of learning from ambiguous

examples is defined by the following optimization problem

MIL Max-Margin max
w,b

γ (D) (3.23)

s.t. Yi max
x∈Xi

(〈w,x〉+ b) ≥ γ (D) , ∀i, (3.24)

‖w‖ ≤ 1 . (3.25)
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This is essentially the same optimization problem as in Equations (3.11 -3.13). The only difference is the

substitution of the multi-instance margin, from Equation (3.21). The weight vector is restricted to unit length,

since f ∈ F , ensuring that the objective function is bounded. The norm ‖·‖ used to bound w has a significant

impact on the algorithm used to solve it. The hyperplane defined by parameters (w, b) separates the data set

D if the margin quantities γ (Xi, Yi) are all positive; in other words γ(D) > 0 . A data set D is MI-linearly

separable when there exists a hyperplane that separates all ambiguous examples in D.

3.3 Further considerations

The goal of engineering a polymorphic representation from a given input is to best capture the implied mean-

ing of the multi-instance label. Clearly, domain knowledge is required. As mentioned, techniques such as

decomposition, segmentation or sampling can be used. However, there is a significant degree of freedom for

a designer to explore. The engineering of polymorphic representations within this framework can take place

independent of labeling, in particular after the labeling has been performed, and need not be performed by

the same person.

As a concrete example, consider the automatic image annotation application. A designer of polymorphic

representations for images can experiment with several segmentation algorithms. Each segmentation algo-

rithm will generate a potentially unique polymorphic representation for the training data set. With a set of

fixed image-level labels, the multi-instances become ambiguous examples of the visual concept. After train-

ing with each respective set of ambiguous examples, the performance of the resulting classifier on a validation

set can be used to select among the segmentation algorithms.

The framework for learning from ambiguous examples also allows one to explore alternative label seman-

tics, i.e. interpretations of the polymorphic ambiguity other than 1-of-N from Equation (3.15). Recall that

the label semantics capture an assumed relationship between unobserved instance-level labels and the label

that was provided. Alternative, first-order predicates can be used to represent multi-part models satisfying

inter-part logical and spatial relationships. One caveat concerning multi-part models is that the computa-

tions involved can become prohibitively expensive due to the higher-order interactions. As noted in [57, 27],

the ability to learn disjunctive concepts is at the core of the difference between attribute-value learning and

inductive logic programming.

As a concrete example, one could use 2-of-N label semantics to recognize objects that have replicated

parts. For these semantics, computations involving all pairs of members from a multi-instance are considered.

3.4 A look ahead

This chapter has outlined a framework for learning from ambiguous examples based on risk minimization.

In the framework, a set of unambiguous input-output pairs is inferred from the ambiguous training set via

a process called disambiguation. Disambiguation is encoded implicitly by selecting the “most positive”

instance in each multi-instance. In this way, the principle of structural risk minimization drives the selection
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of the disambiguation to obtain the best bound on the generalization error of the classifier. The maximum-

margin hyperplane is characterized by an optimization problem.

The primary challenge of learning from ambiguous examples is the disambiguation of ambiguous exam-

ples to support inductive learning. In the following chapters, four algorithms for learning from ambiguous

examples are proposed and compared. The goal of each algorithm is the solution to the maximum-margin

hyperplane problem. Variations in the formulation here depend on the norm used to define the margin and to

bound the weight vector.

The first algorithm, multi-instance support vector machines (MI-SVM), proposed in [4], uses the 2-norm

to bound the weight vector. This results in an optimization with a quadratic objective function and non-linear

constraints. Integer variables are introduced to represent the selection of an interpretation. This results in

a challenging mixed-integer quadratic optimization problem, and an efficient greedy local search algorithm

is derived. Despite the lack of guaranteed global convergence, the algorithm significantly outperforms a

baseline method on several benchmarks. Because the approach is general, it works equally well for document

categorization and automatic image annotation. Later in the thesis, this algorithm is modified to operate with

the 1-norm formulation.

The second algorithm, disjunctive programming boosting (DPBoost), proposed in [2], uses the 1-norm to

bound the weight vector, so the resulting optimization problem has a linear objective function and non-linear

constraints. The problem is approximated by replacing the non-linear feasible region with a larger convex

set that is derived using lifting techniques from disjunctive programming. This yields a large linear program;

where the size is related to the quality of the approximation. The benefit of this approach is convexity.

This implies that global optimization can be used, and a unique optimal solution can be found. In this way,

local minima are avoided at the expense of solving an approximation to the original problem. While the

approximation is useful itself, it also helps to characterize the quality of true feasible points of the original

problem. Unfortunately, the algorithm had limited applicability due to technical difficulties with the software

used in the implementation in conjunction with the complexity of the algorithm itself.

A third algorithm, lift-and-project boosting (LNPBoost), proposed in [3], also uses the 1-norm bound the

weight vector. This approach was motivated by the need to limit the size and management difficulties of the

linear program in DPBoost. The lifted formulation used in DPBoost has a worst case space complexity that

is quartic in the size of the data set. The difference in the third approach is the technique used to approximate

the feasible region by a convex set. Instead of using lifting, a sequential compact representation of the convex

hull is computed resulting in an approximate solution to the convex program. A feature selection algorithm

extends the technique. This algorithm can be applied to large, high-dimensional data sets, and outperforms

MI-SVM.

In order to carefully analyze the effectiveness of LNPBoost, a 1-norm formulation of MI-SVM is intro-

duced. This shares many properties with the 2-norm version mentioned above but uses a linear objective.



Chapter 4

Related work

4.1 Definition

Learning from multi-instance examples was first introduced by [27] to address the drug-activity prediction

problem (see Section 2.2), although others [40] had considered similar problems even earlier. Their multi-

instance MUSK data sets have become an official benchmark for this problem. The authors of [27] present

three learning algorithms which construct classifiers based on axis-parallel rectangles (APR) in feature space.

The results obtained by these algorithms are among the most competitive on the MUSK data sets today.

4.2 Learning theory

After the multi-instance problem was conceived, a number of learning theoretic works were published on the

topic. These included results that showed the problem was well-defined. For example, in [45], [5] and [19],

theoretical arguments are given for the PAC-learnability of multi-instance concepts. Under the assumption

that member instances are independent, a polynomial time algorithm is provided [45]. However, as shown in

[5], without this assumption learning may be NP-hard.

4.3 Learning algorithms

Many supervised learning algorithms have been extended to deal with multi-instance inputs. In some cases,

the modularity of these learning algorithms makes the extension to multi-instances relatively straight-forward,

since only the components that deal with input features need to be changed. A number of algorithms for

learning from multi-instances are discussed in the sequel. The algorithms are grouped into two sections,

according to the type of model (conditional or joint probability density) from which they are derived.

26
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4.3.1 Conditional models

The algorithms in the section are based on approximations to conditional probability density functions of a

label given the input pattern. These algorithms generate classifiers for multi-instances that are not directly

applicable to the individual instances.

In [71], two variants of the K-NN algorithm were developed. The algorithm is modified by substituting

the Hausdorff metric, which measures the distance between sets of points (multi-instances), in place of the

metric used to measure distance between individual points (instances). The Hausdorff distance between two

sets of points is defined in terms of the pairwise distances between individual points. The application to

multi-instances is immediate. In later work [34], a generalization of the Hausdorff metric is used as well.

In [79], the authors extend decision trees. They do so by defining entropy and coverage functions for

multi-instances instead of individual instances.

Neural network were first extended to the multi-instance setting by [58]. In their approach, the network

outputs obtained on the individual instances of each multi-instance are combined using a differentiable func-

tion that approximates the maximum of its inputs. Another application of neural network appears in [76].

The authors propose a modification of the error functional that takes into account the 1-of-N semantics of

bags. No effort is made to achieve differentiability of the global error function.

More recently, [32, 33] developed a multi-instance kernel (similarity metric) and applied it to support

vector machine learning. The similarity of multi-instances is defined in terms of the similarities of all possible

pairs of members. One advantage of this approach is that research into kernel methods is very active and

advanced.

Finally, in [30, 31], the authors propose a wrapper method used to extend an existing learning algorithm

which 1) accepts instance weights, and 2) computes estimates of conditional label probabilities for individual

instances. They express the conditional label probability of a multi-instance as the average of conditional label

probabilities of member instances. Weights on the instances are used to balance the influence of individual

member instances across all training examples. Their approach uses a symmetric treatment of positive and

negative multi-instances. Using modifications when necessary, they apply this approach to extend support

vector machines, decision trees, adaboost, logistic regression, nearest neighbor, and naive bayes learning

algorithms. Of these, their method is best suited to logistic regression and Adaboost [31].

In [42], a Bayesian approach is adopted to learn a conditional label model. The conditional label model

is expressed in terms of a sparse kernel expansion. Hidden variables are used for the member instance labels.

A prior distribution over model parameters is specified and used to integrate out the uncertainty in the model

parameters in the conditional model. The prior on member instance labels is truncated so that the only

instantiations of labels with non-vanishing probability are those in accordance with the 1-of-N semantics

of multi-instance labels. They employ a Metropolised blocked Gibbs sampler to approximate the otherwise

intractable integral.

4.3.2 Joint models

A separate line of research concerns the modeling of joint probability density functions.
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Early work by [49, 48] learn a concept that consists of a single target point in feature space. They define

an “inverse generative” probability model through the specification of a likelihood of this target point over

feature space that conditions on the training data. The so-called diverse density is largest for points that are

close to at least one member instance from each positive multi-instance and far from all member instances

from all negative multi-instances. They use Bayes rule and the assumption that multi-instance inputs are

independent. A noisy-or model is used to express the 1-of-N semantics probabilistically. A gradient based

optimization procedure is used to find the solution.

Extending this work, [75, 74] derive EM-DD. They introduce hidden variables to indicate which member

instance is responsible for the multi-instance label in accordance with the 1-of-N semantics. They use the EM

algorithm to jointly maximize over the hidden variables and the target concept. The E-step selects member

instances that are most likely given the model. The M-step optimizes the diverse density given the selection

of member instances made in the E-step.

In the computer vision area of object recognition, the multi-instance problem appears in a probabilistic

setting where a hidden variable indexes the member instances of a multi-instance input. The authors of [29]

define a generative probability model for an image, in terms of the appearance and relative location statistics

of several interesting points. The image probability is expressed as a marginal over a hidden assignment

variable h assigning keypoints from the image to foreground or background parts of the model. The likelihood

ratio used for classification is expressed as a summation over h as well. Expectation maximization is used

during learning, since the assignment h for each image is not observed.

4.4 Generalizations

In [57], the author argues that the multi-instance learning problem is the “natural frontier” between classical

attribute-value learning and inductive logic programming (ILP). This is because all ILP problems can be con-

verted into multi-instance problems, but typically can not be converted to attribute-value learning problems in

a practical manner. For this reason, the multi-instance learning problem is viewed as an important extension

of attribute-value learning.

In [64][67], the 1-of-N semantics of the multiple-instance learning problem are generalized to m-of-N

semantics. The target concept is composed of a set of points. A multi-instance is labeled positively if and only

if there is a subset of m target points that are each close to some point of the multi-instance. Furthermore, a set

of repulsion points are used. None of the points in a positive bag are allowed to be located near the repulsion

points. The Winnow algorithm used for learning a linear threshold encoding the concept. In [72], three

further generalizations of the 1-of-N semantics are considered, including presence-based, threshold-based,

and count-based multi-instance and multi-part concepts.

Several researchers have used multi-instance learning to solve ILP problems. The problems addressed

can be significantly more general than that considered in the multi-instance setting, and include multi-part

problems and multi-relational problems [23, 79, 22, 56, 54, 50]. In the domain of relational learning, a class

of operations known as aggregations are defined to convert multi-instances into individual instances [56].
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4.5 Related work on consistency

The notion of consistency has been considered in several semi-supervised learning contexts. In transductive

learning, a subset of examples have labels associated with them, while others do not and are therefore am-

biguous. The task is to infer labels for the unlabeled examples. The problem is called semi-supervised due to

the incomplete specification of the training examples. The notion of a consistent disambiguation was used in

this context by [39], and [14, 25]. In both cases, the theoretical justification is structural risk minimization.

In [39], the author presents the underlying learning theory: the definition of hypothesis equivalence classes,

the construction of a structure of increasing VC-dimension, the selection of an element from this structure

via the maximization of a separating margin quantity over hyperplane and disambiguation parameters, and

the relevance this has on the generalization error.

In [39], a mixed-integer formulation is presented that extends the quadratic formulation of the support

vector machine. A heuristic rule for updating the unknown labels is interleaved with the update of hyperplane

parameters using a support vector machine package. While it is shown that the algorithm converges after a

finite number of iterations, it is only guaranteed to find local minima of the objective. Tests are performed on

three text data sets.

A mixed-integer formulation based on the support vector machine is proposed in [14, 25]. This problem

is solved to optimality for small data sets using global optimization techniques for integer-programming

(branch-and-cut). However, branch-and-cut was unable to solve large-scale problems typical in machine

learning. To deal with larger problem sizes, a localized version of the algorithm is developed. Performance

is compared on several benchmark data sets. An additional non-convex formulation was considered and a

heuristic algorithm was presented. Results were not conclusive in this case.

4.6 Combinatorial optimization

The combinatorial optimization community has dealt with optimization over integer variables, calling it in-

teger programming. Branch-and-bound and branch-and-cut methods have previously been developed. How-

ever, the techniques used in combinatorial optimization were not originally developed to solve large-scale

machine learning problems. As such, they do not always scale to meet the needs of the problems of interest

to the machine learning community. For example, enumerative techniques were shown to be quite limited

as shown in [14]. This is due to the large number of integer variables that are required. However, these

authors did not explore this direction further. It is possible that a branch-and-bound, or branch-and-cut tech-

nique could be carefully modified to derive a suitable approximate solution to the problem of learning from

ambiguous examples of moderate size.

Column generation and cutting-plane methods have also been adapted to suit the needs of the machine

learning community. For example, the linear programming boosting algorithm of [26] is based on the idea of

column generation. Another example is the relaxed online max-margin algorithm (ROMMA). This technique

is a supervised learning algorithm due to [44] that is an adaptation of a cutting-plane algorithm. What makes

this algorithm interesting is that it is an online learning algorithm in which the model parameters consist of
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a simple hyperplane and the training data set is processed sequentially. Hence, only a small subset of the

data set is stored in memory at one time. As such, this technique can learn from data sets with millions of

data points; a number much larger than the number of integer variables 1000-10000 used in benchmarking

combinatorial optimization algorithms [18].

Disjunctive programming provides a framework for solving 0-1 programs in the area combinatorial opti-

mization [9, 7]. Aspects of this theory are adapted in this thesis to address learning from ambiguous examples.



Chapter 5

MI-SVM

This chapter describes an algorithm, proposed in [4], for computing a maximum-margin separating hyper-

plane. It is called multi-instance support vector machines (MI-SVM). Unique to its development is the selec-

tion of the 2-norm that is used to bound the weight vector, which is naturally complemented by the 2-norm

that is used to measure the width of the margin.

For unambiguous examples, the separating hyperplane problem has a quadratic objective function and

linear constraints. For ambiguous examples, it has a quadratic objective function and non-linear constraints.

Integer variables are introduced to represent the selection of an interpretation. This results in a challenging

mixed-integer quadratic optimization problem, and a local search algorithm is derived. Nevertheless, when

compared on the standard multi-instance benchmark data sets, the algorithm frequently and significantly

outperforms a baseline approach. The approach works equally well document categorization and automatic

image annotation.

After reviewing the 2-norm formulation of the maximum-margin separating hyperplane problem for un-

ambiguous examples, the extension to ambiguous examples is described, a greedy local search algorithm is

proposed, and experiments are presented.

5.1 Introduction

A brief review of the maximum-margin separating hyperplane formulation is included for clarity and easy

reference. Focused readers who have good recall may wish to advance to Subsection 5.1.1.

As described in Chapter 3, Section 3.1.4, the objective of maximum-margin learning is a linear discrim-

inant function that robustly separates two categories in feature space X ⊆ Rd. The theoretical foundation

of maximum-margin learning is based on risk minimization. In this context, a bound on the generalization

performance of the resulting classifier is derived. The bound depends on a measure of class separation by the

linear discriminant function known as the margin.

The learning algorithm takes as input a set of examples D = {(xi, yi) , i = 1, . . . ,m}, where x ∈ X and

the output labels are binary y ∈ Y = {−1, 1}. The maximum-margin separating hyperplane was described

31
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by the optimization problem in Equations (3.11-3.13) and is re-stated here for clarity.

Max-Margin max
w,b

γ (D) (5.1)

s.t. yi (〈w,xi〉+ b) ≥ γ (D) , ∀i, (5.2)

‖w‖ ≤ 1 . (5.3)

5.1.1 2-Norm max-margin

This section outlines the development of an algorithm for solving a specific instantiation of the maximum-

margin separating hyperplane problem, where the 2-norm ‖·‖2 is used to bound the norm of the weight vector.

For a vector a = (a1, . . . , an), the 2-norm is defined as follows

‖a‖1 =

 ∑
1≤j≤n

a2
j

 .

If the 2-norm of the weight vector w equals a constant, then the functional margin of a point x is proportional

to the distance between the point x and the closest point p on the hyperplane 〈w,p〉 = 0 measured with

respect to the 2-norm ‖·‖2 [46]. The quantity 〈w,x〉+b
‖w‖2

is called the signed geometric margin measured with

respect to the 2-norm.

Because ‖w‖2 = 1 for f ∈ F , the optimization problem in Equations (5.1-5.3) is maximizing the

minimal geometric margin measured with respect to the 2-norm. As shown in [46], there is an equivalent

formulation in which the norm of the weight vector is minimized, while constraining all functional margins

to be greater than or equal to 1. This is the so-called primal SVM formulation. It is derived by way of

variables ẇ = w/γ (D) and ḃ = b/γ (D). Notice, in this case, that ‖ẇ‖2 = ‖w‖2
γ(D) and therefore minimizing

‖ẇ‖2 is equivalent to maximizing the margin subject to ‖w‖2 = 1.

The revised expression for the maximum-margin separating hyperplane is as follows

2-Norm SVM min
ẇ,ḃ

1
2
‖ẇ‖22 (5.4)

s.t. yi

(
〈ẇ,xi〉+ ḃ

)
≥ 1, ∀i. (5.5)

The constraints of the primal are called margin constraints. The overall margin quantity γ (D) can be recov-

ered from ‖ẇ‖2. It is evident that the problem is a quadratic programming problem, since the objective is

quadratic and the constraints are linear. In the sequel, the dots over variables
(
ẇ, ḃ

)
are omitted. Specialized

software for solving this structured quadratic programming problem has been developed [38].

Figure 5.1 demonstrates the connection between the shortest weight vector satisfying the margin con-

straints, and the maximum-margin separating hyperplane.

5.1.2 Non-separable case

If the constraints of the SVM primal formulation are infeasible, then there is no plane with positive margin

γ(D) > 0. To address this problem, a degree of flexibility is coded in the margin constraints by introducing
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Figure 5.1: Geometry of 2-Norm SVM. In this example, there are only two training examples with y = 1 and
y = −1 (blue and grey respectively). For simplicity, the bias term b is omitted. The two margin constraints
correspond to the two shaded halfspaces on the left side. The shortest weight vector, measured with respect
to the 2-norm, that satisfies both margin constraints must lie in the intersection of these regions, as shown on
the right side.

soft-margins. An example (xi, yi) may violate the margin constraint by an amount ξi ≥ 0, called the slack,

at the expense of adding a penalty proportional to ξi to the objective. The modified primal SVM formulation

is thus

2-Norm SVM min
w,b

1
2
‖w‖22 + C

m∑
i=1

ξi (5.6)

(Soft Margins) s.t. yi (〈w,xi〉+ b) ≥ 1− ξi, ∀i, (5.7)

ξi ≥ 0, ∀i. (5.8)

5.1.3 Feature mappings

In Section 3.1.3 Equation 3.2, the set of admissible discriminant functions f ∈ F is restricted to be linear in

terms the components of x ∈ X. While this restriction may seem severe, the restriction to linear classifiers is

independent of how the feature space X is defined and can be circumvented as described next.

A common technique used to maximize the generalization ability of linear classifiers involves mapping

the inputs from the initial feature space X ⊆ Rd to a higher-dimensional space X′ ⊆ Rn using a non-linear

function

x 7→ x′ = Φ(x) . (5.9)

The dimension n of the image is typically much larger than the dimension of the original feature space. To

include pairwise variable interactions, for example, the following feature mapping is used

Φ (x) =
(
x2

1, x
2
2, . . . , x

2
d,
√

2x1x2, . . . ,
√

2x1xd,
√

2x2x3, . . . ,
√

2xd−1xd, 1
)

.

The feature mapping is designed to facilitate large margin separation of the training data using a hyperplane

(w′, b′) in the high-dimensional feature space parameterized by a weight vector w′ ∈ Rn and offset b′.
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The additional dimensions will also increase the margin obtained by the maximum-margin separating hyper-

plane. In turn, the principle of risk minimization can be used to obtain a better bound on the generalization

performance of the resulting classifier. The optimization problem characterizing the maximum-margin sep-

arating hyperplane is written in the same form as shown in Equations (5.6-5.8) with x′,w′ replacing x,w

respectively.

The linear classifier f (x′) = sgn (〈w′,x′〉+ b′) defined by the maximum-margin separating hyperplane

(w′, b′) from X′, can be composed with the non-linear function Φ (x) to define an equivalent, non-linear

classifier (f ◦ Φ) (x) on the original feature space X. Therefore, an algorithm that solves Equations (5.6-5.8)

for a linear classifier can in theory be generalized to learn non-linear classifiers using feature mappings.

5.1.4 Duality, support vectors & kernelization

Appealing to Lagrangian techniques for constrained optimization the primal SVM problem with soft margins

is re-formulated in dual form. The advantages of the dual formulation are: 1) a simplified set of constraints,

2) a parameterization that is readily interpretable, and 3) an optimization problem that admits kernelization

[24, 65].

The dual problem is expressed in terms of the dual variables αi, one for each training example

SVM-Dual max
α

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyj 〈xi,xj〉 (5.10)

s.t. 0 ≤ αi ≤ C, ∀i, (5.11)
m∑

i=1

αiyi = 0 . (5.12)

Kernelization is achieved by replacing the inner product
〈
x′i,x

′
j

〉
= 〈Φ (xi) ,Φ (xj)〉 with a kernel function

K (xi,xj) as follows

SVM-Dual max
α

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjK (xi,xj) (5.13)

s.t. 0 ≤ αi ≤ C, ∀i, (5.14)
m∑

i=1

αiyi = 0 . (5.15)

The kernel emulates the computation of the mapping Φ (x) and subsequent inner product of the two inputs.

In certain cases, there are closed-form expressions for the kernel value in terms of the original feature vectors

xi,xj that do not require the explicit computation of the feature mapping Φ (x). This is advantageous when

the feature mapping is high-dimensional and thus the inner product is expensive to compute.

It is therefore easy to experiment with alternate feature mappings of the training data. Notice in Equa-

tions (5.13-5.15) that the kernel is the only term through which the features can influence learning. This

makes it easy to experiment with different feature mappings; all one needs is to redefine the kernel func-

tion in accordance with a chosen Φ (x). More generally, even without knowing the feature mapping Φ (x),

any binary function satisfying Mercer’s condition [24, 65] can be used for the kernel, further increasing the

flexibility of this approach.
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Further analysis of the primal-dual equivalence may be used to demonstrate that, the solution of the dual

SVM problem will be sparse; only a subset of the dual variables will be non-zero [24, 65]. Points for which

αi > 0 in the solution are called the support vectors, since they define or “support” the hyperplane.

5.2 Dealing with ambiguity

This section outlines the MI-SVM formulation and algorithm as an extension of the 2-norm SVM that is

solved by quadratic programming.

As described in Chapter 3, Section 3.2.4, the objective of maximum-margin learning from ambiguous

examples is a linear discriminant function that robustly separates two categories in feature space X ⊆ Rd.

The theoretical foundation of maximum-margin learning is based on risk minimization. In this context, a

bound on the generalization performance of the resulting classifier is derived. The bound depends on a

measure of class separation by the linear discriminant function known as the multi-instance margin.

The maximum-margin separating hyperplane was described by the optimization problem in Equations (3.23-

3.25) and is re-stated here for clarity.

MIL Max-Margin max
w,b

γ (D) (5.16)

s.t. Yi max
x∈Xi

(〈w,x〉+ b) ≥ γ (D) , ∀i, (5.17)

‖w‖ ≤ 1 . (5.18)

This section outlines the formulation of an optimization problem for the maximum-margin separating

hyperplane. Unique to this development is the use of the 2-norm used to bound the norm of the weight

vector, which is complemented by the 2-norm measuring the width of the margin.

5.2.1 2-Norm max margin with ambiguous examples

In this section, the 2-norm ‖·‖2 is used to bound the norm of the weight vector. As shown in [46], there is an

equivalent formulation in which the norm of the weight vector is minimized, while constraining all functional

margins to be greater than or equal to 1. Soft-margins are also introduced, allowing the ambiguous example

(Xi, Yi) to violate the multi-instance margin constraint, at the expense of adding a penalty proportional to ξi

to the objective.

The revised expression for the maximum-margin separating hyperplane is the following quadratic pro-

gramming problem with non-linear constraints, which is called MI-SVM

MI-SVM min
w,b,ξ

1
2
‖w‖22 + C

m∑
i=1

ξi (5.19)

s.t. Yi max
x∈Xi

(〈w,x〉+ b) ≥ 1− ξi, ∀i (5.20)

ξi ≥ 0, ∀i. (5.21)

As discussed in Chapter 3, Section 3.2.3 a self-reinforcing disambiguation is encoded in the multi-instance

margin constraint.
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Negatively labeled multi-instances (Xi, Yi) are treated differently because they are not ambiguous. This

fact is manifest in Equation (5.20). When Yi = −1, the non-linear multi-instance margin constraint can be

replaced by several linear constraints

− max
x∈Xi

(〈w,x〉+ b) ≥ (1− ξi) =⇒ (〈w,x〉+ b) ≤ − (1− ξi) , ∀x ∈ Xi (5.22)

=⇒ − (〈w,x〉+ b) ≥ 1− ξi , ∀x ∈ Xi (5.23)

These constraints are tied together by a single slack variable ξi which complicates the implementation. For

simplicity, negatively-labeled multi-instances are separated, and the instances are treated as though they came

from independent unambiguous training examples ({x} ,−1) where x ∈ Xi. This step introduces new slack

variables into the objective. If necessary, the penalty factor C for the newly created slack variables can be

scaled.

5.2.2 Mixed-integer formulation

Learning from ambiguous examples can be cast as a mixed-integer program MI-SVM. For positively-labeled

multi-instances, an integer variable 1 ≤ z (i) ≤ |Xi| is used to indicate the “most positive” member xz(i) ∈
Xi. The multi-instance margin constraint from Equation (5.20) reduces to

〈
w,xz(i)

〉
+b ≥ 1−ξi. Additional

constraints are added to enforce the fact that xz(i) ∈ Xi is the “most positive” member. Optimization occurs

over the additional integer variables.

MI-SVM (mixed integer) min
z

min
w,b,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi (5.24)

s.t. Yi

(〈
w,xz(i)

〉
+ b
)
≥ 1− ξi, ∀i, (5.25)(〈

w,xz(i)

〉
+ b
)
≥ (〈w,x〉+ b) ,∀x ∈ Xi ∀i, (5.26)

ξi ≥ 0, ∀i. (5.27)

In this formulation, every positively-labeled multi-instance Xi is thus effectively represented by a single

member instance xz(i) ∈ Xi. Notice that the remaining instances have no impact on the objective. The

derivations also hold for general kernel functions K (xi,xj).

A simple example showing the maximum margin MI-separating hyperplane is illustrated, with explana-

tion, in Figure 5.2.

5.2.3 Greedy local search heuristics

The following observation motivates the proposed greedy local search heuristics. If the currently selected

“most positive” instance xz(i) for the i-th ambiguous example participates in an active margin constraint,

and yet the difference max1≤k≤Ki
f (xk)− f

(
xz(i)

)
> 0, then the update z (i) = arg max1≤k≤Ki f (xk)

will weaken the constraint and possibly decrease the objective (increase the margin). The condition is simple

to evaluate. Notice that a decrease in the objective is not guaranteed since the remaining constraints in the

problem may prevent the margin from growing. After making the update, however, the objective can be

computed and compared to its previous value to determine whether the update was successful.
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Figure 5.2: Maximum margin MI-separating hyperplane. The MI-separating hyperplane is the solid line while
the margins are indicated with dotted lines. Members of positively-labeled multi-instances are displayed as
large circles with numbers i, and colors, that encode multi-instance membership x ∈ Xi, while members
of negatively-labeled multi-instances are displayed as small gray circles. The individual member instances
chosen as support vectors are bold. Notice that all members of negatively-labeled multi-instances obtain a
large margin in the negative halfspace [down and to the left], and at least one member from each positively-
labeled multi-instance (i = 1, 2, 3) obtains a large margin in the positive halfspace [up and to the right].

A simple 2-stage local search heuristic alternates the following steps: (i) for given integer variables, solve

the associated QP and find the optimal hyperplane, (ii) for a given hyperplane, update the integer variables in

a way that (locally) minimizes the objective. For given integer variables z (i), the problem reduces to a QP

that can be solved exactly. The latter step may involve the simultaneous update of all integer variables z (i)

using the condition stated above, or the update of just a small number of integer variables, perhaps just one.

These two update strategies will be called synchronous and asynchronous, respectively. The asynchronous

algorithm selects integer variables z (i) to be updated based on the size of the potential decrease to the

objective, which is estimated using the difference: max1≤k≤Ki f (xk)− f
(
xz(i)

)
. Figure 5.3 demonstrates

how the solution changes as integer variables are updated on a simple example.

Updates can be performed efficiently because the integer variables are decoupled given the hyperplane.

Also notice that the QP-solver can be re-initialized at every iteration with the previously found solution to

speed-up subsequent optimization. To initialize the scheme, one can set the witness xz(i) equal to the centroid

of the multi-instance Xi. The 2-stage alternating search heuristic terminates when the integer variables reach

a fixed-point, or when the value of the objective function reaches a local minimum. A local minimum is

detected when the subsequent update to the integer variables results in an increase to the objective. Since

the objective is bounded below by zero, and there are a finite number of disambiguations, this algorithm

terminates in a finite number of steps. Algorithm 5.1 summarizes the algorithm using synchronous updates

in pseudo-code.

The MI-SVM algorithm was implemented in C++ with the help of version 4.0 of the SVMlight solver

[38]. In order to facilitate efficient restarting of the SVM, the solver required extensive modification. In

particular, the dual variables from the previous solution were used for initialization.
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Figure 5.3: Progression of mixed-integer local search. In this example, there are only two training examples.
The first training example is ambiguous with Y = 1 whose multi-instance representation consists of two blue
points. The second example is unambiguous with Y = −1 and consists of one grey point. For simplicity, the
bias term b is omitted.
In the first column, the upper most blue point is selected as the witness for the ambiguous example. The
multi-instance margin constraint reduces to the halfspace constraint defined by this point. Then, with this
setting of the integer variables, the shortest weight vector measured with respect to the 2-norm is as shown
within the intersection of the two shaded halfspaces. Notice, that the instances from the ambiguous example
are both classified positively.
In the next iteration, displayed in the second column, the witness is subsequently updated to reflect the current
“most positive” member instance, it will switch to the right-most blue point. The result is a shorter weight
vector and a wider margin. Only one of the instances from the ambiguous example is classified positively,
which is sufficient according to Equation (5.20).

Algorithm 5.1 Pseudo-code for MI-SVM optimization heuristics (synchronous update).
1: input: training sample D
2: initialize xz(i) =

∑
x∈Xi

x/|Ki| for every positive input Xi

3: repeat
4: compute SVM solution (w, b) for disambiguated training examples

{(
xz(i), Yi

)
, 1 ≤ i ≤ m

}
5: compute outputs f (xk) = 〈w,xk〉+ b for all member instances xk ∈ Xi, 1 ≤ k ≤ Ki

6: set z (i) = arg max1≤k≤Ki f (xk) ,∀i
7: until selector variables z (i) do not change, or objective increases
8: output:(w, b) corresponding to local minima
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5.2.4 An alternative mixed-integer formulation

The following algorithm was introduced together with MI-SVM in [4]. This algorithm was also derived

within the disambiguation and learning framework. However, the notion of an interpretation of an ambiguous

example is slightly more general. This affects the notion of disambiguation and its relation to the multi-

instance margin.

The basic idea is to introduce explicit integer label variables y (x) = ±1, ∀x ∈ X for the unknown

instance-level labels. These variables are related to Y (X) via the label semantics from Equation (3.17). The

main difference with this formulation is that all of the instances within a multi-instance can jointly participate

in defining the hyperplane; there is no single “most positive” instance. Each interpretation of an ambiguous

example involves a set of instance-level labels, one for every member, subject to the constraint that at least

one guessed label must be positive. There are many more distinct interpretations in this formulation than con-

sidered with MI-SVM. For example, in the MI-SVM formulation, an ambiguous example (X, Y ) with Y = 1

and X = {x1, . . . ,xk} has k interpretations as a single unambiguous example {(xi, Y ) |i = 1, . . . , k}. With

mi-SVM, there are 2k − 1 interpretations each comprised of k unambiguous examples{
{(x1, y1) , . . . , (xk, yk)} | (y1, . . . , yk) ∈ {±1}k and max

i
yi = +1

}
.

The revised expression for the maximum-margin separating hyperplane is the following mixed-integer quadratic

programming, which is called mi-SVM

mi-SVM min
y(x)

min
w,b,ξ

1
2
‖w‖22 + C

m∑
i=1

ξi (5.28)

s.t. y (x) (〈w,x〉+ b) ≥ 1− ξi, ∀i, ∀x ∈ Xi (5.29)

s.t. Yi = max
∀x∈Xi

y (x) , ∀i (5.30)

ξi ≥ 0, ∀i. (5.31)

A two-stage greedy optimization procedure that is similar to MI-SVM was proposed in [4]. For initialization,

all instance-level integer variables are set to +1. Results for this algorithm are included below.

5.3 Experiments

5.3.1 Methodology

Experiments were performed on MIL benchmarks to evaluate the proposed technique and compare it to other

methods. Specifically, two MUSK data sets, in addition to three Corel image data sets (Tiger, Elephant, Fox)

and seven TREC9 text data sets (1,2,3,4,7,9,10) were used. Details can be found in Chapter 2.

The reported results are from 10-fold crossvalidation experiments, as described in [35]. Each data set is

split into 10 equal size partitions, where the size of a partition is based on the number of ambiguous examples

it contains. Because the splitting is according to ambiguous examples, multi-instances are preserved. The

training and testing data sets for each experiment are constructed using 9 partitions for training and 1 partition

for testing so that each of the 10 partitions is used for testing in one of the folds. After training, the ambiguous
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examples were classified using the multi-instance classifier defined in Equation 3.19. The accuracy of the

classifier was then measured as num correct
num total = |{i|Ŷ (Xi)=Y (Xi)}|

m ; in other words, the accuracy is measured on

multi-instance label predictions. The learning algorithm is run 10 times on the different training data sets,

each time evaluating the accuracy on test set. Finally, the average of the 10 accuracies is reported.

Results are shown for the synchronous versions of mi-SVM and MI-SVM. Three kernels were used:

linear K (xi,xj) = 〈xi,xj〉, polynomial K (xi,xj) = (〈xi,xj〉+ S)2, and radial basis function (RBF)

K (xi,xj) = exp
(
−γ ‖xi − xj‖2

)
. The parameters S and γ were coarsely optimized on a single fold on

the MUSK1 data set, and the optimal parameters were then used for crossvalidation experiments with both

MUSK1 and MUSK2 data sets. A similar coarse parameter-tuning step was used for the Corel image data

sets, using a single fold from the Tiger data set, and for the TREC9 text data sets using a single fold from test

set number 7.

As a reference method the expectation maximization diverse density method (EM-DD) of [75] was im-

plemented. In their report, competitive results have been reported on the MUSK benchmark. However, the

description seems to indicate that the test data was used to select the optimal solution obtained from multiple

runs of the algorithm. In the pseudo-code formulation of EM-DD, Di is used to compute the error for the

i-th data fold, where it should in fact be Dt = D −Di (using the notation of [75]). The corrected version of

the algorithm is used to generate the results reported here. The accuracies using the corrected code are more

in line with previously published results.

The majority of methods in the literature do not specify the standard deviation of the crossvalidated accu-

racies, and so testing significance for these cases requires weaker significance tests or further implementation.

5.3.2 Drug activity prediction

The first reported results concern the drug activity prediction task using the ambiguous data sets that were

introduced in Chapter 2, Section 2.2. Table 5.1 compares MI-SVM and mi-SVM with various kernels to

EM-DD.

For both MUSK1 and MUSK2 data sets, mi-SVM with the RBF kernel achieves competitive accuracy

values; in fact, for MUSK1 the improved performance over EM-DD is statistically significant. While MI-

SVM with the RBF kernel outperforms mi-SVM on MUSK2, it is significantly worse on MUSK1. With

linear and polynomial kernels, the performance is generally poor.

There has been much recent progress with multi-instance learning algorithms in recent years. Most

algorithms are tested on the MUSK data sets. Table 5.2 summarizes cross-validation results for a selection.

The performance of MI-SVM and mi-SVM do not clearly exceed any of these algorithms. However, MI-SVM

and mi-SVM both output a classifier that can be applied to individual patterns as well as multi-instances. This

property is not shared by the algorithms in Table 5.2. Another distinguishing feature of MI-SVM and mi-

SVM is that they are applicable to a variety of domains as is demonstrated in the subsequent results.
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Data Set EM-DD mi-SVM MI-SVM
Category linear poly rbf linear poly rbf
MUSK1 84.8 76.3↓ 84.0 87.4↑ 75.7↓ 72.7↓ 77.9↓
MUSK2 84.9 71.5↓ 73.9↓ 83.6 76.0↓ 67.5↓ 84.3

Table 5.1: Classification accuracy for the proposed methods as compared to EM-DD on the MUSK image
data sets.

DD-
SVM
[21]

Bagging-
APR
[77]

EM-
DD
[75]

MI-
NN
[58]

RELIC
[62]

DD
[49]

Multinst
[5]

IAPR
[27]

MUSK1 85.8 92.8 84.8 88.9 83.7 88.0 76.7 92.4
MUSK2 91.3 93.1 84.9 82.0 87.3 82.5 84.0 89.2

Table 5.2: Comparison of algorithms by 10-fold crossvalidated accuracy on the MUSK data sets.

5.3.3 Automatic image annotation

The next experiments concern the automatic image annotation task and corresponding ambiguous data sets

that were introduced in Chapter 2, Section 2.1.

The results are summarized in Table 5.3. They show that both algorithms, mi-SVM and MI-SVM, gen-

erally achieve similar accuracies and outperform EM-DD by a few percent. While MI-SVM performed

marginally better than mi-SVM, both heuristic methods were susceptible to other nearby local minima. Evi-

dence of this effect was observed through experimentation with asynchronous updates, as described in Sec-

tion 5.2.3. By changing the number of integer variables that are updated in each iteration, the algorithm will

discover alternate local minima.

Note that the MI-SVM algorithm with the RBF kernel is significantly worse than EM-DD on the Elephant

and Tiger data sets. Otherwise, the majority of results represent statistically significant improvements over

EM-DD.

5.3.4 Text categorization

The next experiments concern the text categorization task and corresponding ambiguous data sets that were

introduced in Chapter 2, Section 2.3.

Using linear and polynomial kernel functions, which are generally known to work well for text catego-

rization, both methods show statistically significant improved performances over EM-DD in almost all cases.

Data Set EM-DD mi-SVM MI-SVM
Category linear poly rbf linear poly rbf
Elephant 78.3 82.2↑ 78.1 80.0↑ 81.4↑ 79.0 73.1↓
Fox 56.1 58.2↑ 55.2 57.9↑ 57.8↑ 59.4↑ 58.8↑
Tiger 72.1 78.4↑ 78.1↑ 78.9↑ 84.0↑ 81.6↑ 66.6↓

Table 5.3: Classification accuracy of different methods on the Corel image data sets.
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Data Set EM-DD mi-SVM MI-SVM
Category linear poly rbf linear poly rbf
TST1 85.8 93.6↑ 92.5↑ 90.4↑ 93.9↑ 93.8↑ 93.7↑
TST2 84.0 78.2↓ 75.9↓ 74.3↓ 84.5 84.4 76.4↓
TST3 69.0 87.0↑ 83.3↑ 69.0 82.2↑ 85.1↑ 77.4↑
TST4 80.5 82.8 80.0 69.6↓ 82.4↑ 82.9↑ 77.3↓
TST7 75.4 81.3↑ 78.7↑ 81.3↑ 78.0↑ 78.7↑ 64.5↓
TST9 65.5 67.5↑ 65.6 55.2↓ 60.2↓ 63.7↓ 57.0↓
TST10 78.5 79.6↑ 78.3 52.6↓ 79.5↑ 81.0↑ 69.1↓

Table 5.4: Classification accuracy of different methods on the TREC9 document categorization sets.

On the other hand, with the RBF kernel, both MI-SVM and mi-SVM are somewhat unpredictable; some-

times significantly better and sometimes significantly worse than EM-DD. This could be due to issues of

local minima. No significant difference between MI-SVM and mi-SVM is evident for the text classification

task.

5.4 Discussion

This chapter presented a novel approach to multiple-instance learning based on a generalization of the max-

imum margin idea used in SVM classification. Although the formulation leads to a difficult mixed-integer

optimization problem, even simple greedy local search heuristics already yield quite competitive results com-

pared to the baseline approach, namely EM-DD. As far as the MIL research is concerned, this algorithm was

the first to be successfully applied to a diverse collection of benchmarks from varied domains.

The subsequent chapters consider optimization techniques that can avoid unfavorable local minima.



Chapter 6

DPBoost

The second algorithm called disjunctive programming boosting (DPBoost), proposed in [2]. This algorithm

differs from the mixed-integer approach presented in Chapter 5 primarily because the 1-norm is used to bound

the weight vector instead of the 2-norm. As explained below, the 1-norm bound is complemented by the use

of the∞-norm for the measurement of the margin width.

For unambiguous examples, the separating hyperplane problem has a linear objective function and linear

constraints, while for ambiguous examples, it has a linear objective function and non-linear constraints. In

the later case, the problem is simplified by replacing the non-linear constraints with a larger convex set that

is derived using lifting techniques from disjunctive programming. The resulting optimization problem is a

very large linear program, and global optimization is used. Although the algorithm solves an approximation,

bounds can be derived to evaluate the quality of approximation.

After reviewing the 1-norm formulation of the maximum-margin problem for supervised learning, the

DPBoost method is described, and experiments are presented. Due to time and memory limitations imposed

by the linear programming utilities that were used, these experiments were restricted to a small scale.

6.1 Introduction

A brief review of the maximum-margin separating hyperplane formulation is included for clarity and easy

reference. Focused readers who have good recall may wish to advance to Subsection 6.1.1. As described

in Chapter 3, Section 3.1.4, the objective of maximum-margin learning is a linear discriminant function that

robustly separates two categories in feature space X ⊆ Rd. The theoretical foundation of maximum-margin

learning is based on risk minimization.

The learning algorithm takes as input a set of examples D = {(xi, yi) , i = 1, . . . ,m}, where x ∈ X and

the output labels are binary y ∈ Y = {−1, 1}. The maximum-margin separating hyperplane is characterized

43
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by the solution to the following optimization problem from Chapter 3, Equations (3.23-3.25).

Max-Margin max
w,b

γ (D) (6.1)

s.t. yi (〈w,xi〉+ b) ≥ γ (D) , ∀i, (6.2)

‖w‖ ≤ 1 . (6.3)

6.1.1 1-Norm max-margin

This section outlines the development of an algorithm for solving a specific instantiation of the maximum-

margin separating hyperplane problem, where the 1-norm ‖·‖1 is used to bound the norm of the weight vector.

For a vector a = (a1, . . . , an), the 1-norm is defined as follows

‖a‖1 =
∑

1≤j≤n

|aj | ,

while the∞-norm is defined as

‖a‖∞ = max
1≤j≤n

|aj | .

If the 1-norm of the weight vector w equals a constant, then the functional margin of a point x is propor-

tional to the distance between the point x and the closest point p on the hyperplane 〈w,p〉 = 0 measured

with respect to the∞-norm ‖·‖∞ [46]. This distance is referred to as the geometric margin.

Definition 19. For linear classifiers, the signed geometric margin measured with respect to the∞-norm is

the following value
〈w,x〉+ b

‖w‖1
. (6.4)

Because ‖w‖1 = 1 for f ∈ F , the 1-norm SVM is maximizing the minimal signed ∞-norm geometric

margin. As shown in [46], there is an equivalent formulation in which the norm of the weight vector is

minimized, while constraining all functional margins to be greater than or equal to 1. It is derived by way of

variables ẇ = w/γ (D) and ḃ = b/γ (D). Notice, in this case, that ‖ẇ‖1 = ‖w‖1
γ(D) and therefore minimizing

‖ẇ‖1 is equivalent to maximizing the margin subject to ‖w‖1 = 1.

The revised expression for the maximum-margin separating hyperplane is as follows

1-Norm SVM min
ẇ,ḃ
‖ẇ‖1 (6.5)

s.t. yi

(
〈ẇ,xi〉+ ḃ

)
≥ 1, ∀i. (6.6)

The constraints of the primal are called margin constraints. The overall margin quantity γ (D) can be recov-

ered from ‖ẇ‖1. In the sequel, the dots over variables
(
ẇ, ḃ

)
are omitted.

It is evident that the problem is a linear programming problem, since the objective and constraints are

linear. Linear programming software packages [37] are designed to solve this type of structured linear pro-

gramming problem. In this context, a bound on the generalization performance of the resulting classifier has

been derived [26]. The bound depends on a measure of class separation by the linear discriminant function

known as the margin.

Note that the formulation is valid even when all training examples have the same label, and may be used

for dimension reduction and novelty detection applications [59].
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6.1.2 Non-separable case

In case no plane with positive margin γ(D) > 0 exists, the constraints of the 1-norm SVM formulation can

not be met. To address this problem, a degree of flexibility is coded in the margin constraints by introducing

soft-margins. An example (xi, yi) may violate the margin constraint by an amount ξi ≥ 0, called the slack,

at the expense of adding a penalty proportional to ξi to the objective. The modified primal SVM formulation

is thus

1-Norm SVM min
w,b
‖w‖1 + C

m∑
i=1

ξi (6.7)

(Soft Margins) s.t. yi (〈w,xi〉+ b) ≥ 1− ξi, ∀i, (6.8)

ξi ≥ 0, ∀i. (6.9)

6.1.3 Feature mappings

As in Section 5.1.3, in order to to maximize the generalization ability of linear classifiers, the inputs are

transformed to a high-dimensional feature space X′ ⊆ Rn

x 7→ x′ = (h1 (x) , . . . , hn (x)) . (6.10)

The notation differs from that of Section 5.1.3. Here, the mapping is defined in terms of its component func-

tions hk (x) which are called basis functions. For example, one common set of basis functions, sometimes

called an empirical kernel map, are defined using radial basis functions centered on the training instances

hk (x) = exp
(
−‖x− xk‖2 /σ2

)
, ∀k, where xk is the k-th instance in the training data set, and σ ∈ R is a

tunable parameter. The feature mapping is designed to facilitate large margin separation of the training data

using a hyperplane (w′, b′) in the high-dimensional feature space parameterized by a weight vector w′ ∈ Rn

and offset b′. The additional dimensions will also increase the margin obtained by the maximum-margin

separating hyperplane, and the principle of risk minimization can be invoked to obtain a better bound on the

generalization performance of the resulting classifier.

The weight vector is w ≡ (α1, . . . , αn) ∈ X′ is parameterized by variables αk ∈ R, 1 ≤ k ≤ n, which is

a notation borrowed from ensemble learning techniques [63]. In the transformed space, a linear discriminant

function without bias term takes the following form

f (x) = 〈w′,x′〉 =
M∑

k=1

αkhk (x) . (6.11)

Notice that the discriminant function is expressed as an ensemble. The basis functions hk (x) are called weak

hypotheses and the coefficients αk are called combination weights. The problem variables including αk ≥ 0

are constrained to be positive, as is the convention of linear programming [55, 15]. This is not a restriction

assuming that the set of basis functions hk is closed under negation. This also allows the 1-norm of w′ to be

expressed as
∑M

k=1 αk.
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The resulting 1-norm SVM formulation takes the following form

1-Norm SVM min
α,ξ

M∑
k=1

αk + C

m∑
i=1

ξi (6.12)

(Feature Map) s.t. yi

n∑
k=1

αkhk(xi) + ξi ≥ 1 ∀i, (6.13)

αk, ξi ≥ 0 ∀k, i . (6.14)

Since the number of weak hypotheses hk(x) is large, the1-norm SVM requires the solution of a potentially

large linear program. Unlike the 2-norm SVM presented in Chapter, the 1-norm SVM formulation does not

admit kernelization. This is because the technique of kernelization is founded upon the Representer Theorem

[70], which requires that the 2-norm be used as the bound on the weight vector.

Therefore, this chapter assumes that an explicit feature mapping is defined through hk (x). If a feature

mapping is not required, then the basis functions are assumed to be projection functions that select individual

components of the feature vector x.

6.1.4 Geometric interpretation

To gain insight into the geometric structure of the feasible region of 1-norm SVM, it is useful to introduce set

notations that correspond to constraints in Equations (6.13) and (6.14). Let

Q = {(α, ξ) : α, ξ ≥ 0} (6.15)

denote the positive quadrant, and

Hi ≡

{
(α, ξ) : yi

∑
k

αkhk(xi) + ξi ≥ 1

}
(6.16)

denote the region of feasibility corresponding to the i-th example. Using these notations, the feasible region

is expressed

(α, ξ) ∈ Q ∩
m⋂

i=1

Hi . (6.17)

The feasible region is therefore a convex region defined in a space with dimensions for each αk, k = 1, , n,

and ξi, i = 1, . . . ,m. The intersection of this feasible region with a 2-dimensional subspace is depicted in

the top-right of Figure 6.1. The remaining images in Figure 6.1 contrast the 1-norm and 2-norm formulations

when trained on a simple example with only two examples.
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Figure 6.1: Comparison of 1-Norm and 2-norm SVM. In this small example, there are only two training ex-
amples with y = 1 and y = −1 (blue and grey circles respectively). For simplicity, assume that the bias term
b is fixed at zero, so all hyperplanes go through the origin, and maximum-margin separating hyperplanes are
simply the shortest weight vectors that are feasible. In the 2-norm case, the feasible region is the intersection
of these halfspaces depicted in the top-left. The top-right image shows the 2-norm solution, depicted as a
green vector. Dotted lines shown in this image correspond to the margin. Notice that both points lie outside
the margin on either side of the hyperplane. For the 1-norm, the feasible region is restricted to the positive
quadrant and hence is the intersection of the three regions depicted in the bottom-left figure. It turns out that
this is not a fundamental restriction on the 1-norm solution, because the collection of features is typically
closed under negation (see text). The green vector in the bottom-right image is the shortest vector measured
with respect to the 1-norm. Observe that the 2-norm solution has 2 non-zero coefficients (w1, w2), while
1-norm solution has only one (w1, 0).
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6.1.5 Dual formulation

To characterize the solution of the LP, it is useful to consider the dual problem and conditions of complemen-

tarity as in [26]. The dual of the optimization problem in Equations (6.12-6.14) can be written as

max
u

m∑
i=1

ui (6.18)

s.t.
n∑

i=1

uiyihk(xi) ≤ 1 ∀k (6.19)

0 ≤ ui ≤ C ∀i (6.20)

In [26], the dual variables ui are described as misclassification costs.

The solutions of the primal and dual problems are depend closely on one another. This can be seen by

analyzing the the conditions of complementarity [55] relating these two solutions. These conditions are as

follows

ui (yif(xi) + ξi − 1) = 0 (6.21)

αk

(
m∑

i=1

uiyihk(xi)− 1

)
= 0 . (6.22)

Since the optimal values of the slack variables are implicitly determined by α as ξi(α) = [1 − yif(xi)]+,

the first set of conditions states that the misclassification costs are zero ui = 0 whenever yif(xi) > 1. On

the other hand, examples with non-vanishing misclassification costs ui > 0 must have with tight margin

constraints. The second set of conditions ensures that αk = 0 if
∑m

i=1 uiyihk(xi) < 1, while on the

other hand, weak hypotheses with non-zero weights αk must satisfy
∑m

i=1 uiyihk(xi) = 1. Thus, a typical

ensemble solution may be sparse in two ways: 1) only a small number of weak hypothesis with αk > 0 will

contribute to the ensemble, and 2) the solution will depend only on a subset of training examples with ui > 0.

6.1.6 A boosting algorithm using column generation

The simplex method [55] for solving LP maintains a tableau representing the current basic feasible solution

(bfs) and some additional values called relative costs. The tableau has as many rows as there are constraints

in the LP, and as many columns as there are variables in the LP. The columns that correspond to the basic

feasible solution are sufficient to compute the objective. As the simplex algorithm solves a linear program, it

updates the tableau to transition from one bfs to another. When the number of variables is large however, it

is impractical, and moreover unnecessary, to store and update the entire tableau.

As proposed in [26], a practical solution to this problem is a technique called column generation (CG).

They motivate the solution by column generation in an ensemble learning framework, resulting in an algo-

rithm called linear programming boosting (LPBoost).

CG solves a sequence of smaller problems using only a subset of the columns and thus a smaller tableau.

Variables of the excluded columns are fixed at zero. Hence, these are called restricted master problems. The

dual of the restricted master problem contains only a subset of the original dual constraints. Constraints of
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the dual may be violated when their corresponding primal variables are constrained to zero, or they may be

satisfied automatically. Thus the dual solution of a restricted master problem will either correspond to the

solution , or to an infeasible point of the original dual problem.

Once a restricted master problem is solved, its dual solution is analyzed to determine which constraints

are still violated. The corresponding primal variables and columns of the restricted master problem are

selected to be added to the tableau. The criterion for adding a new column (variable) is the amount by which

its corresponding dual constraint is violated. After selection, the updated tableau is efficiently re-optimized

using the previous solution.

LPBoost [26] employs CG to select weak hypotheses of the ensemble in rounds. The violation of dual

constraints in Equation (6.19) is quantified by the following score function

S (k) =
m∑

i=1

uiyihk(xi)− 1 .

LPBoost selects weak hypotheses indexed by k for which S (k) most positive. The algorithm terminates

when there are not more constraint violations.

6.2 Dealing with ambiguity

This section outlines the DPBoost formulation and algorithm as an extension of the 1-norm SVM that is

solved by linear programming with column generation.

The input is a set of ambiguous examples D = {(Xi, Yi) , i = 1, . . . ,m}, where X ∈ 2X and the output

labels are binary Y ∈ Y = {−1, 1}.
As described in Chapter 3, Section 3.2.4, the objective of maximum-margin learning from ambiguous

examples is a linear discriminant function that robustly separates two categories in feature space X ⊆ Rd.

The theoretical foundation of maximum-margin learning is based on risk minimization. In this context, a

bound on the generalization performance of the resulting classifier is derived. The bound depends on a

measure of class separation by the linear discriminant function known as the multi-instance margin.

The maximum-margin separating hyperplane is characterized as the solution of the optimization problem

in Equations (3.23-3.25) and is re-stated here for clarity.

MIL Max-Margin max
w,b

γ (D) (6.23)

s.t. Yi max
x∈Xi

(〈w,x〉+ b) ≥ γ (D) , ∀i, (6.24)

‖w‖ ≤ 1 . (6.25)

This section outlines the formulation of an optimization problem for the maximum-margin separating

hyperplane. Unique to this development is the use of the 1-norm bound on the weight vector, which is

complemented by a∞-norm measuring the width of the margin.
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6.2.1 1-Norm max margin with ambiguous examples

In this section, the 1-norm ‖·‖1 is used to bound the norm of the weight vector. As shown in [46], there is an

equivalent formulation in which the norm of the weight vector is minimized, while constraining all functional

margins to be greater than or equal to 1. Soft-margins are also introduced, allowing the ambiguous example

(Xi, Yi) to violate the multi-instance margin constraint, at the expense of adding a penalty proportional to

ξi to the objective. Furthermore, the maximum-margin separating hyperplane can be expressed using the

ensemble notations (features hk (x) and combination weights αk) from Section 6.1.3.

The revised expression for the maximum-margin separating hyperplane is the following linear program-

ming problem with non-linear constraints, which is called DPBoost

DPBoost min
α,ξ

M∑
k=1

αk + C

m∑
i=1

ξi (6.26)

s.t. yi max
x∈Xi

(
n∑

k=1

αkhk(xi)

)
+ ξi ≥ 1, ∀i (6.27)

αk, ξi ≥ 0 ∀k, i . (6.28)

As discussed in Chapter 3, Section 3.2.3 a self-reinforcing disambiguation is encoded in the multi-instance

margin constraint.

As in Chapter 5, Section 5, negatively labeled multi-instances are separated, and treat the member in-

stances as though they came from independent training examples ({x} , yi) where x ∈ Xi such that yi = −1.

So, for example, if an ambiguous training data set consists of labeled multi-instances

(X1,+1) , (X2,+1) , (X3,+1) , (X4,−1) , (X5,−1) , (X6,−1) (6.29)

containing |Xi| = 3, 6, 2, 2, 7, 4 members respectively, then the transformation will generate a data set with

the same positively labeled multi-instances (i = 1, 2, 3) and a new set of negatively labeled multi-instances

(Xi,−1) with |Xi| = 1 for i = 4, . . . , 16. The index set i = 1, . . . ,m of the training set is augmented as

necessary depending on the number of member instances in the affected multi-instances.

Once separated, these independent negatively labeled multi-instances behave like standard input-output

pairs (x,−1). Each pair now gives rise to an independent margin constraint as in Equation (6.27), having

its own slack variable ξi that is penalized in the objective in Equation (6.26). An apparent side effect of

this problem transformation is a bias encoded in the new objective function toward solutions that misclassify

positive multi-instances. This is because there is only one active slack variable when a positive multi-instance

violates its margin constraint. In contrast there could be several active slack variables corresponding to a

negatively labeled multi-instance that fails to obtain the desired margin. To compensate for this imbalance,

the penalty factor C for the newly created slack variables can be scaled.

In order to deal with the remaining non-linear constraints for positively labeled multi-instances in Equa-

tion (6.27), a framework known as disjunctive programming [7, 43] is employed. To apply these techniques,

it is first necessary to rewrite the optimization problem in a new form.
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6.2.2 Geometric interpretation

The following proposition provides a geometric interpretation of the multi-instance margin constraint for

each ambiguous example (Xi, yi) that appears in Equation (6.27).

Proposition 2. The following equivalence of sets is a logical consequence of the maximum and union oper-

ations contained in their definitions.{
w ∈ Rd|max

x∈X
〈w,x〉 ≥ 1

}
=
⋃
x∈X

{
w ∈ Rd| 〈w,x〉 ≥ 1

}
. (6.30)

Notice that the right hand side describes a union of halfspaces. Proposition 2 implies that the multi-instance

margin constraint yi maxx∈Xi (
∑n

k=1 αkhk (x)) + ξi ≥ 1 defines a region of feasibility for (α, ξ) that is a

union of halfspaces

(α, ξ) ∈
⋃

x∈Xi

Hi (x) , (6.31)

where

Hi (x) ≡

{
(α, ξ) : yi

∑
k

αkhk (x) + ξi ≥ 1

}
(6.32)

is the region of feasibility corresponding to a single instance x ∈ Xi, defined as in Section 6.1.4. Figure 6.2

depicts the disjunctive set described in the Proposition 2.

Figure 6.2: Geometry of disjunctive margin constraints. Each ambiguous example defines a disjunctive
margin constraint that can be represented as a union of k = |Xi| halfspaces; in this case k = 2.

Under the assumption that negatively labeled multi-instances have only one member, the DPBoost prob-

lem is

DPBoost min
α,ξ

n∑
k=1

αk + C

m∑
i=1

ξi (6.33)

(Geometric) s.t. (α, ξ) ∈
m⋂

i=1

⋃
x∈Xi

Hi (x) (6.34)

(α, ξ) ∈ Q (6.35)
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One way to visualize the feasible region is to consider the region that is excluded by each multi-instance

margin constraint, in other words the complement of this set, written
(⋃

x∈Xi
Hi (x)

)c
. By de Morgan’s

Law, the excluded region is equal to
⋂

x∈Xi
Hi (x)c which is convex because it is an intersection of halfspaces

[61]. The feasible region can thus be constructed starting with the positive quadrant Q and removing a finite

number of “convex bites” corresponding to the regions excluded by the disjunctive margin constraints of

ambiguous examples. For example, the unshaded convex region in Figure 6.2 defines one such “convex

bite”. Removing this region from the positive orthant Q leaves a feasible region as shown in Figure 6.3.

Notice that if |Xi| ≥ 2 then the constraint imposed by Xi is non-convex, since it is defined via a union

of halfspaces. However, for multi-instances with |Xi| = 1, the resulting constraints are the same as in

Equation (6.17). In other words, the constraint reduces to a single halfspace
⋃

x∈Xi
Hj(x) = Hj . Since

these two cases are treated quite differently in the sequel, the following index sets A = {i : |Xi| ≥ 2}
and B = {i : |Xi| = 1} are used. Note that the index set B contains the set of negatively labeled inputs

{i : yi = −1}, since these have been separated.

Figure 6.3: ”Convex bites”. Each ambiguous example excludes a convex region from the positive orthant Q.
Here, the corner of Q has been removed by the disjunctive margin constraint from Figure 6.2.

6.2.3 Disjunctive programming

A framework known as disjunctive programming has been proposed by [6, 7, 8] for solving optimization

problems having non-convex feasible regions known as disjunctive sets S that can be expressed as follows

S =
⋂
i

⋃
j∈I(i)

Hj , (6.36)

where Hj is a halfspace. Observe that the multi-instance margin constraints in Equation (6.34) form a dis-

junctive set, as derived in Section 6.2.2. Likewise, the positive quadrant Q = {(α, ξ) : α, ξ ≥ 0} can be

expressed as an intersection of axis-aligned halfspaces, one for each coordinate of α and ξ.

The basic idea of the disjunctive programming is to generate an approximation to the feasible region that

is convex, easy to compute, and closely approximates the original disjunctive set. At this point, it suffices to
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note that one can define a hierarchy of enclosing convex sets St, so that S ⊆ St and St+1 ⊆ St. Each set

in this hierarchy is convex and has a representation as a set of linear inequalities. Traversing this hierarchy

allows one to trade-off the quality of the approximation to S with the complexity of the representation for the

current approximation. A complete introduction to this topic is provided in [6, 7, 8].

6.2.4 Convexification

Disjunctive programming replaces the non-convex feasible region in Equation (6.34) with an enclosing con-

vex surrogate that is easily computed. Since the convex surrogate is larger than the original feasible region, a

relaxation of the disjunctive program is obtained. The relaxed problem can be expressed as a linear program

for which the global minimum can be computed efficiently. However, the solution may not satisfy the multi-

instance margin constraints. If the convex surrogate is close to the original feasible region, then there reason

to believe that resulting discriminant function obtains a large overall margin.

Let conv(S) denotes the convex hull of S. It is a convex set consisting of all convex combinations of

elements from S [61] and can be expressed as

conv (S) =

{
x|x = u1x1 + . . . + umxm, xk ∈ S, 0 ≤ uk ≤ 1 ∀k,

m∑
k=1

uk = 1

}
.

This definition is included as an aid to the reader, and is not used to represent the convex hull in practice.

A convex surrogate known as the hull-relaxation is obtained from the region in Equations (6.34-6.35) by

the following replacement

(α, ξ)∈
⋂
i∈A

conv

[ ⋃
x∈Xi

Hi(x) ∩Q

]
∩
⋂
j∈B

Hj . (6.37)

Notice that for the unambiguous examples, indexed by j ∈ B, there is no need to employ convexity; the

convex hull of a halfspace is the halfspace itself. Figure 6.4 shows how convexity is applied individually to

a disjunctive margin constraint in the hull-relaxation. Compare the solution in this figure to those depicted

in Figure 6.1. The only difference between these toy problems is the fact that one of the examples was

augmented so that it became ambiguous. Despite the ambiguity, the solution vector in the hull-relaxation is

close to the 1-norm solution of the unambiguous problem.

Figure 6.5 depicts the overall hull-relaxation of Equation (6.37) and compares it to the region defined by

Equation (6.34).

6.2.5 Parallel reductions

A hierarchy of such relaxations can be built, using the fundamental fact that

conv(S) ∩ T ⊇ conv(S ∩ T ) , (6.38)

when T is a convex set [7]. A tighter convex relaxation is obtained, if the convexification of S occurs after

the intersection with T . Thus, the hierarchy of relaxations is formed by recursively “folding” the convex sets
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Figure 6.4: The effect of hull-relaxation for the ongoing example. The top row shows the single disjunctive
margin constraint before and after convexification. The final region of feasibility is obtained by intersecting
the region in the top-right with the set

⋂
j∈B Hj . However, since there is only one unambiguous example

with Yj = −1 (the grey point), the set to be intersected is the single halfspace depicted in the bottom-left.
The bottom-right image depicts the result of this intersection, in addition to: the shortest weight vector in
this region measured with respect to the 1-norm; the corresponding hyperplane; and two parallel hyperplanes
depicting the margin. Compare the solution in the bottom-right with those in Figure 6.1.
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Figure 6.5: The overall effect of the hull-relaxation in Equation (6.37). The shorter arrow is the approximate
solution, while the longer arrow is the exact solution to the original disjunctive program DP.

into one another. Each folding operation is a reduction step. See Figure 6.6 for a geometric perspective of

parallel reductions.

In the context of Equation (6.37), reductions can be made with the unambiguous constraints
⋂

j∈B Hj .

These convex sets can be folded, in parallel, into each convexified region conv
[⋃

x∈Xi
Hi(x)

]
, ∀i. This is

called a parallel reduction step [7]. The convex surrogate of the constraints in Equation (6.31) becomes

(α, ξ)∈
⋂
i∈A

conv

 ⋃
x∈Xi

Hi (x) ∩Q ∩
⋂
j∈B

Hj

 . (6.39)

Results by Balas [6, 7] demonstrate that the maximum number of facets of the convex hull grows expo-

nentially with the number of reductions. For this reason, it is important to perform parallel reductions only

with halfspaces Hj that will affect the hull-relaxation. Figure 6.7 depicts the gradual strengthening of the

hull-relaxation using parallel reductions. The selection of parallel reductions is described in Section 6.2.8.

6.2.6 Linearization

There is a lift-and-project representation for the convex surrogates in Equation (6.39), i.e. one can characterize

the feasible set as a projection of a higher dimensional polyhedron which can be explicitly characterized, as

shown in [7].

Proposition 3. Assume a set of non-empty linear constraints Hi ≡
{
z : Aiz ≥ bi

}
6= ∅ is given. Then

z ∈ conv
⋃

i Hi if and only if there exist zj and ηj ≥ 0 such that∑
j

zj = z

∑
j

ηj = 1

Ajzj ≥ ηjbj .
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Figure 6.6: The effect of parallel reductions on a small example. Denote by Xi = {x1,x2} the single am-
biguous example having two instances (blue circles), and by Xj = {xj} the single unambiguous example
(grey circle). Parallel reductions are performed by intersecting Hj (xj) with each disjunct before convexifi-
cation. The top row depicts the two relevant intersections Hi (x1) ∩ Q ∩ Hj and Hi (x2) ∩ Q ∩ Hj . The
bottom-left shows the union of these regions before the convexification step in Equation (6.39); both shaded
regions are included in the union. Since the union is convex, the region does not change upon convexification.
Therefore, this is the final hull-relaxation after performing the parallel reduction step. Also depicted are: the
resulting shortest weight vector measured with respect to the 1-norm; the corresponding hyperplane; and two
parallel hyperplanes depicting the margin. Compare the solution in the bottom-right with those in Figure 6.1
and 6.4.
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Figure 6.7: The overall effect of applying parallel reductions incrementally to the hull-relaxation.
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Proof. [7]

Applying this linearization to every convex hull in Equation (6.39) individually, notice that one needs to

introduce duplicates αx, ξx of the parameters α and slack variables ξ, for every x ∈ Xi. In addition to the

constraints αx
k , ξx

i , ξx
j , ηx

i ≥ 0, the relevant constraint set for each individual multi-instance Xi, i ∈ A of the

resulting LP can be written as

∀x ∈ Xi : yi

∑
k

αx
khk(x) + ξx

i ≥ ηx
i , (6.40)

∀x ∈ Xi,∀j ∈ B : yj

∑
k

αx
khk(xj) + ξx

j ≥ ηx
i , (6.41)

∀j ∈ B : ξj =
∑
x∈Xi

ξx
j , (6.42)

∀k : αk =
∑
x∈Xi

αx
k , (6.43)

ξi =
∑
x∈Xi

ξx
i , (6.44)

1 =
∑
x∈Xi

ηx
i (6.45)

The first margin constraint in Equation (6.40) is the one associated with the specific instance x, while the

second set of margin constraints in Equation (6.41) stems from the parallel reduction performed with unam-

biguous member examples.

6.2.7 Duality

Following the approach taken in LPBoost, the dual of the above problem is computed. The key result from this

derivation is a complicated constraint in terms of the dual u-variables that will be used for column generation

∀i, ∀x ∈ Xi : yiu
x
i hk(x) +

∑
j∈B

yju
x
j hk(xj) ≤ ρik,

∑
i∈A

ρik = 1 . (6.46)

The primal variables are αk, αx
k , ξi, ξx

i , ξx
j , and ηx

i . Dual variables ux and ux
j are introduced for the

margin constraints, and dual variables ρik, σi, and θi are introduced for the equality constraints on αk, ξ and

η, respectively. The Lagrangian is formed by adding each constraint from the primal problem to the objective,

multiplied by the corresponding dual variable

L =
∑

k

αk + C

∑
i

ξi +
∑

j

ξj

−∑
i

∑
x∈Xi

ux
i

(
yi

∑
k

αx
khk(x) + ξx

i − ηx
i

)

−
∑

i

∑
x∈Xi

∑
j

ux
j

(
yj

∑
k

αx
khk(xj) + ξx

j − ηx
i

)
+
∑

i

θi

(
1−

∑
x∈Xi

ηx
i

)

−
∑
i,k

ρik

(
αk −

∑
x∈Xi

αx
k

)
−
∑

i

σi

(
ξi −

∑
x∈Xi

ξx
i

)
−
∑
i,j

σij

(
ξj −

∑
x∈Xi

ξx
j

)
−
∑

i

∑
x∈Xi

∑
k

α̃x
kαx

k −
∑

i

∑
x∈Xi

ξ̃x
i ξx

i −
∑

i

∑
x∈Xi

∑
j

ξ̃x
j ξx

j −
∑

i

∑
x∈Xi

η̃x
i ηx

i .
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Taking derivatives w.r.t. primal variables, and simplifying, leads to the following dual problem

DPboost-dual max
∑

i

θi

s.t. θi ≤ ux
i +

∑
j

ux
j ,

ux
i ≤ C ,

ux
j ≤ σij ,∑
i

σij ≤ C ,

yiu
x
i hk(x) +

∑
j

yju
x
j hk(xj) ≤ ρik,

∑
i

ρik ≤ 1 .

6.2.8 Row and column selection

The size of the resulting problem is significant. To make this explicit, first define quantities q =
∑

i∈A Ki

and r =
∑

i∈B Ki to denote the number of instances in ambiguous and unambiguous bags, plus the quantity

p = |A| denoting the number of ambiguous bags. Then, counting the variables in the primal (columns), note

that there are O (q · n) replicated αx
k variables, and O (q · r) replicated ξx

j variables; and that both q and r are

O (m). Thus, as a result of linearization and parallel reductions, the number of variables in the primal LP is

now O
(
m · n + m2

)
, compared to O (n + m) of the standard LPBoost. Similarly, counting dual variables

(rows), note that there are O (q · r) margin constraints due to the parallel reductions, and O (p · n) constraints

due to the summation constraints on αx
k . Thus, the number of constraints has also been inflated significantly

from O (m) in LPBoost, to O
(
m2 + m · n

)
.

In order to maintain the spirit of LPBoost in dealing efficiently with a large-scale linear program, a column

generation scheme is used to select one or more αx
k in every round. Notice that all αx

k variables are linked

through the equality constraints
∑

x∈Xi
αx

k = αk for all Xi. Thus, the column selection can not proceed for

every multi-instance Xi independently. In particular, αx
k > 0 implies αk > 0, so that αw

k > 0 for at least

some w ∈ Xi for each i ∈ A. All columns {αx
k : x ∈ Xi, i ∈ A} involving the same weak hypothesis are

added simultaneously. In order to select a feature hk, the following score is computed

S(k) =
∑

i

ρ̄ik − 1, ρ̄ik ≡ max
x∈Xi

yiu
x
i hk(x) +

∑
j∈B

yju
x
j hk(xj)

 . (6.47)

Notice that due to the block structure of the tableau, working with a reduced set of columns also eliminates a

large number of inequalities (rows). However, the large set of q · r inequalities for the parallel reductions is

still prohibitive.

In order to address this problem, incremental row selection is performed in an outer loop. A subset of

rows corresponding to the most useful parallel reductions is computed using the column basis for the current

relaxed LP. One can use the magnitude of the margin violation as a heuristic to perform this row selection.
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Hence the following score is used

T (x, j) = ηx
i − yj

∑
k

αx
khk(xj), where x ∈ Xi, i ∈ A, j ∈ B (6.48)

This means that for current values of the duplicated ensemble weights αx
k , one selects the parallel reduction

margin constraint associated with ambiguous member instance x and unambiguous instance j that is violated

most strongly.

The margin constraints imposed by unambiguous training instances (xj , yj) are redundant after the par-

allel reduction steps in Equation (6.39), however, it may not be possible to perform all reductions. Therefore,

they are also added to the problem in unreduced form. This helps feature selection during the initial rounds.

The following constraints are thus added to the primal

yj

∑
k

αkhk(xj) + ξj ≥ 1, ∀j ∈ J , (6.49)

which will introduce additional dual variables uj , j ∈ J . Notice that in the worst case where all inequali-

ties imposed by training multi-instances Xi are vacuous, this will make sure that one recovers the standard

LPBoost formulation on the individual member instances. One can then think of the row generation process

as a way of deriving useful information from ambiguous examples. As rows are added to the approximation,

the feasible regions corresponding to ambiguous candidate member instances are eliminated from consider-

ation if they are not consistent with the unambiguous constraints. This information takes the form of linear

inequalities in the high dimensional representation of the convex hull and will sequentially reduce the version

space, i.e. the set of feasible (α, ξ) pairs.

Given a solution to the relaxed problem, one can easily obtain lower and upper bounds on the solution

value of the original problem. First, since the convex surrogate is a superset of the feasible region of the

original problem, its minimal value is a lower bound on the original problem H∗
relaxed ≤ H∗

dpboost. An upper

bound H∗
dpboost ≤ H∗

projected is obtained by projecting the solution of the relaxed problem back onto the

original feasible space.

A heuristic projection is performed iteratively as follows. An ambiguous example is chosen, and a “most-

positive” instance from the example is selected. The most-positive instance and the multi-instance label are

added to the problem as an unambiguous example. The remaining instances from the multi-instance are

discarded. The feasible region is updated and the objective is re-optimized. This process converges when

there are no more ambiguous examples. The final solution must satisfy at least one halfspace constraint,

corresponding to the most-positive instance from each ambiguous example. Therefore the final solution lies

within the original disjunctive feasible region, providing the upper bound.

The difference H∗
projected −H∗

relaxed can be used as a termination condition during learning. It signals

when the algorithms has already found an optimal solution to the original disjunctive programming problem.

If needed, the upper and lower bounds can be further strengthened by using them in combination with branch-

and-bound search.

The resulting method Disjunctive Programming Boosting (DPBoost). Pseudo-code for this algorithm is

presented in Box 6.1
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Algorithm 6.1 DPBoost Algorithm
1: input: training sample D
2: initialize H = ∅, C = {ξi : i ∈ A ∪B} , R = {ux

i : x ∈ Xi, i ∈ A} ∪ {uj : j ∈ B}
uj = 1

|J| , ux
i = 0, ξi = 0

3: repeat
4: repeat
5: column selection: select hk 6∈ H with maximal S(k)
6: H = H ∪ {hk}
7: C = C ∪ {αk} ∪ {αx

k : ∀x ∈ Xi, ∀i ∈ A}
8: solve LP (C, R)
9: until maxk S(k) < ε

10: row selection: select a set S of pairs (x, j) 6∈ R with maximal T (x, j) > 0
11: R = R ∪

{
ux

j : (x, j) ∈ S
}

12: C = C ∪
{
ξx
j : (x, j) ∈ S

}
13: solve LP (C, R)
14: until maxx, j T (x, j) < ε

6.3 Experiments

The algorithm was implemented in MATLAB1 using a MEX-based interface to the linear programming solver

by ILOG CPLEX 2. Due to memory handling inefficiencies that were unavoidable in the MEX-based inter-

face, experiments had to be restricted to a small scale.

6.3.1 Proof of concept

A set of synthetic weakly labeled data sets was generated to evaluate DPBoost on a small scale. These were

multiple-instance data sets, where the label uncertainty was asymmetric; the only ambiguous bags (|Xi| > 1)

were positive. More specifically, the generated instances x ∈ [0, 1] × [0, 1] were sampled uniformly at

random from the white (yi = 1) and black (yi = −1) regions of Figure 6.8, leaving the intermediate gray

area as a separating margin. The degree of ambiguity was controlled by generating ambiguous bags of size

k ∼ Poisson(λ) having only one positive and k−1 negative instances. To control data set size, a pre-specified

number of ambiguous bags were generated, and the same number of singleton unambiguous bags.

As a proof of concept benchmark, the classification performance of DPBoost was compared with three

other LPBoost variants: perfect-knowledge, perfect-selector, and naive algorithms. All variants use LPBoost

as their base algorithm and have slightly different preprocessing steps to accommodate the MIL data sets.

The first corresponds to the supervised LPBoost algorithm; i.e. the true member instance labels are used.

Since this algorithm does not have to deal with ambiguity, it will perform better than DPBoost. The second

algorithm uses the true member instance labels to prune negative instances from ambiguous bags and thus

solves a smaller and fully supervised problem using LPBoost. This algorithm provides an interesting bench-

mark, since its performance is the best one can hope for from DPBoost. At the other extreme, the third variant

assumes the ambiguous member instance labels are equal to their respective bag labels.

1http://www.mathworks.com
2http://www.ilog.com
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Figure 6.8: (Left) Normalized intensity plot used to generate synthetic data sets. (Right) Performance relative
to the degree of label ambiguity. Mean and standard deviation of the classification accuracy for member
instances plotted versus λ, for perfect-knowledge (solid), perfect-selector (dotted), DPBoost (dashed), and
naive (dash-dot) algorithms. The three plots correspond to data sets of size |I| = 10, 20, 30.
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Figure 6.9: Discriminant boundaries learned by naive (accuracy = 53.3 %), DPBoost (85.3 %), DPBoost with
projection (85.3%), perfect-selector (86.6 %) and perfect-knowledge (92.7 %) algorithms.

For all algorithms, thresholded RBF features were used. These were defined by thresholding radial basis

functions centered on the training instances hkj (x) = sgn
(
exp

(
−‖x− xk‖2

)
− tj

)
, ∀kj, where xk is

the k-th instance in the training data set, and tj is the j-th chosen threshold value. An efficient implementation

uses inner products to compute the square of the Euclidean norm, and avoids the need to exponentiate by

taking the logarithm of the thresholds tj ,∀j.

Figure 6.9 shows the discriminant boundary (black line), learned by each of the four algorithms for a data

set generated with λ = 3 and having 20 ambiguous bags (i.e. |I| = 20, no. ambig. = 71, no. total = 91). The

ambiguous instances are marked by “o”, unambiguous ones “x”, and the background is shaded to indicate

the value of the ensemble F (x) (clamped to [−3, 3]). It is clear from the shading that the ensemble has a

small number of active features for DPBoost, perfect-selector and perfect-knowledge algorithms. For each

classifier, the classification accuracy on individual instances sampled uniformly on a (21 x 21) grid is reported.

The sparsity of the dual variables was also verified; less than 20 percent of the dual variables and reductions

were active.

Experiments were run using 5-fold cross-validation on the synthetic data sets for λ = 1, 3, 5, 7 and for data

sets having |I| = 10, 20, 30. Figure 6.8 (right side) shows the mean classification accuracy for individual

instances with error bars showing one standard deviation, as a function of the parameter λ.
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6.4 Discussion

A disjunctive programming framework has been proposed to solve the learning from ambiguous examples

problem. The key contribution of this method is a technique for avoiding the local minima that have ham-

pered the search for a globally optimal solution to the maximum-margin separating hyperplane problem in

Equations (3.23-3.25).

Using synthetic data, the disambiguation and learning ability of the algorithm has been demonstrated.

The current implementation could not handle large data sets due to the MEX-based interface that was used.



Chapter 7

LNPBoost

A third algorithm, lift-and-project boosting (LNPBoost), proposed in [3], also uses the 1-norm bound the

weight vector. This approach was motivated by the need to limit the size and management difficulties of the

linear program in DPBoost. The lifted formulation used in DPBoost has a worst case space complexity that is

quartic in the size of the data set. In the third presented approach, the main difference is the technique used to

approximate the feasible region by a convex set. Instead of approximating the convex set using Balas’ hull-

relaxation and parallel reductions, a sequential compact representation of the convex hull is computed. This

approximation technique is much more efficient, converges in the limit to the globally optimal maximum-

margin separating hyperplane, and outperforms DPBoost and MI-SVM empirically.

7.1 Introduction

Following Chapter 6, the structural risk minimization principle is used to derive a max-margin formulation

of the multiple-instance learning problem. This results in a non-convex formulation of multiple-instance

learning that is a natural extension of the 1-norm SVM [78]. In this approach, integer variables are not used

in our representation, and instead a linear programming relaxation to this problem is constructed. In theory,

this step simply replaces the non-convex feasible region with its convex hull.

In practice, a cutting-plane algorithm is used to construct a compact sequential approximation to the

convex hull using linear inequalities in the original feature space. These inequalities are generated using a

technique based on lift-and-project cuts due to [9]. The generation of lift-and-project cuts is performed in an

online fashion whereby only a single ambiguous example is considered in each step. Cut set regularization

ensures that the approximation to the convex hull remains compact. This differs significantly from DPBoost

which uses the technique of lifting on the entire data set (i.e. in a batch manner) to represent an enclosing set

called the hull-relaxation. DPBoost was difficult to scale to large data sets due to the memory requirements

of lifting. The proposed technique solves this problem. For the sake of comparison, ROMMA [44] uses a

2-norm SVM formulation and approximates the convex hull using a single cutting-plane.

The cutting-plane algorithm is also embedded within a boosting framework for feature selection. In
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this way, the proposed learning algorithm is able to consider high-dimensional feature mappings required

to generate expressive linear classifiers. Since the lift-and-project method is the central component of the

cutting-plane algorithm, the entire algorithm is called LNPBoost for lift-and-project boosting.

7.2 Dealing with ambiguity

As outlined in Chapter 6, Section 6.2, the input is a set of ambiguous examplesD = {(Xi, Yi) , i = 1, . . . ,m},
where X ∈ 2X and the output labels are binary Y ∈ Y = {−1, 1}. The objective of maximum-margin

learning from ambiguous examples is a linear discriminant function that robustly separates two categories in

feature space X ⊆ Rd. The maximum-margin separating hyperplane is characterized as the solution of the

optimization problem in Equations (3.23-3.25) and is re-stated here for clarity.

MIL Max-Margin max
w,b

γ (D) (7.1)

s.t. Yi max
x∈Xi

(〈w,x〉+ b) ≥ γ (D) , ∀i, (7.2)

‖w‖ ≤ 1 . (7.3)

The geometric margin is defined as the distance between the point x and the closest point p on the

hyperplane 〈w,p〉 = 0, measured with respect to the norm ‖·‖
′

that is dual to ‖·‖ [46]. Because ‖w‖ = 1 for

f ∈ F , the principle of structural risk minimization for ambiguous examples MI-SRM from Definition 17 is

maximizing the minimal geometric margin. As shown in [46], there is an equivalent formulation in which the

norm of the weight vector is minimized, while constraining all functional margins to be greater than or equal

to 1. In this case, the constraints are called margin constraints.

As in Equations (6.33-6.35), the reformulation using the ∞-norm margin and its dual 1-norm on the

weight vector can be written using geometric set notations. Denoting a halfspace parameterized by a vector x

and an offset γ by H (x, γ) =
{
w ∈ Rd| 〈w,x〉 ≥ γ

}
, the margin constraint for an unambiguous example

(x, y) can be expressed using set notation as follows

w ∈ H (yx, 1) . (7.4)

Similarly, the following identity allows one to write the margin constraint for an ambiguous example (X, Y )

in set notation

w ∈
{
w ∈ Rd|Y max

x∈X
〈w,x〉 ≥ 1

}
=
⋃
x∈X

H (Y x, 1) . (7.5)

Without loss of generality, the optimal solution lies in the positive orthant (see [26]), and furthermore, has

1-norm bounded by some a priori known constant M , i.e.

w ∈ Q =
{
w ∈ Rd| w ≥ 0 , ‖w‖1 ≤M

}
. (7.6)

Notice that the notation for halfspaces H (x, γ) defined here differs from Hi (x), as defined in Equation (6.32)

and used throughout Chapter 6. For ease of exposition the variables αk, and subsequently ξi, are consolidated
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within w. The disjunctive program (DP) is

DP min
w
‖w‖1 (7.7)

s.t. w ∈
m⋂

i=1

⋃
x∈Xi

H (Yix, 1) ∩Q . (7.8)

The non-convexity of the feasible region is the primary challenge of solving this optimization problem. To

alleviate problems local-minima, a linear programming relaxation to the problem is formulated by replacing

the feasible region with its convex hull

F = conv

[
m⋂

i=1

⋃
x∈Xi

H (Yix, 1) ∩Q

]
. (7.9)

Figure 7.1 shows the effect of convexification on the feasible region of DP.

Figure 7.1: The effect of convexification. (Left) Non-convex region. (Right) Convex region.

This results in the following relaxed DP

RDP min
w
‖w‖1 (7.10)

s.t. w ∈ F . (7.11)

It can be shown that the solution of RDP corresponds to the global minimum of DP. First, observe that the

solution of DP corresponds to the shortest vector measured with respect to the 1-norm in the non-convex DP

feasible region. This must also be one of the extreme points of its convex-hull F. Since RDP is optimizing

over F, and since the solution of RDP occurs at an extreme point of F, it must also be the solution of DP.

For linear discriminant functions, it is also possible to extend these definitions to allow for a soft-margin

using a simple mapping: x ← (x, Yiei/C) , ∀x ∈ Xi, Σi ← Cξi , w ← (w,Σ), where ei ∈ Rm is zero

apart from a 1 in the i-th dimension, and ξi ≥ 0 is a slack variable. Each margin constraint (ambiguous or

unambiguous) can be weakened by increasing the corresponding slack variable. The positive slack variables,

scaled by a constant C, are penalized linearly in the objective. If desired, two separate slack penalties Cambig

and Cunambig can be used to regulate the relative influence of constraint violations made by ambiguous exam-

ples over those made by unambiguous examples. The penalties are set using the parameter Cbalance ∈ [0, 1]

as follows: Cambig = C ∗ Cbalance and Cunambig = C ∗ (1− Cbalance).
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7.3 The cutting-plane algorithm

The key idea employed by cutting-plane algorithms is that one is not so much interested in representing

the complete feasible region F, but instead in finding a good approximation to it near the optimal solution

[41, 52]. Each iteration generates a hyperplane that “cuts-away” a slice of the approximation. It is possible

to construct an approximation to the convex F efficiently in this manner. It is shown that, in the limit, the

solution will be inside F. The proof is based on the work of [53] on a sequential convexification algorithm

for mixed-integer programming.

7.3.1 Sequential convexification

The cutting-plane algorithm constructs a nested sequence of convex sets denoted Ft such that F ⊆ Ft. Each

approximation Ft is defined by a finite intersection of halfspaces

Ft =
Nt⋂
i=1

H (αi, βi) . (7.12)

Each defining hyperplane (α, β) is called a cut, and the set Ct = {(αi, βi) |i = 1, . . . , Nt} is called the cut set.

The weight vector wt is defined implicitly as the feasible vector with minimal norm wt = argminw∈Ft
‖w‖1.

Although Ft and ‖w‖1 are convex, the minimum may not be unique since the 1-norm is not a strictly convex

function.1 This does not affect the convergence properties of the algorithm.

The initial cut set C1 is defined so that F1 = Q, and by the above definition, the initial solution is w1 = 0.

On the t-th iteration, a single example (unambiguous or ambiguous) denoted (Xt, Yt) is presented to the

algorithm. An update to the feasible region Ft is performed when the example can be used to derive a new

cut, parameterized by (α, β), that properly separates the current solution from F. This is certainly possible if

wt /∈ Di (Ft) = conv
[⋃

x∈Xi
H (Yix, 1) ∩ Ft

]
since it is known that F ⊆ Di (Ft) (see Figure 7.2). The

problem of deriving such a cut, which is a separation problem, is discussed below.

A hyperplane with this separating property is called a valid cut. If a valid cut is generated, the cut set is

augmented Ct+1 ← Ct ∪ {(αt, βt)}, the updated region of feasibility obeys Ft+1 ⊂ Ft. In particular, the

new feasible region Ft+1 excludes the current solution wt ∈ Ft\Ft+1. The algorithm continues cycling

through examples (Xt, Yt) from the training data set as long as valid cuts can be generated. Unless the

current solution wt lies within F, the algorithm will eventually solve a separation problem that generates a

valid cut, thereby updating wt. Due to the role of convexity in each step of the sequence, the process is called

sequential convexification. The first three steps of the algorithm are depicted in Figures 7.3,7.4,7.5 and 7.6.

To summarize, since Ft ⊇ F, each iteration solves a relaxation of the RDP problem in Equation (7.10),

to obtain wt. Each cut strengthens the current relaxation of the RDP problem, and the objective increases

monotonically. At convergence, wt ∈ F and represents a solution to RDP. In order to use CPLEX effectively,

the implementation actually solves the dual of the relaxed RDP. From this perspective, the separation sub-

problem can be viewed as a column generation [1].

1Multiple minima exist iff the plane of points p satisfying 〈1, p〉 = ‖wt‖1 intersects Ft on a d-dimensional face of Ft for some
d ≥ 1.
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(a) (b) (c)
Figure 7.2: The separation problem. (a) Disjunctive feasible region for an ambiguous example with two
instances. (b) Current approximation Ft to feasible region F. (c) Intersection of these regions and two
examples of cuts (α, β) separating the intersection from the current solution. Note that the cuts approximate
the convex hull of the intersection, which is denoted Di (Ft) = conv

[⋃
x∈Xi

H (Yix, 1) ∩ Ft

]
.

7.4 Sequential convexification

Our algorithm is based on a technique called sequential convexification that is used to generate the complete

feasible region F. This work is related to the sequential convexification approach of [10] and that of [53].

Before proving the convergence, some definitions and preliminary results are required.

7.4.1 Convergence of nested sets

The first definition concerns the closeness of a point to a set.

Definition 20. For a point x and a set C, let dist (x,C) = minx̂∈C ‖x̂− x‖ be the minimum distance from

the point to the set.

Using the notion of distance between a point and a set, the following convergence of nested sets is defined.

Definition 21. Let {Ct} be a sequence of compact nested sets Ct+1 ⊆ Ct. The sequence {Ct} converges to

C̄ (i.e. limt→∞ Ct = C̄), if:

1. C̄ ⊆ Ct, ∀t, and

2. ∀ε > 0 there exists k̂ ∈ Z+ such that for all k ≥ k̂ and x ∈ Ck the point x is close to C̄ in the

following sense dist
(
x, C̄

)
< ε.

The set C̄ is called the limit set.

The following lemma will be used in the proof below. The lemma states that the limit set of a sequence

defined as convex hulls of unions of sets from L convergent sequences, is the convex hull of the union of the

L limit sets of the sequences. This lemma is a generalized version of a lemma by [53] that concerns unions

of L = 2 sequences.
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Figure 7.3: Sequential convexification - first iteration. The first row depicts the state of the algorithm prior
to making a cut. On the left, the current feasible region is shaded in green, and on the right, the shortest
weight vector measured with respect to the 1-norm is drawn as a green arrow. The darkest shaded region
corresponds to the true disjunctive feasible region whose convex hull is the desired . The middle row shows
how a hyperplane can be used to separate the current solution from the true disjunctive feasible region. The
hyperplane is parameterized by a weight vector and offset (α, β). The hyperplane defines a halfspace that
can be thought of as the margin constraint of a synthetic example. The bottom row shows how the feasible
region is restricted by intersection with the synthetic margin constraint.
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Figure 7.4: Sequential convexification - second iteration. For a description of the sub-figures, refer to Fig-
ure 7.3.
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Figure 7.5: Sequential convexification - third iteration. For a description of the sub-figures, refer to Figure 7.3.
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Figure 7.6: Sequential convexification - continued. As the sequential convexification proceeds, the approx-
imation to the current feasible region Ft improves in the vicinity of optimal solution, as expected for a
cutting-plane algorithm [41, 52].

Lemma 1. Let {Ct
1} , . . . , {Ct

L} be sequences of compact nested sets, which converge to C̄1, . . . , C̄L respec-

tively. Then

lim
t→∞

conv

(
L⋃

k=1

Ct
k

)
= conv

(
L⋃

k=1

C̄k

)
.

Proof. (⊇): Let x ∈ conv
(⋃L

k=1 C̄k

)
. Since C̄k ⊆ Ct

k ∀k∀t, this implies x ∈ conv
(⋃L

k=1 Ct
k

)
for all

t ≥ 0, which subsequently implies x ∈ limt→∞ conv
(⋃L

k=1 Ct
k

)
.

(⊆): Let x ∈ limt→∞ conv
(⋃L

k=1 Ct
k

)
. According to the definition of convergence for nested se-

quences
{

conv
(⋃L

k=1 Ct
k

)}
this implies that x ∈ conv

(⋃L
k=1 Ct

k

)
for all t ≥ 0. Thus, by the definition

of convexity, there exist sequences {xtk} ⊆ Ct
k ∀k and {λtk} ⊆ [0, 1] ∀k such that

∑L
k=1 λtk = 1 and{∑L

k=1 λtkxtk

}
→ x. Since the sequences {xtk} ∀k are bounded, they have convergent subsequences

{xtk} → xk ∈ C̄k ∀k and {λtk} → λk ∈ [0, 1]. Thus x ∈ conv
(⋃L

k=1 C̄k

)
.

7.4.2 Recursive Approximation

This section provides a detailed theoretical description of the sequential convexification procedure, including

a proof of asymptotic convergence. Implementation issues are discussed in Sections 7.4.3 and 7.4.4. Let
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Di (K) denote the convex hull of the i-th example, constrained to some relaxation set K

Di (K) = conv

[ ⋃
x∈Xi

H (Yix, 1) ∩K

]
. (7.13)

Next, consider the nested recursive sequence {P t} of approximations to F defined as follows. Let P 0 = Q.

For t ≥ 0, let P t+1 be defined by the following recursion

P t+1 = D1

(
D2

(
. . .
(
Dm

(
P t
))

. . .
))

(7.14)

= conv

( ⋃
x∈X1

H (Y1x, 1) ∩ . . . conv

( ⋃
x∈Xm

H (Ymx, 1) ∩ P t

)
. . .

)
. (7.15)

As is shown next, in the limit the sets defined by this recursive procedure converges to the feasible region F.

In other words

lim
t→∞

P t = F . (7.16)

Practically speaking, this means that, as long as the cutting-plane algorithm can generate valid cutting planes

for the set

Di (K) = conv

[ ⋃
x∈Xi

H (Yix, 1) ∩K

]
(7.17)

for any 1 ≤ i ≤ m and for any K, then this result implies that in the limit it will generate the convex hull in

the vicinity of the optimal solution.

The sequence {P t} has the following properties:

Proposition 4. The sequence is nested. In other words P t+1 ⊆ P t , ∀t.

Proof. For any sets A and B, the following conv (A ∩B) ⊆ conv (B) holds. The results follows from the

definition of P t+1.

Proposition 5. Elements P t of the sequence are closed and bounded (i.e. compact).

Proof. This is because finite intersections and unions of closed sets remain closed. Also, the convex hull of a

closed set is closed. Boundedness follows because P t ⊆ Q and Q is bounded by definition in Equation 7.6.

Proposition 6. The feasible set F ⊆ P t , ∀t. In fact, it is also true that F ⊆ Dk (Dk+1 (. . . (Dm (P t)) . . .))

for k = 1, . . . ,m and ∀t.

Proof. A proof by induction follows. Notice that the induction step decreases the k index. To begin, suppose
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that F ⊆ Dk (. . . (Dm (P t)) . . .). Then

Dk−1

(
. . .
(
Dm

(
P t
))

. . .
)

= conv

 ⋃
x∈Xk−1

H (Yk−1x, 1) ∩Dk

(
. . .
(
Dm

(
P t
))

. . .
) (7.18)

⊇ F ∩ conv

 ⋃
x∈Xk−1

H (Yk−1x, 1) ∩Dk

(
. . .
(
Dm

(
P t
))

. . .
)(7.19)

⊇ conv

[
m⋂

i=1

⋃
x∈Xi

H (Yix, 1) ∩Dk

(
. . .
(
Dm

(
P t
))

. . .
)]

(7.20)

⊇ conv

[
m⋂

i=1

⋃
x∈Xi

H (Yix, 1) ∩ F

]
(7.21)

⊇ F . (7.22)

The third line follows since conv (A ∩B) ⊆ conv (A) ∩ B if B is convex, a results that was shown in [7]

and was used previously in Equation 6.38. The same essential argument proves that F ⊆ Dm (P t) whenever

F ⊆ P t. The base case is F ⊆ P 0 = Q. This completes the induction argument.

Proposition 7. Successive elements of the sequence are at least as small as that obtained after a single

application of Di (·). In other words

P t+1 ⊆ conv

[ ⋃
x∈Xi

H (Yix, 1) ∩Q ∩ P t

]
, ∀t, 1 ≤ i ≤ m . (7.23)

Proof. Writing the definition of P t+1, and using conv (A ∩B) ⊆ conv (B) appropriately, one has

P t+1 = conv

( ⋃
x∈X1

H (Y1x, 1) ∩ . . . conv

( ⋃
x∈Xm

H (Ymx, 1) ∩ P t

)
. . .

)
(7.24)

⊆ conv

( ⋃
x∈X2

H (Y2x, 1) ∩ . . . conv

( ⋃
x∈Xm

H (Ymx, 1) ∩ P t

)
. . .

)
(7.25)

...

⊆ conv

( ⋃
x∈Xi

H (Yix, 1) ∩ . . . conv

( ⋃
x∈Xm

H (Ymx, 1) ∩ P t

)
. . .

)
. (7.26)

In other words, by recursively unwrapping the expression on the right-hand side from the outside and discard-

ing the relevant terms, the set on the right-hand side grows. Similarly, one can apply the same unwrapping

from the inside. Since conv (A ∩B) ⊆ conv (B), one can discard terms on the inside as well, yielding the
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desired result

P t+1 ⊆ conv

( ⋃
x∈Xi

H (Ymx, 1) ∩ . . . conv

( ⋃
x∈Xm

H (Ymx, 1) ∩ P t

)
. . .

)
(7.27)

⊆ conv

 ⋃
x∈Xi

H (Ymx, 1) ∩ . . . conv

 ⋃
x∈Xm−1

H (Ym−1x, 1) ∩ conv
(
P t
) . . .

 (7.28)

...

⊆ conv

( ⋃
x∈Xi

H (Ymx, 1) ∩ conv
(
P t
))

. (7.29)

Finally, the main result of this section.

Theorem 1. Infinite convergence to F. The sequence of approximations {P t} converges to the feasible

region F. In other words,

lim
t→∞

P t = F = conv

[
m⋂

i=1

⋃
x∈Xi

H (Yix, 1) ∩Q

]
. (7.30)

Proof. This proof was inspired by a much simpler case considered in [53]. Since the sequence {P t} is nested

(Proposition 4), the sets P t are closed and bounded (Proposition 5), and F ⊆ P t (Proposition 6), it is clear

that the sequence converges {P t} → P̂ such that F ⊆ P̂ .

Now, for any i (1 ≤ i ≤ m), observe that

P̂ = lim
t→∞

P t+1 ⊆ lim
t→∞

conv

[ ⋃
x∈Xi

H (Yix, 1) ∩Q ∩ P t

]
(7.31)

⊆ conv

[ ⋃
x∈Xi

H (Yix, 1) ∩Q ∩ P̂

]
. (7.32)

The first inclusion follows from (Proposition 7), while the second inclusion follows from Lemma 1 using the

sequences {H (Yix, 1) ∩Q ∩ P t} , ∀x ∈ Xi.

Therefore, one can conclude that the extreme points of P̂ lie in
⋃

x∈Xi
H (Yix, 1)∩Q, for all i. Otherwise,

a contradiction arises: if any extreme point was excluded, then by the properties of convex sets [61], it could

not be a member of conv
[⋃

x∈Xi
H (Yix, 1) ∩Q ∩ P̂

]
, which contradicts Equation (7.32). In other words

ext
(
P̂
)
⊆
⋂m

i=1

⋃
x∈Xi

H (Yix, 1) ∩Q. This, in turn, implies the final result

P̂ = conv ext P̂ ⊆ conv

[
m⋂

i=1

⋃
x∈Xi

H (Yix, 1) ∩Q

]
= F . (7.33)

.
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7.4.3 Separation by lift-and-project cuts

In order to generate the cuts for a given solution wt and an ambiguous training example (Xt, Yt) with the

current feasible region Ft, the algorithm considers a family of lift-and-project cuts. These are related to the

lift-and-project cuts introduced by [9] for 0-1 programming.

Lemma 2. Let (αx
0 , βx

0 ) = (Ytx, 1) for all x ∈ Xt. The cut defined by (α, β) ∈ Rd+1 is a valid cut if and

only if, for all x ∈ Xt, there exists positive multipliers (ux, ux
0 ) ∈ RN × R such that the following linear

constraints are satisfied

α ≥
N∑

i=1

ux
i αi + ux

0αx
0 (7.34)

β ≤
N∑

i=1

ux
i βi + ux

0βx
0 (7.35)

This characterization of valid cuts for Dt (Ft) is a direct consequence of Farkas lemma [9, 61]. A lift-

and-project cut is generated by maximizing the separation achieved by a valid cut.

Definition 22. The signed depth of a cut (αt, βt) is defined to be the signed functional distance from the

solution wt to the halfspace H (αt, βt), which is βt − 〈αt,wt〉 as derived in [46].

Maximizing the depth over valid cuts can be formulated as an LP over cut parameters (α, β) and multipliers

(ux, ux
0 ). In order to ensure that the LP has a finite optimum the coefficients are bounded ‖α‖1 ≤ CLNP,

where CLNP controls the complexity of the cut, as suggested in [9]. This completes the definition of the

lift-and-project cut generating LP.

Definition 23. The proposed lift-and-project cut for learning from ambiguous examples is defined as the

solution of the following linear program.

LNP max
β,α,ux

β − 〈α,wt〉 s.t. ‖α‖1 ≤ CLNP (7.36)

(α, β) is valid. (7.37)

If the multi-instances are restricted to Xi = {−ei, ei} where ei is the standard unit vector along the i-th

dimension, then this family of lift-and-project cuts reduces to the set proposed for 0-1 programming by [10].

When the depth is positive, a valid cut exists. The converse is also true: if the point wt /∈ Dt (Ft), the

convexity of Dt (Ft) guarantees that a valid cut exists (Corollary 11.4.2 pg. 99, [61]). On the other hand, if

the depth is negative, then it is clear that wt ∈ Dt (Ft). The solution (α, β) can be thought of as the cut that

would have been generated by the margin constraint of an unambiguous training example
((

Y
β α
)

, Y
)

.

Note that the cut defined by (αt, βt) = (ytxt, 1) for the unambiguous example (xt, yt) is valid and has

depth equal to the standard hinge loss, as long as w /∈ H (ytxt, 1). These are the cuts used by the ROMMA

algorithm [44].
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Figure 7.7: The LNP cut is a supporting hyperplane of the convex hull of the intersection Di (Ft) =
conv

[⋃
x∈Xi

H (Yix, 1) ∩ Ft

]
. The top row depicts the current feasible region Ft and the i-th disjunc-

tive margin constraint; a union of two halfspaces. Necessary and sufficient conditions for such a supporting
hyperplane are specified in Lemma 2. Essentially, the conditions of the lemma state that the hyperplane must
also support k = |Xi| other convex regions. These are the convex sets outlined in black in the second row,
one for each x ∈ Xi , resulting from the intersection of Ft with the halfspace H (Yix, 1). The dashed lines
and vectors in the second row represent supporting hyperplanes and normals for these convex sets. In order
to select a supporting hyperplane that excludes as much of the current approximation Ft as possible, the LNP
cut maximizes the distance between the hyperplane and the current solution wt. The bottom row shows (left)
a depth-zero supporting hyperplane for Ft, and (right) the deepest supporting hyperplane for Di.
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Figure 7.8: Analysis of the cutting-plane algorithm on MUSK1. Error bars show 95% confidence intervals
over 10 folds. (a) Cut depth. (b) Value of objective. (c) Generated cuts (columns, L to R). Upper bands
correspond to features, while lower bands correspond to slack variables. Initial cuts are typically derived
from unambiguous examples, including negatively labeled multi-instances. Ambiguous examples play a
greater role in the later stages. A subset of slack variables become active in the later cuts, indicating which
examples have tight margin constraints.

7.4.4 Convergence and cut set regularization

For 0-1 mixed-integer programming problems, there exists a proof showing that the sequential convexification

procedure converges in a finite number of steps [9]. Unfortunately, this does not hold for general disjunctive

programs. At this time, the theoretically proved asymptotic convergence will be demonstrated empirically.

There is a trade-off between the size of the cut-set, the accuracy of the resulting classifier, and the running

time, that may be controlled using various conditions. The size of the cut-set has an significant impact on

running time, since the LNP sub-problem constitutes the majority of computation in the entire sequential

convexification procedure. However, if our conditions are too strict, then the approximation Ft will be poor

and classifier accuracy will drop. The following two techniques, suggested by [9], were implemented for

regulating the size of the cut-set.

The first technique is to avoid shallow cuts in favor of subsequent deeper ones. This idea is implemented

by generating LNP cuts in rounds of 10 from which the single deepest cut is applied; the remaining cuts

are discarded. Also, a cut selected for the round is discarded if its depth measured relative to the current

objective is below a specified tolerance. The second technique is to avoid redundancy due to identical or

near parallel cuts. The generation of near-parallel cuts especially near convergence, is a commonly observed

behavior and the main cause of slow convergence of most cutting-plane algorithms [13, 1]. To alleviate this

problem, the algorithm only adds a cut to the cut-set when the angle made between it and any of the previous

cutting-planes of the cut-set is sufficiently large. Empirically, the minimum-angle tolerance has a direct and

noticeable effect on both the running time of the overall procedure and the accuracy of the resulting classifier.

The procedure is terminated if the relative increase of the objective falls below a specified tolerance. The

steps of the sequential convexification algorithm are depicted in algorithm box 7.1. Figure 7.8 provides a

diagnostic view of the running of the cutting-plane algorithm.

7.4.5 Projection

The objective of the proposed technique is the solution of DP in Equation (7.7). As argued above, an exact

solution to RDP will correspond to the global minimum of DP.
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Algorithm 7.1 Sequential convexification algorithm [SC]
1: input: D, δA, δD, δS , NLNP
2: initialize: C1 ← {(ek, 0) : k = 1, . . . , d},

F1 ← Q, w1 ← argminw∈F1
‖w‖1

3: repeat
4: (αt, βt)← (0, 0), Dt ← 0
5: for i = 1, . . . , NLNP do
6: Get training example (Xt, Yt)
7: (αi, βi)← LNP (wt,Ft,Xt, Yt)
8: if min(α,β)∈Ct

] ((αi, βi) , (α, β)) ≥ δA then
9: if depth ((αi, βi) ;wt) ≥ Dt then

10: (αt, βt)← (αi, βi)
11: Dt ← depth ((αt, βt) ;wt)
12: end if
13: end if
14: end for
15: if Dt ≥ δD ∗ ‖wt‖1 then
16: Ct+1 ← Ct ∪ {(αt, βt)}, Ft+1 ← Ft ∩H (αt, βt)
17: wt+1 ← argminw∈Ft+1

‖w‖1
18: end if
19: t← t + 1
20: until ‖wt+1‖1 − ‖wt‖1 < δS ∗ ‖wt‖1

Unfortunately, solving RDP exactly is time consuming. While the cutting-plane algorithm converges in

the limit to a point in F, the algorithm terminates before this point. Since the sequential approximation Ft is

larger than F (F ⊆ Ft, ∀t), the shortest vector in FT may not belong to F at convergence t = T . Therefore,

the algorithm does not even guarantee that a true feasible point is found, let alone the global minimum. A

simple projection operation, however, can be applied to obtain feasibility.

Projection maps the current solution, which lies in the convex approximation F, onto the original region

of feasibility
⋂m

i=1

⋃
x∈Xi

H (Yix, 1) ∩Q. As a result, a feasible point for the original DP is obtained. This

means that all multi-instance margin constraints are satisfied. Moreover, the projection identifies specific

interpretations (x, Yi) with x ∈ Xi of the ambiguous examples. This form of disambiguation is the same as

that used for MI-SVM from Chapter 5.

Specifically, to compute the projected solution, the algorithm first selects the most positive instance

xi = argmaxx∈Xi
f (x) of each multi-instance using the solution f (x) of RDP. Discarding the remain-

ing instances, the algorithm creates a data set of unambiguous examples D∗ = {(xi, Yi) |i = 1, . . . ,m}. The

projection from the RDP solution is then obtained by solving the following restricted version of DP for the

new weight vector w

PRDP min
w
‖w‖1 (7.38)

s.t. w ∈
m⋂

i=1

H (Yixi, 1) ∩Q . (7.39)

This is equivalent to the 1-norm SVM formulation using D∗. It tuns out that the performance of the PRDP

solution clearly exceeds that of the RDP solution (see Figure 7.9(a)). There is no guarantee that the projected
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feasible points will be global minima of DP. The objective values at the solution of RDP and PRDP provide

lower and upper bounds on the global minimum of DP. The difference in these values is called the gap. If

the gap is relatively small, then the solutions must be close to the solution of DP.

This completes the description of the basic LNPBoost algorithm. A short-coming of this algorithm is that

the LNPBoost sub-problem will take a long time to solve when the number of features is large, even when the

approximation Ft fits in memory. The algorithm is extended by a feature selection procedure in Section 7.6

below. Before doing so, a comparison of LNPBoost and MI-SVM from Chapter 5 is given.

7.5 A comparison with MI-SVM

Disregarding the issue of classifier performance, one might wonder how well does LNPBoost perform purely

as an optimization technique. In order to evaluate the approximate solution to DP returned by LNPBoost, a

comparison with the greedy local search strategy of MI-SVM is performed. To make the comparison valid,

MI-SVM is adapted to the 1-norm maximum-margin problem.

7.5.1 1-norm MI-SVM

A new algorithm called 1-norm MI-SVM is proposed. The goal of this algorithm is to solve the 1-norm DP

formulation introduced in this chapter. The 2-stage mixed-integer heuristic optimization strategy presented

in Chapter 5, Algorithm 5.1 is unchanged.

Specifically, the proposed 1-norm MI-SVM algorithm introduces integer variables 1 ≤ z (i) ≤ |Xi| to

select the “most positive” member xz(i) ∈ Xi. The resulting formulation is identical to Equations (5.24-5.27)

apart from the linear objective. The 2-stage local search heuristic alternates the following steps: (i) for given

integer variables, solve the associated LP and find the optimal hyperplane, (ii) for a given hyperplane, update

the integer variables in a way that (locally) minimizes the objective. In the current implementation of 1-norm

MI-SVM, the asynchronous update strategy was used. This strategy selects one integer variable to be updated

each round based on the difference maxx∈Xi
f (x)− f

(
xz(i)

)
. The “most positive” instances are initialized

randomly. The algorithm terminates when a local minimum is detected; i.e. when the subsequent integer

variable update fails to decrease the objective value. Since there are a finite number of disambiguations, the

algorithm terminates in a finite number of steps.

On a practical level, 1-norm MI-SVM can be implemented efficiently. It is convenient to represent and

manage the dual LP, due to the column handling routines provided by linear programming software packages.

The update of integer variable z (i) affects only one column of the constraint matrix. Saving additional

information about the solution (the basis) from previous iterations allows for efficient re-optimization in

subsequent rounds.

This completes the description of the basic 1-norm MI-SVM algorithm. The 1-norm MI-SVM is sus-

ceptible to local minima, just as MI-SVM was. Another short-coming of 1-norm MI-SVM algorithm is that

the constraint matrix will not fit in memory when the number of features is large. For this reason, the basic

1-norm MI-SVM algorithm variant can not be applied to the TREC9 data sets, or the MUSK2 data set when
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using RBF empirical feature maps. This algorithm can also be extended with feature selection, as described

next.

7.6 Feature selection

Feature selection is employed to make the algorithms practical for problems with a large feature sets (e.g.

d < 500). The proceeding discussion concerns the extension of the sequential convexification algorithm.

As described, the algorithm can only be applied to data sets with a relatively small number of features.

This is because the constraint set that represents the sequential approximation Ft after t iterations is t × d,

and the time and memory required to generate cuts via the LNP sub-problem increases with d. However, for

problems with large feature sets, such computation is wasteful because there is typically only a small fraction

of features that participate in the solution. The idea of feature selection is to identify the relevant subset of

features. In this way, the computation incurred by sequential convexification occurs over low-dimensional

constraint sets.

Feature selection is performed using the approach of LPBoost [26], described in Section 6.1.6. This

can be performed using the projected solution. The same essential idea was also used for feature selection

in DPBoost, Section 6.2.8. Features are added when they help to minimize the PRDP upper bound. An

important characteristic of the solution to PRDP in Equation (7.39) is the fact that the dual variables ui are

now associated with instances in the training data set, instead of cutting-planes. This allows one to compute

a feature score for the unused features that are associated with these instances

score (k;u,D) =
m∑

i=1

uiYihk (x)− 1 (7.40)

where the notation h∗ (x) is used to denote the projection of x onto the indicated feature. To initialize the

procedure, the algorithm begins with a small randomly selected subset of the features (typically 5), denoted

by AT . After solving the PRDP and retrieving its dual variables, the algorithm evaluates the score equation

and select new features (typically 2) with greatest score (k;u,D) ≥ 0. A detailed account is found in [26].

Box 7.2 shows the augmented algorithm. Figure 7.9 provides a detailed view of the inner workings of the

algorithm.

In order to extend the 1-norm MI-SVM algorithm, one can simply evaluate the feature score for the unused

features directly, because the dual variables ui are already associated with instances (the “most positive”

instances).

With feature selection, both algorithms can be successfully applied to the TREC9 data sets and the

MUSK2 data set using the RBF empirical feature map.
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Algorithm 7.2 Feature selection algorithm. Steps SC and PRDP are computed using only features from AT .
1: input: D, δA, δD, δS , NLNP
2: initialize: A1 ← random, w0 ← inf
3: repeat
4: wT ← SC (D, δA, δD, δS , NLNP;AT )
5: D∗ ←

{(
argmaxx∈Xi

〈wT , hAT
(x)〉 , Yi

)
| ∀i
}

6: u← PRDP (D∗; AT )
7: k ← argmaxk∈ĀT

score (k;u,D)
8: AT+1 ← AT ∪ {k}
9: T ← T + 1

10: until ‖wT−1‖1 − ‖wT ‖1 < δc ∗ ‖wT−1‖1
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Figure 7.9: Analysis of the effect of projection and boosting on the Elephant data set. (a) ROC curves for
RDP (broken) and PRDP (solid) classifiers at convergence of cutting-plane algorithm. (b) RDP objective
value vs. boosting round. (c) PRDP accuracy vs. boosting round. Error bars show 95% confidence intervals
obtained over 10-folds.

7.7 Experiments

7.7.1 Methodology

Algorithms were implemented in MATLAB2 using the Java3 interface in order to solve LP sub-problems

using CPLEX4. Algorithms were tested on multi-instance learning and transductive learning benchmarks.

For MIL, two MUSK data sets, in addition to three Corel image data sets (Tiger, Elephant, Fox) and seven

TREC9 text data sets (1,2,3,4,7,9,10) were used. This is an impressive, large, diverse collection of multi-

instance data sets. For transductive learning, the USPS handwritten digits data set was used. Details can be

found in Chapter 2.

For experiments, 10-fold crossvalidations were used to evaluate two variants of the algorithms: one with

linear features, and one with a radial basis function (RBF) features. In both cases, features were prepro-

cessed following [73]. First, each feature was centered and normalized so that its variance on the train-

ing data was 1. For the RBF empirical feature map, the inputs were subsequently transformed as follows

x 7→ (h1 (x) , . . . , hM (x)), where hj (x) = exp
(
−‖x− xj‖2 /σ2

)
, ∀j, and xj is the j-th individual from

the training data set. One set of experiments was performed with C = 1 and another with C = 0.5. All

2http://www.mathworks.com
3http://java.sun.com
4http://www.ilog.com
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experiments used default parameter settings otherwise: Cbalance = 0.5, CLNP = 1, NLNP = 10, δD = 10−5,

δS = 10−4 and σ ≈
√

d. A sequence of experiments with various minimum angle tolerances δA ∈ [0, π/2]

was performed for each data set. For boosting, 5 randomly selected features were used for initialization, and

2 features were added in each boosting round. For LNPBoost, the accuracy of the final PRDP solution (i.e.

after projection) is reported.

To test whether the performance differences between the compared algorithms are significant, a student’s

t-test was used. For two independent samples that are assumed to be normally distributed with unequal

standard deviations, the student’s t-test assesses whether the means are statistically different. The test is able

to reject the null hypothesis stating that the means of the distributions are the same, if the computed t-value

is larger than a threshold chosen from the appropriate significance table for 95% confidence. This means that

there is a 5% chance of observing a significant difference even if the means are the same.

In total there are results for 6 algorithms: EM-DD, MI-SVM, mi-SVM, 1-norm MI-SVM, 1-norm MI-

SVM with feature selection, and LNPBoost. These are the only algorithms that have been evaluated on all 12

data sets. The parameter settings and results of all experiments are tabulated in Section 7.9. These results are

analyzed in detail in the following sections.

7.7.2 Analysis of LNPBoost

Note that the running times for LNPBoost were between 30 minutes - 3 hours per fold on 1.7 GHz Athlon

MP processors for all reported experiments. Over 90% of the time is spent solving LNP sub-problem in-

stances. Fortunately, advances in combinatorial optimization indicate that LNP cuts can be computed much

more efficiently [11]. Also, notice that the variance of the accuracies reported for LNPBoost are high. It is

hypothesized that his is due to the heuristic projection method used to obtain the PRDP classifier. This could

be improved using alternative projections or by combining multiple projections as suggested in [1].

To gain more intuition for the operation of the LNPBoost algorithm, several statistics were measured and

studied on the MUSK and Corel benchmark data sets. These trends are evident in the Tables 7.16 and 7.17 of

Section 7.9.

In particular, the following quantities are studied: number of features used, running time, RDP score

(objective value) and accuracy, and PRDP score and accuracy. The variations in these quantities are studied

as the minimum-angle tolerance is decreased. Recall that the minimum-angle tolerance, as described in

Section 7.4.4, is a critical parameter for controlling the efficiency of the algorithm by restricting the cuts that

are added to the approximation Ft. The value used for the minimum-angle tolerance δA can be inferred from

the value cos (δA) that is listed under the “maximum-cosine tolerance” column.

Note that the number of features quantity counts the number of features added to the optimization by

the feature selection procedure. This does not imply that all of these features are used in the solution. For

example with the TREC9 data sets there are on average seven non-zero features in the projected solutions.

These trends are observed across several experiment sequences. Notice in Tables 7.16 and 7.17 that sev-

eral experiments are performed for each parameter setting and data set; only the minimum-angle tolerance pa-

rameter varies. To analyze the variations in these quantities, a plot of the quantity versus the minimum-angle

tolerance (maximum-cosine tolerance) is used. However, instead of viewing each sequence individually, the
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trends are observed by normalizing and aligning these sequences. For each sequence and each quantity, the

range of values is scaled to have a minimum and maximum value of zero and one respectively. The same

normalization is performed for the range of maximum-cosine tolerances. In this way the resulting curves may

be sub-sampled and averaged. This procedure is performed for all Corel sequences and all MUSK sequences

separately, resulting in Figures 7.10 and 7.11 respectively.

A large minimum-angle tolerance will selectively limit the number of cuts added to Ft, thereby limiting

the ability of the cutting-plane algorithm to converge to F. The algorithm will converge quickly because the

repeated LNP cut-generation sub-problems involve small numbers of constraints only. A smaller minimum-

angle tolerance implies that more cuts will be added to Ft, and the running time will increase accordingly.

These behaviours are observed in the top row of Figures 7.10 and 7.11. The number of rounds of feature

selection also varies. For the Corel data sets, there is a clear increasing trend in the number of features

used as the minimum-angle tolerance decreases, while for the MUSK data sets, the increasing trend is not

observed. The hypothesis is that, as the approximation FT becomes more complex, so does the combination

of non-zero dual variables ui in the projected solution, and therefore a larger number of features will have

positive scores.

As the minimum-angle tolerance decreases, the approximation FT at convergence will be smaller and

should provide a closer approximation to F near the optimal solution. This is reflected by an increase in the

RDP score (the 1-norm of the weight vector) that is also observed in the figures. In theory, as the minimum-

angle tolerance decreases, the solution to RDP should approach the true global minimum of DP. Therefore,

one might expect that the projected solutions, which upper-bound the DP objective, approach the global

minimum of DP from above, and so the PRDP scores should decrease. The PRDP score initially decreases

in both cases. For the Corel data sets, this curve levels off as the minimum-angle tolerance continues to

decrease. The leveling-off suggests that there are many similar-valued feasible points that arise from alternate

disambiguations close to the global minimum. On the other hand, for the MUSK data sets, this value makes

an unexpected jump before leveling off. It is possible that the projected solutions do not follow the expected

trend when the RDP solution is very far from the true DP solution.

As observed in the tables the RDP score is indeed significantly lower than PRDP score. This agrees with

the theory because RDP is a relaxation of DP, and PRDP is a restriction of DP.

As the approximation converges to the F, the solution approaches the true minimum of DP and corre-

sponding low-risk classifier motivated by the MI-SRM principle. The hope is that improving the quality of

the approximation will also improve the quality of the solution in terms of the accuracy obtained on the test

set. The bottom row of figures shows the corresponding behaviour of the resulting classifiers before and after

projection. The accuracy of the RDP classifier generally increases. More significant is the increasing trend

observed for the corresponding PRDP classifier. This indicates an interesting behaviour of the LNPBoost

algorithm. While the PRDP score is mostly unchanging for smaller minimum-angle tolerances (the right side

of the plots), the accuracy of the corresponding PRDP classifier increases. This suggests that the LNPBoost

algorithm is able to select among otherwise indistinguishable feasible points as it tries to find the global

minimum. This is a behavior not shared by the MI-SVM algorithms which can get stuck in local minima.
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Figure 7.10: Trends of LNPBoost on Corel data sets.
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Figure 7.11: Trends of LNPBoost on MUSK data sets.
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Data Set EM-DD LNPBoost Linear EM-DD LNPBoost RBF
Category mean std. mean std. p-value mean std. mean std. p-value
MUSK1 84.8 3.1 80.0 7.0 0.07 84.8 3.1 84.4 9.4 0.90
MUSK2 84.9 7.2 69.0 9.9 0.00 84.9 7.2 85.0 10.8 0.98
Elephant 78.3 3.5 85.0 11.1 0.10 78.3 3.5 77.5 13.2 0.86
Fox 56.1 3.0 57.5 8.6 0.63 56.1 3.0 59.5 6.4 0.15
Tiger 72.1 2.8 79.5 8.3 0.02 72.1 2.8 75.0 13.3 0.51
TST1 85.8 2.0 94.8 4.2 0.00 -
TST2 84.0 2.0 86.0 3.6 0.15 -
TST3 69.0 2.0 90.2 5.5 0.00 -
TST4 80.5 2.0 82.5 8.4 0.48 -
TST7 75.4 2.0 78.5 5.0 0.10 -
TST9 65.5 2.0 60.0 6.7 0.03 -
TST10 78.5 2.0 82.3 6.5 0.11 -

Table 7.1: Comparison of LNPBoost (linear and RBF) with EM-DD. 10-fold crossvalidation accuracies and
p-values from t-tests are shown. Bold values indicate which of the accuracies is greater. The p-values indicate
the probability of error that must be accepted in order for the difference to be deemed statistically significant.
Thus, there is: (1) essentially zero probability of error in accepting the hypothesis that LNPBoost with linear
features performs significantly better than EM-DD on TREC9 test set #3; (2) a 3% chance of error in accept-
ing the hypothesis that EM-DD performs significantly better than LNPBoost with linear features on TREC9
test set #9; and (3) a 98% chance of error in accepting the hypothesis that LNPBoost with RBF features
performs significantly better than EM-DD on MUSK2. All but two of the differences between EM-DD and
LNPBoost with linear features are statistically significant if an error probability of 15% is tolerated. Only
one such difference is significant between EM-DD and LNPBoost with RBF features at the same tolerance.

7.7.3 Comparison with EM-DD

LNPBoost was compared with the EM-DD algorithm of [75]. Separate t-tests were performed between EM-

DD and LNPBoost with linear features, and between EM-DD and LNPBoost with RBF empirical feature

maps. The results are detailed in Table 7.1. The performance of LNPBoost with linear features demonstrates

the effectiveness of the sequential convexification technique as a method for hyperplane learning, when used

in conjunction with a technique for feature selection. This also suggests that the proposed framework for

learning from ambiguous examples is appropriate for dealing with polymorphism.

7.7.4 Comparison with 2-norm mi-SVM and MI-SVM

LNPBoost is also compared with the mi-SVM and MI-SVM mixed-integer algorithms from Chapter 5.

Tables 7.2 shows these results. LNPBoost with RBF features obtains the highest accuracy on MUSK2.

LNPBoost with linear features has the best accuracy on Elephant, and LNPBoost with RBF features obtains

the highest accuracy on Fox. On TREC9, LNPBoost with linear features obtains the highest accuracy in

four cases, and is outperformed by a significant margin in only one case. Due to time constraints tests of

significance were not performed.

Two hypotheses to explain these differences are as follows. First, the formulations differ with regard

to the definition of the margin and the resulting optimization problems solved. In this regard, the superior
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Data Set mi-SVM MI-SVM LNPBoost
Category linear poly rbf linear poly rbf linear rbf
MUSK1 76.3 84.0 87.4 75.7 72.7 77.9 80.0 84.4
MUSK2 71.5 73.9 83.6 76.0 67.5 84.3 69.0 85.0
Elephant 82.2 78.1 80.0 81.4 79.0 73.1 85.0 77.5
Fox 58.2 55.2 57.9 57.8 59.4 58.8 57.5 59.5
Tiger 78.4 78.1 78.9 84.0 81.6 66.6 79.5 75.0
TST1 93.6 92.5 90.4 93.9 93.8 93.7 94.8 -
TST2 78.2 75.9 74.3 84.5 84.4 76.4 86.0 -
TST3 87.0 83.3 69.0 82.2 85.1 77.4 90.2 -
TST4 82.8 80.0 69.6 82.4 82.9 77.3 82.5 -
TST7 81.3 78.7 81.3 78.0 78.7 64.5 78.5 -
TST9 67.5 65.6 55.2 60.2 63.7 57.0 60.0 -
TST10 79.6 78.3 52.6 79.5 81.0 69.1 82.2 -

Table 7.2: Comparison of LNPBoost and 2-norm mi-SVM and MI-SVM. 10-fold crossvalidation accuracies
are reported.

performance of LNPBoost could be due to the fact that the 1-norm objective is better for dealing with poly-

morphism. Secondly, the strategies that are used to derive approximate solutions to these problems are quite

distinct. LNPBoost’s apparent improvement in performance could thus be attributed to a superior strategy

for solving disjunctive programs. This hypothesis is supported by the asymptotic convergence result for the

sequential convexification algorithm.

To test these hypotheses, the 1-norm MI-SVM algorithm is compared with the 2-norm MI-SVM algorithm

and with LNPBoost in the next section.

7.7.5 Comparison with 1-norm MI-SVM

The parameter settings and results for the basic 1-norm MI-SVM algorithm without feature selection, are

included in Tables 7.7-7.9. Notice that the results for the TREC9 data sets, as well as the MUSK2 data set

with RBF empirical feature maps are not given due to an out-of-memory error. The algorithm is also used

with feature selection to generate the results in Tables 7.10-7.12.

In the comparisons below, the version of 1-norm MI-SVM with feature selection is used. Justification for

this choice follows. First, this version of the algorithm can be applied successfully to all data sets. Second,

note that the accuracies obtained by the 1-norm MI-SVM algorithm with feature selection are generally

greater than without. This suggests that the feature selection mechanism provides additional regularization

that improves classifier performance. A detailed comparison can be made by studying the tables. Finally,

a comparison of LNPBoost with the feature selection version of 1-norm MI-SVM is more relevant because

both algorithms use the same technique for feature selection.

First, the 1-norm MI-SVM algorithm with feature selection is compared to the 2-norm MI-SVM and mi-

SVM algorithms. One difference in the implementations, apart from the objectives that are minimized, is

the update strategies; 1-norm MI-SVM uses asynchronous updates while 2-norm MI-SVM uses synchronous

updates. Table 7.3 contains accuracies for these algorithms on the benchmark data sets. Notice that for the
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Data Set mi-SVM MI-SVM 1-norm MI-SVM
Category linear poly rbf linear poly rbf linear rbf
MUSK1 76.3 84.0 87.4 75.7 72.7 77.9 77.8 80.0
MUSK2 71.5 73.9 83.6 76.0 67.5 84.3 67.0 80.0
Elephant 82.2 78.1 80.0 81.4 79.0 73.1 82.0 75.5
Fox 58.2 55.2 57.9 57.8 59.4 58.8 57.5 59.5
Tiger 78.4 78.1 78.9 84.0 81.6 66.6 78.0 75.5
TST1 93.6 92.5 90.4 93.9 93.8 93.7 95.0 -
TST2 78.2 75.9 74.3 84.5 84.4 76.4 86.0 -
TST3 87.0 83.3 69.0 82.2 85.1 77.4 87.8 -
TST4 82.8 80.0 69.6 82.4 82.9 77.3 83.1 -
TST7 81.3 78.7 81.3 78.0 78.7 64.5 78.2 -
TST9 67.5 65.6 55.2 60.2 63.7 57.0 44.0 -
TST10 79.6 78.3 52.6 79.5 81.0 69.1 82.0 -

Table 7.3: Comparison of 1-norm MI-SVM and 2-norm MI-SVM. 10-fold crossvalidation accuracies for 1-
norm MI-SVM, and 2-norm mi-SVM and MI-SVM, with various kernels. Bold values indicate the highest
accuracy for the data set (row).

high-dimensional TREC9 data sets, the 1-norm formulation of learning from ambiguous examples obtains

higher accuracies than the 2-norm formulation. The 2-norm formulation is generally better on the MUSK and

Corel data sets. Statistical tests of significance in the observed differences are not performed. One conclusion

that might be drawn from this comparison is that there is no clear “winner” in terms of the 1-norm and 2-norm

formulations.

This suggests that the improved performance of LNPBoost over 2-norm MI-SVM and mi-SVM that

was observed in Section 7.7.4 is due to the superiority of the LNPBoost algorithm for approximating the

maximum-margin separating hyperplane for ambiguous examples.

The subsequent discussion concerns the feature selection version of 1-norm MI-SVM and the LNPBoost

algorithm. In this discussion, the score and accuracy for LNPBoost refers to that of the projected PRDP

solution. For these comparisons, the results for the LNPBoost algorithm at the smallest minimum-angle

tolerance (respectively the largest maximum-cosine tolerance) are used.

The 1-norm MI-SVM algorithm with feature selection has a score that is generally less than the PRDP

score by a small amount. This can be observed in Tables 7.10-7.12 and Tables 7.15-7.17, when comparing

similar parameter settings. This suggests that the local greedy search heuristic is a more successful opti-

mization strategy. This would appear to contradict the hypothesis that LNPBoost is superior. As it turns out,

however, these lower scores do not necessarily translate into better higher accuracies.

Interestingly enough, the accuracy of the PRDP solution is marginally better than that of 1-norm SVM

with feature selection. However, these differences are mostly insignificant for reasonable t-test error prob-

abilities. Table 7.4 contains the relevant accuracies comparisons for LNPBoost and 1-norm MI-SVM. The

conclusion is that sequential convexification is marginally better than the local greedy search heuristic. More-

over, sequential convexification comes with a guarantee that it will converge to the solution of DP in the limit,

whereas the greedy local search heuristic does not.
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Linear RBF
Data Set 1-norm MI-SVM LNPBoost 1-norm MI-SVM LNPBoost
Category mean std. mean std. p-value mean std. mean std. p-value
MUSK1 77.8 10.5 80.0 7.0 0.59 80.0 12.6 84.4 9.4 0.39
MUSK2 67.0 13.4 69.0 9.9 0.71 80.0 7.1 85.0 10.8 0.24
Elephant 82.0 9.2 85.0 11.1 0.52 75.5 11.4 77.5 13.2 0.72
Fox 57.5 10.1 57.5 8.6 1.00 59.5 8.3 59.5 6.4 1.00
Tiger 78.0 8.2 79.5 8.3 0.69 75.5 5.5 75.0 13.3 0.91
TST1 95.0 4.2 94.8 4.2 0.92 -
TST2 86.0 3.6 86.0 3.6 1.00 -
TST3 87.8 5.1 90.2 5.5 0.33 -
TST4 83.1 8.8 82.5 8.4 0.88 -
TST7 78.2 5.0 78.5 5.0 0.89 -
TST9 44.0 5.0 60.0 6.7 0.00 -
TST10 82.0 5.2 82.3 6.5 0.94 -

Table 7.4: Comparison LNPBoost with 1-norm MI-SVM with feature selection. 10-fold crossvalidation
accuracies and p-values, using linear and RBF features. Bold values indicate which of the accuracies is
greater. The p-values indicate the probability of error that must be accepted in order for the difference to
be deemed statistically significant. Thus, there is: (1) essentially zero probability of error in accepting the
hypothesis that LNPBoost performs significantly better than 1-norm MI-SVM with linear features on TREC9
test set #9; (2) essentially 100% probability of error in accepting the hypothesis that LNPBoost performs
significantly better than 1-norm MI-SVM with RBF features on the Fox data set; and (3) a 24% probability
of error in accepting the hypothesis that LNPBoost performs significantly better than 1-norm MI-SVM with
RBF features on the MUSK2 data set. The following observation provides a (rather weak) argument in
favor of LNPBoost: if one is willing to accept 72% chance of error, then nine out of 17 comparisons are
statistically significant and favor LNPBoost, while none of the significant differences favor the 1-norm MI-
SVM algorithm.
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Data Set SVM SDP TSVM LNPBoost
Category mean std. mean std. mean std.

USPS digits 0.75 0.04 0.96 0.04 0.93 0.11

Table 7.5: Performance of LNPBoost on a transductive learning task. The values reported are area under the
receiver-operator curve scores (AUC). SVM and SDP TSVM results are from [17]. The difference between
LNPBoost and SDP TSVM is not significant with a p-value of 0.05.

7.7.6 Optical character recognition

The next experiment concerns the optical character recognition task and corresponding ambiguous data set

that was introduced in Section 2.4. In this case, the learning task is transductive inference; some of the

examples are labeled (unambiguously), some of the examples are unlabeled, and the goal is to infer the labels

of the unlabeled examples.

As described in Section 3.2.1, unlabeled instances are used to create ambiguous examples. After running

LNPBoost, the resulting classifier is used to classify individual instances, instead of multi-instances. For this

example only, the performance is measured on the level of individual instances. The performance metric used

was the area under the receiver operator curve (AUC) [28]. Table 7.5 contains the AUC scores as reported

in [17], for comparison with LNPBoost. Using the RBF empirical feature mapping, LNPBoost significantly

outperforms an inductive SVM with an RBF kernel. This algorithm is denoted by the acronym SVM in the

table. The inductive SVM uses only the labeled points. Furthermore, LNPBoost is competitive with the

relaxed transductive SVM algorithm from [17]. This algorithm is solved by semi-definite programming, and

hence is denoted SDP TSVM in the table.

This result is significant because it demonstrates an important feature that motivated the proposed for-

mulation of learning from ambiguous examples presented herein: the maximum multi-instance margin sepa-

rating hyperplane corresponds to a low-risk classifier that is able to accurately classify individual instances.

Moreover, the technique is competitive with the state-of-the-art.

7.8 Discussion

This chapter proposes LNPBoost, a new algorithm developed within a risk minimization framework for

learning from ambiguous examples. LNPBoost solves a convexified disjunctive program that is an extension

of 1-norm SVM. The formulation and cutting-plane algorithm admits an intuitive geometric understanding.

Also, a proof showing the asymptotic convergence of the approximation to the desired solution is provided.

Experiments show that LNPBoost outperforms previous algorithms on many MIL benchmarks, and is

also competitive on a transductive learning benchmark. Included in the evaluation are detailed comparisons

of LNPBoost with EM-DD and 1-norm MI-SVM. Better performance for all experiments may be possible

by tuning parameters on a held-out validation set, in particular the slack penalty C, the cut complexity CLNP,

and σ for the RBF features.

One could clearly extend the local search heuristic used by 1-norm MI-SVM, for example by extending

the neighborhood of the local search and running the algorithm for a longer time. The value of such a
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technique would be greatly increased if it could be coupled with a theoretical argument showing that it will

convergence to the global minimum.
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7.9 Raw results tables

Table 7.6 contains descriptions for the terminology used in subsequent tables. The column headings that are

not included are the mean and standard deviation of running time (in minutes), score (i.e. objective value),

and multi-instance classification accuracy as measured on the held-out test set.

Name of column
heading

Notation Description

slack_balance Cbalance The fraction of the slack penalty that is used to scale constraint
violations of positive (ambiguous) examples.

slack_penalty C ∗
m/Cbalance

A value derived from the slack penalty C, the slack balance
Cbalance and the size of the training data set m. The value of C
is either 1 or 0.5.

sigma σ The width of the radial basis function empirical feature map.
num_round_cglp NLNP The number of LNP cuts that are generated before the deepest

is selected and added to the sequential convexification.
run_conv_tol δS The tolerance on the relative change of the objective for

detecting convergence of the algorithm.
run_step_tol δD The depth tolerance relative to ‖wt‖ for adding cuts to Ft.

max_cosine_tol cos (δA) The cosine of the minimum-angle tolerance; the angle that
must separate each cut. Cuts are accepted when their direction
is unique to within this angle tolerance; in other words, when
the cosine of the angle between the candidate cut and each of
the existing cuts is smaller than cos(δA). When this parameter
is −1, only one cut is accepted. As this parameter is increases
to +1, more and cuts are accepted.

use_fs A binary value indicating whether feature selection was used.
fs_max_iter The maximum number of feature selection iterations.
fs_min_iter The minimum number of feature selection iterations.

fs_init The number of randomly chosen features used for
initialization.

fs_num_add The number of features added in a single iteration of feature
selection.

fs_add_tol The tolerance on the feature score above which features are
considered for selection.

Table 7.6: Description of parameters in subsequent tables

7.9.1 1-norm MI-SVM without feature selection
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Table 7.7: Common parameters used by 1-norm MI-SVM without feature selection
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tiger_890 360 none - 2.0 1.1 77.0 12.1 60.0 5.7
tiger_815 180 none - 1.5 0.7 77.5 11.8 39.6 2.9
tiger_891 360 rbf2 8 5.2 3.1 73.5 8.8 114.0 3.0
tiger_860 180 rbf2 8 4.7 2.6 77.0 9.2 67.7 1.4

elephant_890 360 none - 1.5 0.8 79.5 9.6 70.9 4.0
elephant_815 180 none - 1.5 0.8 82.5 9.5 42.5 1.8
elephant_891 360 rbf2 8 5.9 3.5 83.0 8.9 124.0 3.0
elephant_860 180 rbf2 8 5.6 3.2 82.5 9.5 71.4 1.0

fox_890 360 none - 2.0 0.9 54.5 11.4 110.2 4.6
fox_815 180 none - 2.0 0.9 53.0 9.2 61.8 1.6
fox_891 360 rbf2 8 5.4 3.1 61.5 7.5 150.1 2.7
fox_860 180 rbf2 8 5.0 2.9 60.0 10.8 83.9 0.9

Table 7.8: Corel results for 1-norm MI-SVM without feature selection
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musk1_803 150 none - 0.5 0.2 81.1 10.5 26.2 1.7
musk1_823 75 none - 0.4 0.1 75.6 12.6 16.2 0.7
musk1_890 150 rbf2 9 0.6 0.2 82.2 11.9 54.3 1.2
musk1_891 75 rbf2 9 0.7 0.2 83.3 10.8 31.1 0.6
musk2_801 150 none - 247.4 164.4 69.0 11.0 36.5 1.5
musk2_821 75 none - 212.5 131.4 67.5 11.6 21.0 0.8
musk2_890 150 rbf2 9 - - - - - -
musk2_891 75 rbf2 9 - - - - - -

Table 7.9: MUSK results for 1-norm MI-SVM without feature selection. Note that the experiments on
MUSK2 using the RBF empirical feature map could not be run due to an out of memory error.
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7.9.2 1-norm MI-SVM with feature selection
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value 0.5 0.0001 1e-05 1.1 1 50 5 5 2 -0.5

Table 7.10: Common parameters used by 1-norm MI-SVM with feature selection on Corel and MUSK data
sets
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tiger_790 360 none - 14.6 2.6 11.6 4.1 78.0 8.2 82.0 9.8
tiger_715 180 none - 17.2 2.9 12.8 6.5 78.0 11.8 44.1 3.3
tiger_791 360 rbf2 8 20.0 5.6 18.5 9.2 73.5 9.7 129.3 19.0
tiger_760 180 rbf2 8 11.6 1.3 12.5 5.3 56.0 17.4 84.0 9.6

elephant_790 360 none - 21.6 2.5 11.4 3.5 82.0 9.2 81.2 5.9
elephant_715 180 none - 16.9 3.4 10.5 5.1 84.0 8.1 47.4 2.9
elephant_791 360 rbf2 8 14.1 3.1 12.6 4.6 75.5 11.4 137.1 6.2
elephant_760 180 rbf2 8 11.8 1.4 13.0 5.5 75.0 12.9 75.7 1.9

fox_790 360 none - 14.9 4.9 16.1 11.1 57.5 10.1 134.0 5.3
fox_715 180 none - 16.8 3.9 18.1 7.6 57.0 11.4 69.2 2.0
fox_791 360 rbf2 8 11.5 0.8 12.5 5.8 49.5 8.6 174.8 8.8
fox_760 180 rbf2 8 11.0 0.0 12.7 5.6 45.0 4.1 90.0 0.0

Table 7.11: Corel results for 1-norm MI-SVM with feature selection
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Table 7.13: Parameters used by 1-norm MI-SVM with feature selection on TREC9 data sets
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musk1_703 150 none - 14.9 3.6 2.4 1.0 77.8 10.5 31.3 1.7
musk1_723 75 none - 14.8 4.0 2.4 0.7 76.7 13.3 17.9 1.0
musk1_790 150 rbf2 9 14.2 3.0 2.5 1.2 80.0 12.6 57.2 1.3
musk1_791 75 rbf2 9 12.4 1.6 2.2 0.6 80.0 10.2 31.1 0.6
musk2_701 150 none - 15.5 3.4 1845.1 754.1 67.0 13.4 45.6 2.0
musk2_721 75 none - 14.6 3.1 1630.0 1029.2 69.0 8.8 24.4 0.5
musk2_735 150 rbf2 9 10.2 2.9 1528.9 757.6 68.0 19.2 73.2 2.5
musk2_737 75 rbf2 9 - - - - - - - -

Table 7.12: MUSK results for 1-norm MI-SVM with feature selection
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trec_711 720 none - 10.1 0.3 73.8 35.0 95.0 4.2 267.8 16.3
trec_712 720 none - 10.0 0.0 84.5 38.0 86.0 3.6 260.9 2.5
trec_713 720 none - 10.1 0.3 93.3 41.8 87.8 5.1 289.1 8.3
trec_714 720 none - 10.0 0.0 102.1 42.9 83.1 8.8 273.6 3.2
trec_715 720 none - 10.0 0.0 95.5 44.4 78.2 5.0 282.5 3.1
trec_716 720 none - 10.7 0.5 143.2 80.7 44.0 5.0 360.0 0.0
trec_717 720 none - 10.0 0.0 80.6 35.6 82.0 5.2 290.4 3.6

Table 7.14: TREC9 results for 1-norm MI-SVM with feature selection. Note that, without feature selection,
1-norm MI-SVM reports an out-of-memory error.
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7.9.3 LNPBoost
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value 0.5 0.0001 1e-05 10 1 50 5 5 2 -0.5

Table 7.15: LNPBoost parameters for Corel and MUSK data sets
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tiger_110 360 none - 0.60 12.2 1.5 8.2 5.3 70.5 6.9 9.0 1.1 75.5 8.6 86.0 8.0
tiger_111 360 none - 0.64 11.4 0.5 8.2 3.1 67.5 10.3 10.9 0.8 80.0 9.1 94.0 6.7
tiger_112 360 none - 0.68 12.3 1.6 20.6 11.4 62.0 11.6 13.9 1.5 76.0 13.5 97.6 5.1
tiger_130 360 none - 0.70 12.9 2.4 16.7 24.8 64.0 8.1 14.6 2.1 74.0 7.4 92.8 9.7
tiger_131 360 none 0.74 11.6 0.7 16.6 6.3 71.0 11.7 17.5 1.5 79.5 8.3 97.0 8.1
tiger_113 180 none - 0.60 12.8 2.0 23.9 11.6 66.5 13.1 13.7 1.6 75.0 10.3 47.7 2.2
tiger_114 180 none - 0.64 12.9 1.4 35.7 9.7 74.5 7.2 14.5 1.1 77.5 10.6 47.3 2.9

tiger_120 360 rbf2 8 0.60 14.0 2.9 7.1 1.4 54.5 6.9 36.8 13.4 73.0 10.6 146.2 12.8
tiger_121 360 rbf2 8 0.64 12.6 1.3 8.2 1.9 57.0 10.9 48.7 5.5 70.0 13.7 149.6 15.1
tiger_122 360 rbf2 8 0.68 12.6 1.5 10.4 1.9 65.5 15.5 52.9 2.6 74.0 10.7 138.9 11.0
tiger_150 360 rbf2 8 0.70 13.5 2.8 13.6 5.6 57.5 11.8 53.0 2.0 74.0 12.4 137.8 11.7
tiger_151 360 rbf2 8 0.74 15.1 2.3 20.0 8.8 65.0 12.9 53.3 3.2 75.0 12.7 139.0 12.5
tiger_152 360 rbf2 8 0.78 13.2 2.0 22.7 10.8 68.5 14.0 54.9 2.9 76.5 9.4 137.7 13.0
tiger_191 360 rbf2 8 0.80 14.6 3.3 54.1 23.4 61.0 9.7 56.3 3.7 75.0 13.3 140.1 7.6
tiger_123 180 rbf2 8 0.60 15.2 4.0 49.4 20.4 68.0 14.4 35.1 3.2 72.0 9.2 77.1 4.6
tiger_124 180 rbf2 8 0.64 18.3 5.3 71.6 32.1 74.5 6.4 34.3 2.0 75.5 8.6 75.4 4.9
tiger_125 180 rbf2 8 0.68 14.9 2.1 56.8 15.4 70.0 10.8 35.6 2.3 76.0 8.8 75.4 5.4
tiger_160 180 rbf2 8 0.70 17.2 4.7 73.1 33.4 77.5 7.9 35.2 1.8 77.0 11.6 75.5 5.2

elephant_110 360 none - 0.60 12.3 1.3 5.6 1.9 65.5 17.9 8.4 0.7 82.5 12.3 78.3 8.1
elephant_111 360 none - 0.64 12.2 0.9 9.4 4.3 66.0 15.4 9.4 0.6 82.5 10.6 74.1 8.4
elephant_112 360 none - 0.68 12.6 1.4 15.6 7.3 67.0 10.1 11.2 1.1 83.0 11.1 74.1 6.1
elephant_130 360 none - 0.70 13.1 1.7 29.8 26.4 70.5 9.6 11.9 1.1 83.0 9.8 74.0 7.6
elephant_131 360 none - 0.74 13.1 1.7 47.4 43.3 65.5 11.9 14.0 0.9 85.0 11.1 74.9 4.3
elephant_113 180 none - 0.60 14.3 2.5 57.8 42.8 73.5 6.7 10.4 1.0 83.5 8.5 38.8 2.3

elephant_120 360 rbf2 8 0.60 12.9 2.1 6.4 1.8 52.5 13.6 39.7 7.9 71.5 15.6 157.5 8.5
elephant_121 360 rbf2 8 0.64 12.5 1.5 7.8 2.1 61.5 14.0 49.7 6.6 72.5 13.6 150.3 9.7
elephant_122 360 rbf2 8 0.68 12.3 1.6 10.2 2.1 62.0 10.3 52.8 3.7 75.5 11.7 150.2 7.0
elephant_150 360 rbf2 8 0.70 12.7 2.2 12.7 4.2 63.0 11.6 55.2 1.8 73.5 11.3 147.8 9.1
elephant_151 360 rbf2 8 0.74 13.7 2.8 17.4 4.3 56.5 11.6 55.3 2.8 77.5 13.2 149.5 5.8
elephant_123 180 rbf2 8 0.60 17.0 4.6 66.0 55.6 66.0 12.9 33.0 1.7 72.0 11.8 78.2 2.9
elephant_124 180 rbf2 8 0.64 14.9 4.3 53.0 21.8 71.5 14.0 33.8 1.2 74.5 13.4 76.9 2.7
elephant_125 180 rbf2 8 0.68 14.5 3.0 80.6 91.6 67.0 15.3 34.1 1.8 73.0 13.8 77.4 1.8
elephant_160 180 rbf2 8 0.70 14.9 3.0 63.9 17.7 68.0 11.4 33.9 1.2 71.0 12.9 77.3 2.9

fox_110 360 none - 0.60 12.4 1.7 7.0 2.7 53.5 15.5 10.1 1.1 53.5 9.7 136.6 7.2
fox_111 360 none - 0.64 12.9 1.7 10.7 5.6 55.5 14.0 12.1 1.2 59.0 13.5 140.8 3.8
fox_112 360 none - 0.68 12.7 1.1 15.4 4.0 50.0 7.5 15.0 1.4 54.0 9.1 143.3 4.8
fox_130 360 none - 0.70 12.1 1.5 20.0 12.9 54.0 9.1 17.7 1.5 56.0 9.9 141.7 5.1
fox_131 360 none - 0.74 13.0 1.5 44.1 38.3 54.0 10.5 19.9 2.2 57.5 8.6 139.5 3.8
fox_113 180 none - 0.60 14.4 3.0 46.1 29.0 54.5 9.6 15.2 1.8 56.0 7.0 72.6 2.0

fox_120 360 rbf2 8 0.60 12.6 1.1 4.9 0.8 56.0 10.5 44.5 3.6 54.0 10.5 169.7 3.4
fox_121 360 rbf2 8 0.64 14.1 2.3 10.6 3.3 50.5 8.3 46.6 6.0 53.0 7.5 168.1 5.0
fox_122 360 rbf2 8 0.68 12.8 2.3 11.1 4.3 50.5 13.4 51.2 3.8 60.5 13.8 168.9 4.0
fox_150 360 rbf2 8 0.70 13.2 2.2 14.1 5.5 54.5 9.6 53.5 3.5 55.0 11.3 168.8 4.0
fox_151 360 rbf2 8 0.74 13.7 2.8 18.8 6.0 51.0 8.1 55.7 2.6 59.5 6.4 169.9 4.2
fox_123 180 rbf2 8 0.60 16.7 2.8 61.7 17.8 52.5 14.0 33.6 2.5 54.0 14.3 87.4 6.0
fox_124 180 rbf2 8 0.64 16.5 5.2 64.7 27.9 57.0 12.1 34.1 2.8 57.5 7.9 86.3 1.5
fox_125 180 rbf2 8 0.68 16.8 3.6 81.3 27.4 55.0 13.9 34.0 2.4 55.0 10.3 88.9 6.9
fox_160 180 rbf2 8 0.70 17.2 2.9 86.8 21.5 55.0 13.7 33.9 1.4 53.0 13.4 86.5 1.6

Table 7.16: Corel results for LNPBoost
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musk1_500 150 0.5 none - 0.70 17.5 6.1 12.9 9.7 54.4 19.2 5.7 1.0 78.9 8.2 31.8 2.0
musk1_501 150 0.5 none - 0.74 14.7 3.3 15.0 6.4 68.9 18.0 7.4 1.4 78.9 8.2 31.6 2.4
musk1_502 150 0.5 none - 0.78 18.7 5.0 39.5 23.1 60.0 18.3 7.1 1.3 72.2 9.4 31.8 3.0
musk1_503 150 0.5 none - 0.82 18.1 3.8 120.8 35.7 56.7 17.7 8.6 1.7 80.0 7.0 31.8 2.6
musk1_520 75 0.5 none - 0.70 15.4 3.6 18.5 7.9 54.4 20.6 6.2 1.1 75.6 11.5 17.9 0.8
musk1_521 75 0.5 none - 0.74 21.6 7.8 49.1 30.5 68.9 12.6 5.8 1.3 74.4 11.8 18.0 0.7
musk1_522 75 0.5 none - 0.78 17.9 4.9 48.1 24.0 72.2 13.1 6.9 1.1 81.1 5.4 18.6 1.2
musk1_523 75 0.5 none - 0.82 21.9 4.5 279.6 141.1 65.6 11.0 6.7 0.8 81.1 11.8 18.5 0.8

musk1_600 150 0.5 rbf2 9 0.70 13.3 2.5 6.5 2.2 60.0 15.0 39.6 2.5 83.3 9.4 58.8 2.1
musk1_601 150 0.5 rbf2 9 0.74 14.9 3.4 8.5 3.3 66.7 19.6 39.1 2.5 80.0 7.0 58.9 2.6
musk1_602 150 0.5 rbf2 9 0.78 14.5 2.5 12.1 3.6 71.1 14.1 40.7 2.0 84.4 13.0 58.4 1.4
musk1_603 150 0.5 rbf2 9 0.82 14.9 2.1 15.8 7.1 68.9 11.5 40.4 1.5 78.9 11.0 58.5 1.7
musk1_604 150 0.5 rbf2 9 0.86 12.8 2.4 13.4 8.0 68.9 11.5 41.3 2.1 84.4 9.4 58.3 1.8
musk1_605 150 0.5 rbf2 9 0.90 13.7 2.7 23.4 10.5 65.6 20.6 42.6 2.2 83.3 9.4 58.6 2.2
musk1_620 75 0.5 rbf2 9 0.70 14.2 2.0 8.3 2.1 73.3 15.0 24.4 0.4 77.8 15.7 31.4 0.6
musk1_621 75 0.5 rbf2 9 0.74 14.8 2.4 8.3 2.8 83.3 15.9 24.4 0.5 80.0 13.7 31.4 0.6
musk1_622 75 0.5 rbf2 9 0.78 13.7 2.2 7.5 2.2 76.7 15.2 24.4 0.5 76.7 12.2 31.6 0.5
musk1_623 75 0.5 rbf2 9 0.82 13.7 1.6 9.1 3.4 78.9 13.3 24.4 0.6 80.0 11.5 31.3 0.6
musk1_624 75 0.5 rbf2 9 0.86 13.5 2.6 11.2 7.0 77.8 12.8 24.5 0.7 82.2 14.1 31.3 0.6
musk1_625 75 0.5 rbf2 9 0.90 12.4 2.1 10.3 3.9 72.2 15.9 24.9 0.7 77.8 14.8 31.4 0.6
musk1_626 75 0.5 rbf2 9 0.96 12.9 2.6 61.5 58.5 83.3 9.4 28.4 0.8 81.1 9.1 31.1 0.7

musk2_530 150 0.5 none - 0.60 14.9 5.1 25.4 18.9 60.0 11.5 5.9 1.2 69.0 9.9 42.3 3.3
musk2_521 75 0.5 none - 0.60 22.6 7.8 454.4 307.6 62.0 9.2 5.0 1.2 71.0 12.0 22.9 1.1

musk2_104 150 0.5 rbf2 9 0.60 14.7 2.8 35.1 10.3 64.0 13.5 37.7 2.3 84.0 11.7 68.2 2.0
musk2_102 150 0.5 rbf2 9 0.68 16.0 3.7 24.8 9.4 65.0 13.5 38.8 1.5 80.0 12.5 68.0 1.3
musk2_100 150 0.5 rbf2 9 0.74 15.1 4.4 23.7 11.7 67.0 16.4 40.4 1.7 84.0 10.7 69.2 1.0
musk2_105 150 0.5 rbf2 9 0.78 14.1 3.8 55.2 35.2 67.0 8.2 42.3 2.2 83.0 10.6 68.0 1.3
musk2_106 150 0.5 rbf2 9 0.82 13.7 2.3 27.6 8.2 66.0 12.6 42.9 2.5 85.0 10.8 68.9 1.0
musk2_531 75 0.5 rbf2 9 0.60 13.3 1.9 15.6 5.2 67.0 12.5 25.9 1.0 82.0 10.3 36.0 0.5
musk2_532 75 0.5 rbf2 9 0.68 15.2 4.6 22.5 11.9 73.0 24.1 25.9 1.0 83.0 12.5 35.9 0.6
musk2_121 75 0.5 rbf2 9 0.74 13.6 2.2 41.9 22.3 76.0 15.1 26.3 0.8 81.0 13.7 35.9 0.4
musk2_122 75 0.5 rbf2 9 0.78 14.8 3.2 22.4 10.3 79.0 8.8 26.2 0.8 80.0 9.4 35.9 0.5
musk2_534 75 0.5 rbf2 9 0.86 12.7 1.9 37.3 19.2 73.0 12.5 27.3 1.2 80.0 16.3 36.0 0.5
musk2_536 75 0.5 rbf2 9 0.90 13.7 3.6 42.8 24.4 77.0 9.5 27.2 1.4 80.0 16.3 35.9 0.5

Table 7.17: MUSK results for LNPBoost
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value 0.5 0.01 1e-4 1 1 50 5 5 2 -0.5

Table 7.18: LNPBoost parameters for TREC9 data sets
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trec_11 720 none - 0.90 11.0 0.0 143.4 36.5 94.2 4.1 225.2 4.5 94.8 4.2 242.5 3.4
trec_12 720 none - 0.90 11.1 0.3 74.2 3.5 86.0 3.6 236.7 4.6 86.0 3.6 260.8 2.4
trec_13 720 none - 0.90 11.1 0.3 79.7 5.0 89.0 6.5 246.4 4.5 90.2 5.5 282.4 3.2
trec_14 720 none - 0.90 11.8 1.4 84.7 13.6 82.5 8.7 239.8 3.6 82.5 8.4 269.4 3.0
trec_15 720 none - 0.90 11.0 0.0 73.9 2.1 78.2 4.7 242.6 5.0 78.5 5.0 281.3 3.1
trec_16 720 none - 0.90 14.0 2.7 169.2 52.8 58.0 5.9 294.8 6.2 60.0 6.7 336.6 7.3
trec_17 720 none - 0.90 11.5 1.1 80.7 10.3 83.2 5.5 249.3 4.6 82.2 6.5 285.9 3.7

Table 7.19: TREC9 results for LNPBoost



Chapter 8

Summary and conclusions

This thesis is concerned with learning from examples that are ambiguous, as observed in several semi-

supervised learning problems. Specifically the problems are multiple-instance learning, transductive infer-

ence and semi-supervised inductive inference. Multiple-instance learning addresses the problem of learning

from inputs that are ambiguous due to polymorphism. Transductive learning and semi-supervised inductive

inference deal with the problem of learning from a small collection of examples (instance-label pairs) that is

augmented by a large collection of unlabeled inputs. Restricting to hyperplanes that pass through the origin,

transductive learning and semi-supervised inductive inference can both be reduced to multi-instance learning.

The reduction follows by converting the unlabeled and ambiguous inputs from these problems, into polymor-

phic inputs (multi-instances) with specific labels. This reduction to multi-instance learning aligns all sources

of ambiguity under one framework. The key question that is addressed in this thesis is the following. Is it

possible to recover the implicit categories underlying a collection of ambiguous examples?

This thesis proposes a framework for learning from ambiguous examples. Learning from ambiguous

examples is performed through the systematic treatment of ambiguity. Information from ambiguous examples

is derived via disambiguation, where inferences involving the interpretations of ambiguous examples are

made. The key intuition is that the true interpretation is self-reinforcing. To formalize this idea, this thesis

proposes a risk minimization principle for learning from ambiguous examples. As such this thesis presents

a principled framework for making specific and plausible inferences about ambiguous inputs in a pattern

classification system.

Specifically, disambiguation is encoded implicitly by selecting the “most positive” instance in each multi-

instance. In this way, the principle of structural risk minimization drives the selection of the disambiguation

to obtain the best bound on the generalization error of the underlying classifier. Practically speaking, this

formulation leads to a non-linear optimization problem. Subsequently, a significant portion of this thesis

concerns the derivation of specialized optimization techniques for finding the maximum-margin hyperplane,

or a close approximation to it.

To summarize, the contributions of this thesis are:

1. Two data sets

99
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2. A structural risk minimization / maximum-margin framework for learning from ambiguous examples

3. A pictorial framework for conveying principles of risk minimization and convex programming

4. One algorithm for learning from ambiguous examples using a 2-norm formulation of the maximum-

margin problem

(a) Multi-instance support vector machine (MI-SVM)

5. Three algorithms for learning from ambiguous examples using a 1-norm formulation of the maximum-

margin problem

(a) Disjunctive programming boosting (DPBoost)

(b) 1-norm multi-instance support vector machine (1-norm MI-SVM)

(c) Lift and project boosting (LNPBoost)

6. Empirical evaluations on multi-instance learning and transductive learning domains

The first algorithm, multi-instance support vector machines (MI-SVM), uses the 2-norm to bound the weight

vector. This results in an optimization with a quadratic objective function and non-linear constraints. Integer

variables are introduced to represent the selection of an interpretation. This results in a challenging mixed-

integer quadratic optimization problem, and an efficient greedy local search algorithm is derived. Despite

the lack of guaranteed global convergence, the algorithm significantly outperforms a baseline method on

several benchmarks. Because the approach is general, it works equally well for document categorization and

automatic image annotation. The main short-coming of this technique is that, due to its susceptibility to local

minima and despite its impressive empirical performance, it is uncertain whether the approximate solution

will generalize as expected by the SRM principle for ambiguous examples.

The second algorithm, disjunctive programming boosting (DPBoost), uses the 1-norm to bound the weight

vector. The resulting optimization problem has a linear objective function and non-linear constraints. The

problem is approximated by replacing the non-linear feasible region with a larger convex set that is derived

using lifting techniques, specifically hull-relaxations and parallel reductions, from disjunctive programming.

This yields a large linear program; the number of rows and columns is O
(
D2
)

where D the maximum of

the number of features and the number of examples in the training data set. The benefit of this approach

is convexity, implying that a unique globally optimal solution can be found for the approximation. In this

way, local minima are avoided at the expense of solving an approximation to the original problem. From the

perspective of combinatorial optimization, the solution is useful in that it provides a lower bound that could

be used in a branch-and-bound scheme to find the global minimum of the original problem. Unfortunately,

the algorithm had limited applicability due to its excessive memory requirements and its complexity.

The third algorithm called lift-and-project boosting (LNPBoost), also uses the 1-norm bound the weight

vector. This approach was motivated by the need to limit the size and management difficulties of the linear

program in DPBoost. In order to address this problem, a compact sequential approximation of the convex hull

is computed by way of a cutting-plane technique adapted from combinatorial optimization. A key component
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of this technique is a novel formulation of lift-and-project cutting-planes for the disjunctive sets that arise from

multi-instance margin constraints; in other words, a formulation of lift-and-project cutting-planes for arbitrary

unions of halfspaces. A proof of the asymptotic convergence of the proposed sequential convexification

algorithm is provided. The technique also manages the set of features used in the classifier with a boosting-

like feature selection algorithm so that it can be applied to large, high-dimensional data sets.

LNPBoost computes a lower bound on the maximum-margin hyperplane problem for ambiguous exam-

ples. Analysis shows that the lower bound increases as the quality of the approximation increases. A projec-

tion from this solution onto the feasible region provides an upper bound. Analysis also shows an increasing

trend in performance of the projected solution, as the quality of the compact sequential convexification in-

creases. This trend is reflected by the accuracy of the corresponding classifier as the minimum-angle tolerance

is decreased. Furthermore, evidence is provided to show that the algorithm is able to select amongst feasible

points whose objective values are indistinguishable, by increasing the quality of the sequential approximation.

This shows that the theoretical asymptotic convergence of the algorithm is realized in practice.

Results suggest that LNPBoost outperforms the 2-norm MI-SVM algorithm, although tests of significance

were not included. LNPBoost outperforms EM-DD. For this result, statistical significance is shown.

A 1-norm version of the MI-SVM algorithm is introduced to complete the analysis of the proposed frame-

work for learning from ambiguous examples. As an optimization strategy, 1-norm MI-SVM uses the 2-stage

greedy local search heuristic like the 2-norm version. The 1-norm version is similarly fast and susceptible to

local minima. Results suggest that, on the one hand the 1-norm version of MI-SVM performs better than the

2-norm version on the high-dimensional TREC9 data sets, but on the other hand it is worse on the Corel and

MUSK data sets. The conclusion from this result is that neither of the two formulations (1-norm / 2-norm) is

clearly superior.

The 1-norm version of the MI-SVM algorithm provides a suitable benchmark for comparison with the

LNPBoost algorithm, because it optimizes the same objective function and uses the same feature selection

technique. This comparison reveals that the classifier returned by the LNPBoost algorithm is slightly more ac-

curate than that obtained by the 1-norm MI-SVM algorithm with feature selection. Therefore, the conclusion

is the LNPBoost provides the best performance out of algorithms studied.

Finally, while the experiments on the Corel, MUSK and TREC9 data sets do not explicitly verify whether

or not the true disambiguation is found, the transductive inference experiment on the USPS data set shows

that this is indeed the case.

Therefore, this thesis concludes that the burden of collecting a large number of instance-label pairs may

be supplanted with algorithms that learn from readily available ambiguous examples.
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