
Structured Network Learning

Stuart Andrews
Computer Science Dept.

Columbia University
New York, NY 10027

Tony Jebara
Computer Science Dept.

Columbia University
New York, NY 10027

Abstract

Man-made or naturally-formed networks typically exhibit a high degree of struc-
tural regularity. In this paper, we introduce the problem of structured network
prediction: given a set of n entities and a desired distribution for connectivity, re-
turn a likely set of edges connecting the entities together in a network having the
specified degree distribution. Prediction is useful for initializing a network, aug-
menting an existing network, and for filtering existing networks, when the struc-
ture of the network is known. In order to capture the inter-dependencies amongst
pairwise predictions to learn parameters of our model, we build upon recent struc-
tured output models. Novel in our approach is the use of partially labeled training
examples, and a network structure sensitive loss function. We present encouraging
results of the model predicting equivalence graphs and links in a social network.

1 Introduction

Man-made or naturally-formed networks typically exhibit a high degree of structural regularity.
A social network represents friendship or professional affilation and reflects the fabric of society.
Complex biological systems, such as the regulatory networks, metabolic networks, and signal trans-
duction pathways are composed of frequently occuring motifs [Kashtan et al., 2004]. One can even
regard an equivalence relation over n entities as a structured graph that is a union of vertex disjoint
complete subgraphs.

In this paper, we introduce the problem of structured network prediction: given a set of n entities and
a desired distribution for connectivity, return a likely set of edges connecting the entities together in
a network having the specified degree distribution. If a network adheres to the given distribution,
we say that it is structured. Prediction is useful for initializing a network, augmenting an existing
network, and for filtering existing networks, when the structure of the network is known. While there
is existing research dealing with the empirical analysis of existing networks [Barabasi and Oltvai,
2004] the artificial simulation of network formation [Albert and Barabasi, 2002] and the extraction
of network structures at various scales [Kashtan et al., 2004] there has been little attention paid to
the prediction of structured networks in a data driven manner [Culotta et al., 2004, Rabbat et al.,
2006].

The main difficulty of this problem is the management of inter-dependencies of edge predictions.
The presence of one edge (j, k) in a network is dependent on the presence and/or absence of the
other edges (j, ·) and (·, k) incident to the j-th and k-th vertices. Researchers have previously
extended example-based learning methods [Kondor and Jebara, 2006, Shalev-Shwartz et al., 2004]
to pairwise data. However, these methods assume that all pairs of entities are independent and
identically distributed (i.i.d.). Due to the i.i.d. assumption, these approaches are not sensitive to the
overall network structure generated by independent pairwise predictions. Another difficulty with
this approach is the necessity for managing the bias of the classifier which is affected by the strong
asymmetry of the edge versus non-edge classes. Since many networks have far fewer edges than the
maximum n2 edges, the tendency of i.i.d. methods is to classify all pairs as non-edges.

We adopt a uniform connectivity hypothesis derived from the observation that many real-world net-
works arise in the presense of resource constraints or costs distributed among edges [Pennock et al.,
2002]. For instance, on a social network such as the type maintained at a university, members typi-
cally interact with a small number of friends compared to the overall size of the network. Likewise,
professors can advise only a limited number of graduate students. Our predictive model thus ensures
that we obtain a network with the expected structure.

In order to capture the inter-dependencies amongst pairwise predictions to learn parameters of our
model, we consider the application of structured output models [Tsochantaridis et al., 2004, Taskar
et al., 2003, 2005a] to the network prediction problem. To facilitate learning over inter-dependent
output spaces, structured output models generalize the empirical risk minimization framework fol-
lowing the approach of [Crammer and Singer, 2001] by defining the margin as the functional dis-
tance between the true output and the highest-ranked alternative. By focussing effort on the margin,
these formulations provide a tractable alternative to conditional likelihood modeling which would
otherwise depends on the computation of a partition function [Lafferty et al., 2001]. Structured
output models developed within the max-margin framework have been successfully applied to pre-
dicting part-of-speech tags, word-alignments, parse trees and image segmentations [Tsochantaridis
et al., 2004, Taskar et al., 2004, 2005b].

Our method for structured learning is novel in that we consider partially labeled networks as inputs
to the learning algorithm, to handle applications such as initialization, augmentation and filtering in
a transductive fashion. Partial labeling refers to the connectivity; only a subset of the potential n2

edges are observed. In order to apply the structured output model of [Taskar et al., 2005a] to our
problem, we first show how to parameterize a combinatorial family of graphs using a linear model.
In particular, we introduce a novel loss function for evaluating predictions in this transductive setting,
and derive an upper bound that can be minimized using a variant of the dual extragradient algorithm.

2 Structured networks

In general, the most common type of structural characterization of large networks is made in terms
of their degree distributions. This is the distribution over the degrees of the vertices, where the
degree δ (v) of a vertex v is the number of edges incident to that vertex. Alternatively, networks can
often be classified into well-defined combinatorial families of graphs, such as chains, trees, forests,
generalized matchings or unions of disjoint complete subgraphs.

In Figure 1, we compare the degree distributions of three structured networks, going from the least
to most constrained. The first example is the degree distribution from a protein-protein interaction
network. The degree distribution for this network exhibits scale-free behaviour, appearing as a line
with negative slope. A second example is a social network comprised of links that members create
with friends. The degree distribution in this case is nearly uniform on a bounded interval, and zero
elsewhere. This pattern is a characteristic of social networks with limited enrollment, for example,
within an academic institution or private company. A final example is an equivalence graph for a
collection of m = 300 face images of m = 30 individuals, each observed under 10 different viewing
conditions. A complete graph connects the images of each person, yielding a degree distribution that
is a Dirac delta function at the value 9.

In order to express the degree distribution in a convenient form, we need the following definitions.
Consider a set of vertices V = {1, . . . , n} and the complete set of edges connecting pairs E =
{(j, k) |1 ≤ j < k ≤ n}. Let e (j, k) be the index of edge (j, k) in an enumeration of E . In our
current research, we deal with graphs that have undirected edges, although the techniques can be
adapted to the directed case. A complete vertex-edge incidence matrix on n vertices, denoted An,
has elements ai,e(j,k), 1 ≤ i, j, k ≤ n, j < k. The i-th row indicates which edges are incident to
vertex i in a complete graph.1 Thus, we have

A5 =

1 1 1 1
1

1
1

1

∣∣∣∣∣∣∣∣∣
1 1 1
1

1
1

∣∣∣∣∣∣∣∣∣
1 1
1

1

∣∣∣∣∣∣∣∣∣ 1
1

 (1)

1Since edges are undirected, we have aj,e(j,k) = ak,e(j,k).

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

degree distributions

friendship
proteins
face images

(a)

4

3

1 2

5

(b)

4

3

1 2

5

(c)

4

3

1 2

5

(d)

4

3

1 2

5

(e)

Figure 1: (a) A log-log plot showing degree distributions for a social network (friendship), a protein-
protein interaction network (protein), and an equivalence graph (face images). (b) B-matchings with
b = 2, and (c) b = 4. (d) When b = 1 the best we can do is a near-perfect 1-matching, where vertex
2 has δ (2) = 0 < 1, and similarly for (e), when b = 3, we obtain the near-perfect 3-matching
δ (5) = 2 < 3.

which corresponds to the incidence matrix for the graph in Figure 1(b).

Now, let a subset of edges Gy ⊆ E be parameterized using a 0-1 vector y =
(
ye(j,k)

)
, 1 ≤ j, k ≤ n,

where an edge (j, k) is in Gy if ye(j,k) = 1.2 The following relation holds δ (vi) = (Any)i which
says that the degrees of vertices in a graph with edges Gy are given by the components of the matrix
product Any.

At this time, we will focus on a combinatorial family of graphs called b-matchings, which have
specific degree distributions, are flexible, and lead to efficient algorithms. The methods of this paper
can be extended directly to alternative combinatorial families of graphs.

For a given collection of vertices and fixed b, we define a b-matching to be any subset of undirected
edges connecting vertices such that each vertex v has exactly b neighbours (δ (v) = b). The set of
b-matchings is a combinatorial family of networks having uniform connectivity over the vertices;
the resulting network has a degree distribution that is a Dirac delta function on the value b. Strictly
speaking, to align ourselves with graph theoretic and network flow terminology, these are k-factors
[Schrijver, 2003].3 When there does not exist a b-matching, we also consider a near-perfect b-
matching in which one vertex has b − 1 neighbours. Figure 1 depicts a graph having a 2 and a
4-matching, and a near-perfect 1 and 3-matching. In the future, we plan to study more general types
of b-matchings. We can characterize b-matchings as 0-1 vectors y that satisfy the degree constraints

Any = b1 . (2)

2.1 Structured network prediction

We propose to use maximum-weight b-matching as a predictive model. Given a set of vertices and
their attributes, the model assigns weights to edges and returns the b-matching that has the most
weight as the prediction. Like the edge indicator vector y, the edge weights are represented by a
vector s =

(
se(j,k)

)
, however se(j,k) ∈ R+ can be any positive real-value. The weight of Gy ⊆ E

is defined as the sum of the weights of its edges and equals sT y. Letting z be a real-valued vector
variable whose components correspond to those of y, the maximum-weight b-matching problem can
be formulated as an LP

max
z∈Pn

sT z , (3)

in terms of the b-matching polytope Pn which is convex-hull of b-matchings [Schrijver, 2003].
A description of this polytope is included in the Appendix. Fortunately, even though the Pn is

2We often write yj,k in place of ye(j,k), with the understanding that this still refers to a component of the
vector y.

3The general definition of a b-matching allows vertices to have individually specified bi, and any number
of incident edges up to bi. Moreover, the definition allows edges to be used multiple times. A b-matching is
capacitated with capacity c ≥ 0 if edges are used at most c times, and simple if c = 1. It is perfect if each
vertex has exactly bi edges for each vertex i. A k-factor is a simple and perfect b-matching where bi = k, ∀i.

described by an exponential number of linear constraints, there exist polynomial-time combinatorial
algorithms for finding the maximum. Gabow [Gabow, 1983] presents an efficient technique for
reducing b-matchings to 1-matchings, for which Edmund’s algorithm can be applied. Fremuth-
Paeger et al. [Fremuth-Paeger and Jungnickel, 1998] provide a balanced network flow model and
an implementation that solves a variety of related matching and flow problems. Both methods are
specializations of the primal-dual methodology for solving linear programs with exponentially many
constraints [Papadimitriou and Steiglitz, 1982].

There are special cases, however, when the representation of the convex hull is much simpler. For
example, if b is even and if we consider uncapacitated b-matchings where an edge can be chosen
multiple times, the resulting LP is maxz≥0, Anz=b1 sT z, which can be solved efficiently. Moreover,
we may choose to relax the b-matching criteria by simply omitting the constraints in Equation (14).

3 Learning the weights

The key question remains: how does one assign weights to the edges? In a typical b-matching
application, the weights s = (sj,k) are engineered in advance from the attributes xj ,xk ∈ X
associated with the vertices. This approach requires domain knowledge, and becomes overly
complicated when there are a large number of attributes. Our main contribution is a method
that learns a function for assigning weights in a given domain, based on a training data set
D = {(Xi,yi) |Xi ∈ Xni , yi ∈ Pni}, where X = {x1, . . . ,xn} ∈ Xn is the set of attribute vec-
tors xk ∈ X ⊆ Rd for V . The training data may consist of a single network, or several independent
but related networks defined over disjoint sets of vertices. The attributes of vertices are specified in
Xi, and the partially observed structure in yi.4

In particular, we consider a semi-supervised setting where we have incompete knowledge of the
structure for the network(s) in the training data. We assume that the attributes of each vertex are
known, but only a subset of the network edges have been observed. For a given example (X,y) ∈
D the observed network structure consists of a set of known edges {(j, k) ∈ E|yj,k = 1}, known
non-edges {(j, k) ∈ E|yj,k = 0}, and unknown edges {(j, k) ∈ E|yj,k = ?}. The first objective in
assigning the weights is to ensure, for each instance, that the structure predicted by our model
(a maximum-weight b-matching over the vertices specified by X) matches the subset of observed
edges specified in y. The second objective is to ensure that the predictive model is able to generalize
by obtaining the correct structure over the unobserved edges.

We consider a parametric family sj,k = (t− dQ (xj ,xk)), defined in terms of a pre-specified
constant threshold t ∈ R, and an adaptable Mahalanobis distance metric dQ (xj ,xk) =
(xj − xk)T

Q (xj − xk), defined in terms of a positive semidefinite (p.s.d.) matrix Q. For high
dimensional feature spaces, we also consider p.s.d. Q that are diagonal. We adopted the Maha-
lanobis distance that has previously been used for metric learning [Xing et al., 2003, Goldberger
et al., 2004, Shalev-Shwartz et al., 2004] so that we have a well-known baseline for comparison.
Additionally, the weights obtained using the Mahalanobis distance are easy to interpret. Since Q is
symmetric and positive semidefinite, we know that Q = PT P for some P . Therefore, the weight
sj,k for an edge (j, k) depends on dQ (xj ,xk) = ‖Pxj − Pxk‖2

2 which is the Euclidean distance
between the points in a suitably scaled and rotated space. From this perspective, we are finding the
best transformation P of the feature space to facilitate b-matching.

3.1 I.I.D. learning

One approach to learning the weight function is to treat the edges from all input b-matchings as
independent and identically distributed (i.i.d.). In other words, we assume we have observed a
training data set Di.i.d. =

{
((xj ,xk) , yj,k) | (xj ,xk) ∈ X2, yj,k ∈ {0, 1}

}
. We can then learn the

Mahalanobis distance and threshold using max-margin learning [Kondor and Jebara, 2006, Shalev-
Shwartz et al., 2004] to robustly predict the presence of an edge between vertex pairs.

4The approach can also be applied when attributes are instead associated with edges.

3.2 Inter-dependent outputs learning

In order to apply the structured output model of [Taskar et al., 2005a] to our problem, we first show
that the parametric family of edge weights can be expressed as a linear model. We then proceed to
develop this model while accounting for the specifics of semi-supervised structured network learn-
ing. In particular, we introduce a novel loss function for evaluating predictions in the transductive
setting, and derive an upper bound that can be minimized. Like [Taskar et al., 2005a], we apply the
dual extragradient algorithm of [Nesterov, 2003], however some modification is required.

Let f (xj ,xk) = vec
(
(xj − xk) (xj − xk)T

)
denote the vector of elements from the outer product

matrix of xj − xk with itself. We call f (xj ,xk) the features of the edge (j, k). Also, define the
matrix F having (−1) f (xj ,xk) as columns. Finally, letting w = vec (Q) denote the vector of
elements from the p.s.d. Q, we have the following equivalent expression for the weight of a b-
matching y

sT y =
∑
j<k

yj,k

(
t−wT f (xj ,xk)

)
(4)

=
1
2
nbt + wT Fy . (5)

In the sequel, we will omit the first term, since it does not depend on w or y. Note that due to
symmetry, one needs only the upper triangular elements of matrix Q, and the outer product matrices
(xj − xk) (xj − xk)T comprising edge features. Therefore, by defining the input-output feature
vector f (X,y) = Fy, we can write our linear predictive model as follows

ŷ = argmax
y′∈Pn

wT f (X,y′) . (6)

We derive the max-margin learning problem following [Taskar et al., 2005a]. The key insight that
enables max-margin learning for multiclass, and in particular, structured outputs, is that one can
define the margin in terms of the functional distance wT ∆f (y′) = wT (f (X,y)− f (X,y′)) be-
tween the true output and the highest ranked alternative structure. However, since the functional
distance scales with the number of prediction errors on individual labels y′j,k, a modified definition
called the inverse-loss weighted margin is used instead

γ (X,y,y′) = ∆ (y′)−1 wT ∆f (y′) , (7)

where ∆ (y′) = ∆ (y,y′) quantifies the cost of predicting y′ when the true network is y.

We modify the standard Hamming loss for semi-supervised network structure learning in two ways.
First, since we have only observed the true network structure yj,k for a subset of edges, we only
evaluate the loss on these elements. Secondly, for structured network prediction, the number of
individual label errors ∆ (y′) can grow toO

(
n2

)
. For this reason, we define the loss to be ∆ (y′) =

min {L, h (y,y′)} where h (y,y′) = yT 1+ (1− 2y)T y′ is the Hamming distance between y and
y′. Figure 2 displays the hinge loss for increasing values ∆ (y′) and compares the Hinge losses used
by SVM∆s

1 of [Tsochantaridis et al., 2004] and [Taskar et al., 2005a].

After a change of variables and the introduction of slack variables, the primal max-margin optimiza-
tion problem is

min
w∈W,ξ≥0

1
2C

‖w‖2 +
∑

i

ξi (8)

s.t. ξi ≥ max
y′∈Pni

∆i (y′)−wT ∆fi (y′) , ∀i (9)

where W = {w = vec (Q) |Q � 0}. In [Taskar et al., 2005a], solutions to this problem are related5

to solutions of the following, where Wγ = {w ∈ W| ‖w‖2 ≤ γ} for an appropriate choice of γ

min
w∈Wγ

∑
i

max
y′∈Pni

∆i (y′)−wT ∆fi (y′) . (10)

5For the 2-norm, for any solution to the former problem, there is a γ that yields the same solution on the
latter.

ξ

wT ∆ f

1

L

Figure 2: The effect of the Hamming loss on the Hinge loss functions used by (1) SVM∆s
1 of

[Tsochantaridis et al., 2004] (dashed lines, decreasing in slope), (2) the dual extragradient technique
of [Taskar et al., 2005a] (solid lines, shifting right), and (3) our method (solid lines, shifting right
until the bold line intersecting the vertical axis at L).

Finally, by defining the joint output space Z = Pn1 × . . . × Pnm , and noting that the Hamming
distance can be expressed as h (y,y′) = a + cT y′ for appropriate a ∈ R and c ∈ Rn, we can write
the following equivalent learning problem

min
w∈Wγ

max
z∈Z

∑
i

wT Fizi + min
{
cT zi,L

}
−wT Fiyi . (11)

Due to the clamping of the loss, the gradient of this objective is not Lipschitz continuous.6 For-
tunately, this does not preclude the use of the dual extragradient algorithm, because the gradient
operator still has bounded variation [Nesterov, 2003].

3.3 Implementation

We implemented the memory efficient version of the dual extragradient outlined in Figure 5 of
[Taskar et al., 2005a] using our definitions from above; we refer the reader to this paper for
details. We chose ẇ = vec (I) equal to the vector representation of the identity matrix, and
żi = b

n vec (1n×n) equal to our expectation of where the “average” b-matching solution lies. The
gradient step-size for the algorithm is weighted by a factor of 1√

t
where t is the iteration number, as

described in Algorithm (3.4) in [Nesterov, 2003]. As shown in [Taskar et al., 2005a], one can ap-
proximate the solution of Equation (10) for a range of γ from a single run of the dual extragradient
algorithm by simply removing the constraint ‖w‖2 ≤ γ.

The basic update in the dual extragradient algorithm involves a gradient step in variables w and
zi followed by a Euclidean projection onto their respective feasible sets. Projecting onto W is
performed by dropping the negative eigenvalues from the eigendecomposition of Q. On the other
hand, we have not found an efficient method to project zi onto the Pni . Since the solution may lie
on a face of the polytope, b-matching algorithms do not apply.

One solution is to relax the problem, and projecting onto a larger convex hull, for example the hull
formed by points that satisfy Equations (12-13) in the Appendix. Another method that we emply is
to decompose each network into small overlapping subnetworks and perform polynomial-time 0-1
b-matching on these. An advantage of this approach is that it is efficient and can be scaled-up to
large networks. Empirically, this method gives promising results. We are working on bounds to
justify this approximation scheme.

4 Related work

In [Barabasi and Bonabeau, 2003, Albert and Barabasi, 2002], network structure is characterized
by measuring the distribution of vertex connectivity in the network. They document scale-free,
or power-law, behaviour in the degree distribution. Several models have been proposed (rich-get-
richer) that simulate the formation of networks with these properties, however edge formation is
driven by random processes that do not take into account attributes at the nodes. In [Kleinberg,

6We take one-sided limits of the component derivatives when the gradient is not defined.

1998, Kleinberg et al., 1999], hubs and authorities are analyzed. Recent efforts to detect graph
structures do so by analyzing overlapping community structures, subgraph concentrations, and fre-
quently occuring subgraphs [Derenyi et al., 2005, Palla et al., 1969, Kashtan et al., 2004, Koyutürk
et al., 2004]. These methods help to understand an overall network structure, but do not perform
prediction of network structures.

Recently, [Culotta et al., 2004] presented an end-to-end system that constructs an individualized
social network based on a user’s email inbox. The system identifies people in emails, searches for
their Web-presence and links between people together. Another recently published work [Rabbat
et al., 2006] analyzes weak co-occurance data to predict a likely network.

5 Experiments

We used a collection of face images from the Olivetti Research Laboratory7 to validate our approach.
The collection contains m = 300 face images of m = 30 individuals, each observed under 10
different viewing conditions that included pose, eyewear, expression and illumination variations.
The images are 92 x 112 gray value. We centered the data and applied PCA to reduce the featue
dimensionality.

We first partitioned the 300 vertices into subsets: 200 training vertices, 50 test vertices and 50 vali-
dation vertices. The edges between testing points, and betwen test points and training or validation
points, are not used by the algorithm. The edges between validation points, and between validation
points and training points, are used by the algorithm for selecting parameters. We then sample 50
overlapping subnetworks of size 50, so that each subnetwork contained points from the training,
testing and validation sets.

We evaluate this method and two variants that do not use b-matching. The first variant uses a
simpler predictive model that selects the top bn

2 edges, without constraining the degree distribution.
The second variant uses k-nn as a predictive model by connecting each vertex to its b nearest-
neighbours. Figure 3 shows the results. Also included in the plots are the results obtained by the
Euclidean distance metric. Both validation and testing set results are plotted. In these plots, “raw
dist.” refers to the Euclidean distance metric, while “learn dist.” refers to the metric learned by
the modified dual extragradient algorithm for a specific variant. We have also compared receiver-
operator curves for the respective methods. These curves are obtained by adding εdQ (j, k) to the
integral values of the structural predictions in yj,k. The threshold points are marked on each curve.
Notice that while the edge prediction accuracy is nearly constant for all variants, the variants that
ensure the degree distribution is uniform (k-nn / b-matching) obtain higher recall rates.

6 Conclusions

We have outlined a novel structured network prediction problem, developed an learning algorithm
that attempts to solve it, and shown encouraging results on a controlled example involving an equiv-
alence graph over images. It is possible to learn a modified distance metric that facilitates prediction
of structured networks. These network predictions are useful because they not only predict edges
accurately, but do so with high recall.

References
R. Albert and A. L. Barabasi. Statistical mechanics of complex networks. Reviews of Modern

Physics, 2002.

A. L. Barabasi and E. Bonabeau. Scale-free networks, 2003.

A. L. Barabasi and Z. Oltvai. Network biology: Understanding the cell’s functional organization.
Nature Genetics, 5, 2004.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. JMLR, pages 265–292, December 2001.
7http://www.uk.research.att.com/facedatabase.html

0 2 4 6 8 10 12 14 16 18 20
0.926

0.928

0.93

0.932

0.934

0.936

0.938

0.94
AUC

raw dist test
learn dist test
raw dist valid
learn dist valid

0 2 4 6 8 10 12 14 16 18 20
0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93
AUC

raw dist test
learn dist test
raw dist valid
learn dist valid

0 2 4 6 8 10 12 14 16 18 20
0.92

0.925

0.93

0.935

0.94

0.945
AUC

raw dist test
learn dist test
raw dist valid
learn dist valid

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ROC

fp rate

re
ca

ll

raw dist acc 96.9 recall 47.4
learn dist acc 97.1 recall 48.9

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ROC

fp rate

re
ca

ll

raw dist acc 95.3 recall 43.2
learn dist acc 95.4 recall 48.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ROC

fp rate

re
ca

ll

raw dist acc 97.2 recall 39.9
learn dist acc 96.3 recall 60.8

Figure 3: Predictive model with (left) no constraints on edge predictions, (middle) using k-nn edge
predictions, and (right) using b-match. (Top) AUC versus iteration, (bottom) ROC curves.

A. Culotta, R. Bekkerman, and A. McCallum. Extracting social networks and contact information
from email and the web. In AAAI, Aron Culotta and Ron Bekkerman and Andrew McCallum
2004.

I. Derenyi, G. Palla, and T. Vicsek. Clique percolation in random networks. Physical Review Letters,
2005.

C. Fremuth-Paeger and D. Jungnickel. Balanced network flows. a unifying framework for design
and analysis of matching algorithms. Networks, 1998.

H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected
network flow problems. In ACM Theory of Computing, 1983.

J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components analysis.
In NIPS, 2004.

N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for estimating subgraph
concentrations and detecting network motifs. Bioinformatics, 2004.

J. M. Kleinberg. Authoritative sources in a hyperlinked environment. ACM, 1998.

J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The web as a graph:
Measurements, models, and methods. In COCOON, 1999.

R. Kondor and T. Jebara. Gaussian and wishart hyperkernels. In NIPS, 2006.

M. Koyutürk, A. Grama, and W. Szpankowski. An efficient algorithm for detecting frequent sub-
graphs in biological networks. BIOINFORMATICS, 2004.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML, 2001.

Y. Nesterov. Dual extrapolation and its applications for solving variational inequalities and related
problems. Technical report, Catholic University of Louvain, 2003.

G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of
complex networks in nature and society. Nature, 1969.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice-Hall, Englewood Cliffs,
N.J., 1982.

D. M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, and C. L. Giles. Winners don’t take all:
Characterizing the competition for links on the web. PNAS, 2002.

M. Rabbat, M. Figueiredo, and R. Nowak. Network inference from co-occurrences. Technical
report, University of Wisconsin, 2006.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, 2003.

Shai Shalev-Shwartz, Yoram Singer, and Andrew Y. Ng and. Online and batch learning of pseudo-
metrics. In ICML, 2004.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In NIPS, 2003.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. D. Manning. Max-margin parsing. In EMNLP,
2004.

B. Taskar, S. Lacoste-Julien, and M. I. Jordan. Structured prediction, dual extragradient and bregman
projections. Technical report, U. C. Berkeley, 2005a.

B. Taskar, S. Lacoste-Julien, and D. Klein. A discriminative matching approach to word alignment.
In EMNLP, 2005b.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In International Conference on Machine Learning,
2004.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to
clustering with side-information. In NIPS, 2003.

A The b-matching polytope

A common misconception is that the b-matching polytope is obtained simply by relaxing the in-
tegrality constraints on y to the range 0 ≤ y ≤ 1, while still satisfying the degree constraints in
Equation (2). However, this relaxation is a superset of convex-hull of b-matchings, and in particular
contains extreme points that are not integral. To describe the b-matching polytope, we denote for
each subset U ⊆ V the subset of edges ∆ (U) = {(j, k) |j ∈ U, k /∈ U}. Also, let the indicator
vector 1lF = (1l [(j, k) ∈ F]) , 1 ≤ j < k ≤ n, and note that y = 1lGy . The b-matching polytope
Pn may then be characterized by the following linear equations

0 ≤ zj ≤ 1, ∀j (12)
Anz = b1 (13)
zT 1l∆(U)\F − zT 1lF ≥ 1− |F | ,
∀U ⊆ V , F ⊆ ∆ (U) , and b |U |+ |F | odd. (14)

Equation (12) relaxes the integrality of variable y. Following that, Equation (13) enforces that the
degree of each vertex is b. The constraints in Equation (14) are required to exclude from the polytope
all non-integral extreme points z satisfying Equations (12) and (13). Clearly, it is not possible to
work with this representation of the convex hull directly, since there are an exponential number of
constraints in Equation (14).

