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The task of learning to predict structured output variables has received a great deal of attention recently (see [3]
for a broad overview). In this setting, x € X is an input feature vector representation of an object, and y € Y is a
multi-variate output label vector, typically with binary entries, that specifies the underlying structure of the object.
Note that typically Y C {0, 1}N restricting y to be a member of a combinatorial family of valid structures. Structures
of interest include chains (label-sequences), trees (parse trees), matchings (word and sequence alignments), and
partitions of graphs (image segmentations). Application areas include natural language processing, computational
molecular biology, and image processing.

Semi-supervised techniques have recently been developed [1], [5], wherein the training data set is partially
observed in the following sense: some structured examples are labeled (x,y) and some are not (x, -) and the goal
is to predict the missing labels. We formalize an alternate mode of semi-supervised learning that addresses the
problem of learning from examples (x,y) where some of the structures y are incomplete (i.e. only a subset of the
entries in the multi-variate y are observed), and the goal is their completion. The motivation for this formulation
comes from the observation that structured examples are difficult and/or expensive to collect, while on the other
hand, partial labelings are typically less expensive. Partial labelings are often easier to annotate by hand, or can even
be extracted from other sources. This form of learning has received attention for univariate predictions, for example
in multiple-instance learning [2], but not apparently for structured outputs.

In learning to predict structured outputs, a risk minimization framework is typically employed, leading to a
max-margin problem formulation. First, we introduce a multi-variate joint feature map ¢ (x,y) = Fyy that can be
expressed as a matrix-vector product for some matrix Fy (true for applications listed above). Next, we define the
linear discriminant function f (x,y) = w’ ® (x,y) parameterized by a weight vector w. The discriminant function
is used to rank the structures y € Y for a given x. By the factorization, we have a bilinear form for f (x,y) =
w!F,y. For a given weight vector w, the vector-matrix product w’ F, comprises a multivariate score vector
s”, with which predictions are made via argmaxycy s”'y. Structured output predictions are made by identifying
the structure from the combinatorial family Y that is closest to the score vector. To learn w from fully labeled
structured data, we solve the following optimization problem, where for simplicity we assume there is only one
training example (x,y):
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The margin is defined in terms of a “gap” between the true output and the highest-ranking alternative output. We
use the term A (y, z), typically the Hamming loss, to encourage greater separation of vastly different structures.
Discriminative learning algorithms include the averaged perceptron, the exponentiated gradient algorithm, sequential
minimal optimization, cutting-plane methods, extra and dual-extragradient methods, and search-based optimization.
In completion problems, structured variables are partitioned into observed and unobserved components y =
{yo } U {yu } Our framework adopts the technique used in transductive inference for binary classification problems,
wherein the missing labels y = £1 are chosen during learning to yield the largest margin and smallest slack y =
argming_ 4, (1 — yWTx). To this end, we replace the margin constraints in Eq. (1) with
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For a fixed hyperplane, computing the “gap” thus requires the prediction of two structures. We generalize the
following algorithms to approximate this new optimization problem: (1) the averaged perceptron; (2) the cutting-
plane approach for solving convex optimization problems (CUT SVM); and (3) the dual-extragradient algorithm for

solving saddle-point problems (DXG). Details omitted.
We demonstrate the proposed formulation on a graph inference problem, where the goal is to complete a partially
observed directed graph, as in [4]. We represent a graph using n? structure variables ¥,k corresponding to the graph’s



i.i.d. SVM (¢) DXG (d) Perceptron (e) DXG (f) CUT SVM (g) DXG (h)

mean \ std. | mean \ std. | mean \ std mean \ std | mean \ std mean \ std.
acc 97.4 0.6 969 | 04 | 97.0 04 978 | 0.6 | 97.8 0.6 994 | 0.2
auc 097 | 002 | 0.84 | 0.13 | 092 | 0.04 | 096 | 0.02 | 0.72 | 0.07 1.00 | 0.01
recall | 33.8 143 | 20.1 | 9.3 | 23.2 7.4 423 | 135 | 459 14.5 822 | 6.2

Table 1: Results averaged over 10 repeated trials, where each trials randomly selects a 50:50 split of the nodes to
derive training and test splits as in Fig. 1(a).

0-1 adjacency matrix. Moreover, we define structure variables yZ", yZ“t representing the degree of each node. The

only constraints on y = (yj,;,c, y};”, yz“t 1 <5,k< n), imposed by the combinatorial family Y, is that the degree
variables must agree with the adjacency matrix variables; i.e. a valid structure satisfies ) i Yik = y};",Vk, and
DYk = y;?“t, Vj. The addition of the degree variables allows us to learn to predict the degree of each node from
the training data. As input, we receive a set of n nodes, a set of d attributes for each node that together comprise
x, and an incomplete adjacency matrix y°**, as indicated in Fig. 1(a). We designed a joint feature map to assign
score values to each directed edge based on the node features at the head and tail of the edge. The scoring function
also assigns a value to each degree that a node may assume. The projection step returns a 0-1 graph closest to these
scores, via a compact reduction to a degree-constrained subgraph problem whose solution can be found in O (n3)
time.

Fig. 1 gives some insight into the predictions made by two baseline algorithms and several algorithmic instan-
tiations of our transductive framework. The numerical results in Table 1 provide more conclusive evidence of the
relative performance of these methods. The i.i.d. SVM baseline (c) ignores structure yet still appears to perform
reasonably well. The same is true for the dual extra-gradient baseline (d) that does not attempt to use transduction.
However, on closer inspection of Table 1, one observes that the area under the curve (AUC), and recall performance
metrics for these algorithms are inferior to most techniques that do use transduction. The one exception is the aver-
aged perceptron algorithm (e) which uses transduction, yet still has poor performance. This can be attributed to the
lack of regularization of the weight vector w, or potential inseparability of the data. The dual extragradient algo-
rithm with transduction (f), and the cutting-plane algorithm (g), both use transduction to their advantage, obtaining
high AUC and recall. For small problems, we favour the cutting-plane method, because it tends to give better re-
sults. However, our implementation of the dual extragradient method is notably faster on larger problems, primarily
due to the fact that it does not guarantee integral solutions. The final result, in (h) shows the performance of the
dual-extragradient with transduction when the true degrees are provided as inputs to the algorithm. Notice the large
increase in recall. Comparing this result to (f) highlights the difficulty and importance of the estimation of node
degrees.

This work introduces a framework for semi-supervised learning to complete structured output variables. We
outline the key optimization problem, and use generalized versions of structured learning algorithms to find ap-
proximate solutions. Results are presented on a graph inference problem. In future, we hope to reduce the runtime
complexity of these algorithms and improve the robustness in the case of sparse graphs.
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Figure 1: The partition of the adjacency matrix used for training is depicted in (a). Note that most of the entries
in the training subset will be zero, which we call negative edges. The positive edges used for training are shown
in (b). The remaining figures show the completed graphs after learning. These depict positive edges predicted on
the test set, in addition to those from the training set. False-positives are demarked by open arrows, which can be
seen by magnifying the individual figures (sorry!). Results include (c) i.i.d. SVM, (d) dual extragradient without
using transduction, (e) averaged perceptron, (f) dual extragradient (g) cutting-plane SVM, and (h) dual extragradient
augmented with an oracle that provides the true degree of each node. Algorithms (e)-(f) are derived from our
proposed transductive framework.



