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Abstract
A structured prediction approach is proposed for completing missing edges in a graph using par-

tially observed connectivity between n nodes. Unlike previous approaches, edge predictions depend
on the node attributes (features) as well as graph topology. To overcome unrealistic i.i.d. edge pre-
diction assumptions, the structured prediction framework is extended to an output space of directed
subgraphs that satisfy in-degree and out-degree constraints. An efficient cutting plane algorithm
is provided which interleaves the estimation of an edge score function with exact inference of the
maximum weight degree-constrained subgraph. Experiments with social networks, protein-protein
interaction graphs and citation networks are shown.
Keywords: Graph Inference, Structured Prediction, Generalized Matching, Transduction, Cutting-
Planes

1. Introduction

Graphs are abstract models used to represent pairwise relationships between a set of objects. Inter-
esting examples can be found in natural language processing, social networks, as well as in structural
and systems biology. Nodes represent individual objects, while edges encode relationships between
pairs of objects. In practice, the nodes and edges have attributes associated with them too. For
example, a collection of documents forms a graph called a citation network wherein nodes repre-
sent papers, and directed connections between nodes represent citations between papers. What is
common across many applied domains is the understanding that the likelihood or plausibility of a
graph depends on both the attributes of the nodes and edges as well as the structure or topology of
the graph connectivity implied by the edges.

The goal of this article is graph inference and reconstruction. In other words, filling in missing
relationships in a graph, assuming that some are known and others are hidden. Given a partially ob-
served connectivity between n objects, the goal is to complete the connectivity to produce a realistic
graph. This discovery of new or missing interactions is important to many applied disciplines. For
instance, there are practical implications for the recovery of new interactions in biological networks
as well as the prediction of human preferences or relationships from partially completed social net-
works. Examples of graph reconstruction efforts in biology are numerous ranging from metabolic
networks (Herrgaard et al., 2004, Vitkup et al., 2006, Chechik et al., 2007), molecular networks
(Baldi et al., 1999, Punta and Rost, 2005, Gassend et al., 2007), regulatory networks (Middendorf
et al., 2004), and cell signaling networks (Sachs et al., 2005). Edge prediction is also relevant to
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a wider range of structured prediction problems that can also be cast as graph problems including
sentence parsing and image processing.

In previous approaches, edge predictions or graph reconstruction typically depends either on
intrinsic properties of the graph (topology) or on extrinsic attribute values (features), but rarely on
both simultaneously. For example, metric learning can be viewed as a graph reconstruction method
and has recently had considerable progress in the machine learning community (Xing et al., 2003,
Kondor and Jebara, 2006, Shalev-Shwartz et al., 2004, Globerson and Roweis, 2006). Typically, an
affinity or metric is learned between pairs of examples such that pairs of objects in an equivalence
class have high similarity while those in different classes produce low similarity. To perform graph
inference, pairwise similarity above a threshold indicates the presence of an edge between a pair of
objects. However, using a learned affinity metric in a strictly pairwise manner makes all connectivity
decisions independently in the graph. Clearly, in realistic scenarios, the presence or absence of one
edge in a graph influences and depends on the presence or absence of other edges in the graph.
Thus, an affinity metric alone may produce graphs whose structure is unlike that of realistic graphs.

Alternatively, in parallel efforts such as (Liben-Nowell and Kleinberg, 2003), topology is used to
predict new edges in time-evolving citation networks. Exploiting topology is plausible since many
real-world graphs exhibit a high degree of structural regularity. For instance, social network graphs
have consistently small diameters and/or characteristic degree distributions. Complex biological
systems graphs are composed of frequently occurring motifs (Kashtan et al., 2004). Indeed, many
generative models have been proposed that can replicate similar networks and their evolution (Even-
Dar and Kearns, 2006).

Therefore, it is worthwhile to augment both schools of thought by combining independent
node/edge attribute learning methods with structural algorithms to preserve the regularities seen in
real-world graphs. In this paper, we present an algorithm for the prediction of naturally structured
graphs using both topology and attribute data, which is based on a novel coupling of the structured-
outputs framework (Altun et al., 2003, Taskar et al., 2003, Altun et al., 2004, Tsochantaridis et al.,
2004, Altun et al., 2005, Taskar et al., 2006) and the class of degree-constrained subgraphs. Our
model learns to predict connectivity of ordered pairs of objects while enforcing in-degree and out-
degree constraints. We show that by analyzing edge attributes while concurrently enforcing topo-
logical structure constraints, our model yields a better predictor for graph connectivity. We believe
that our model is the first to combine topology and attribute-value learning to significant advantage
for graph completion.

Our approach also presents a novel transductive variant of the structured-outputs framework
to address graph completion. Transduction has previously been studied (Altun et al., 2005, Zien
et al., 2007) to help design better structured predictors; however, these methods use labeled and
unlabeled structured objects that are independent. The assumption is, for example, that the parse
tree of one sentence does not depend on another and can therefore be predicted independently. In
contrast, our model considers transduction within a single structured object, a graph over n objects.
Edges in the graph are either labeled or unlabeled however, transduction leverages the assumption
that all labels are constrained by a single structure and all edge predictions are inter-dependent.
This transductive inference of degree constrained graphs or generalized matchings is ultimately
interleaved in a cutting-plane structured prediction framework to complete real graphs.

This paper is organized as follows. Section 2 introduces graph completion in a formal setting.
Next, in Sections 3 and 4, we discuss inference and learning within a maximum margin structured
outputs framework. Section 5 discusses a number of implementation details of interest to practi-
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tioners. In Section 6 we demonstrate the approach using synthetic and real-world graphs. Finally,
to wrap up, Section 7 discusses related work, before some concluding remarks are presented in
Section 8.

2. Graph Completion

In general, we are given a fixed set of nodes V = {1, . . . , n} which may be connected by a maximal
set E = {(j, k) |1 ≤ j, k ≤ n} of n2 directed edges, if we allow self-loops. Binary edge labels
yj,k ∈ {0, 1} indicate the presence or absence of edge (j, k), while edge attributes are represented
by a feature vector xj,k ∈ Rd. In the sequel, we occasionally refer to edges as being positive or
negative even though we are using 0-1 binary labels. We denote by X the set of all edge feature
vectors and by Y the set of all labels.

Graph inference concerns the prediction of missing or unobserved edge labels from Y, assuming
we have observed only some of the entries together with the information encoded in the features
X. Let O be the set of observed edges, U be the set of unobserved edges, where typically the
partition of edges satisfies O ∪ U = E . Because some of the labels are observed, and the goal is to
predict the remaining labels, this process is also called completion. For example, suppose we have
V = {1, 2, 3} and we observe YO = {y1,1, y1,2, y2,1, y2,2}, then we would like to complete the
network by predicting values for YU = {y1,3, y2,3, y3,1, y3,2, y3,3}.

In the literature, several variants of the graph completion problem that depend on the choice of
O and U have been proposed. We describe four tasks, which are based on bipartite partitions, and
one that is non-bipartite. Each bipartite task starts with a train-test partition of the nodes, which
induces a block decomposition of the n×n adjacency matrix representation of the graph edges (see
Figure 1). We refer to the four blocks in the decomposition as: train-train, train-test, test-test and
test-train.

In (Yamanishi et al., 2004), the set O is comprised of train-train edges, while the set U is
comprised of the remaining blocks: train-test, test-test and test-train. In (Airoldi et al., 2007), the
setO is comprised of train-train edges, while the set U is comprised of the test-test edges. Finally, in
(Bleakley et al., 2007), the setO is comprised of train-train edges, while the set U is comprised of all
the remaining blocks except the test-test edges. These graph completion tasks, which serve distinct
but related purposes, are depicted in Figure 2, columns (a-c). Two additional completion tasks are
displayed in columns (d) and (e), the last being non-bipartite in the sense described above. As far
as prediction is concerned, the number and variety of completion tasks present unique challenges to
be solved. Figure 2 provides an alternative depiction of the graph completion task from column (a)
for a graph with a clear geometric structure. In this case, one half of the nodes (1-12) are observed
yielding a partition of positive and negative training edges (middle row) and positive and negative
testing edges (bottom row).

2.1 A Probabilistic Model

We first start with a probabilistic treatment of the problem. The most naive assumption is that the
distribution p (Y|X) is parameterized by some unknown w and is independent across all Y entries
and factorizes as follows

pw (Y|X) =
1

Zw (X)

∏
j,k

φw (yj,k|xj,k) , (1)
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Figure 1: Supervised graph completion predicts missing edges in a graph using partially observed
connectivity. Each column depicts an instance of the problem, where the top row shows
the edges that are observed and the bottom row shows the edges that are missing. Black
and white matrix entries indicate positive (on) and negative (off) edges, while grey entries
are excluded from consideration. The semantics are (a) extending or growing a network,
(b) predicting a similar but independent network, (c) linking new nodes to an existing
network, and (d) linking two networks. The last column shows (e) an example of a non-
bipartite partition (see text).

and Zw (X) is the normalization constant. For instance, we may assume that the presence or absence
of a edge depends on the feature vector xj,k associated with the nodes it connects, and a parameter
w by way of a log-linear potential function

φw (yj,k|xj,k) = exp
((

wTxj,k

)
yj,k

)
. (2)

However, since some connectivity structures are more likely than others, the independence assump-
tion is too simple. More realistically, there are dependencies between the labels. For instance,
consider a set of cliques c ∈ C over the edge labels in Y. This gives the probability distribution

pw (Y|X) =
1
Z

∏
c∈C

φc (yc)
∏
j,k

φw (yj,k|xj,k) , (3)

where each φc is a multivariate clique potential function over a set of edges. By choosing different
forms for the φc, we can tailor our beliefs about which network topologies are more plausible than
others.

Given a setting of w, the problem of finding the most likely completion of a partially observed
network amounts to solving

argmax
YU

pw (YU |YO,X) = argmax
YU

pw (YU ,YO|X) . (4)
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Figure 2: Graph inference on a structured graph. (Top-left) 24 equally spaced nodes on a circle are
connected by positive edges running in a counter clockwise direction. As depicted in (top-
right) using dashed lines, there are many more negative edges exhibiting a complementary
structure. In a typical graph inference setting, a subset of the nodes and their connectivity
are observed. In this case, one half of the graph nodes numbered 1-12 are observed
resulting in (middle-left) positive and (middle-right) negative edges available for training.
The goal is to correctly classify the remaining edges into positive and negative categories,
as shown in (bottom-left) and (bottom-right) respectively.
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Solving Equation (4) is typically called inference. A more challenging problem is that of learning
the parameters w from data. For learning, we use the observed edge features X and the partially
observed connectivity in YO as training data. The first objective in learning w is to ensure that the
connectivity predicted by the model matches that of YO. The second objective is to ensure that
the model is able to generalize by predicting the correct labels for unobserved edges. A principled
approach to achieve this objective is maximum likelihood. The maximum likelihood estimate for
the parameter w is given by the following optimization problem which integrates over the unknown
labels

argmax
w

∑
YU

pw (YU ,YO|X) . (5)

However, the quantity being maximized involves summing 2|YU | terms where |YU | is the cardinality
or the number of unknown labels and moreover the normalization constant Zw involves summing
2|Y| terms where |Y| is n2. Even though many of the terms in the summations are zero, the nor-
malization over these binary variables is computationally too difficult. An alternative approach to
achieve the same goals is based on empirical risk minimization.

3. Generalized Matchings

In many applications of graph completions, the degree δi of each node is known or an accurate upper
bound can be established. For example, when a structural biologist searches for the 3D structure of
a macromolecule, constraints are placed on the number and types of bonds that each molecular unit
can make. In the study of protein interactions (Kim et al., 2006), 3D shape analysis has been used
to bound the number of mutually accessible binding sites of a protein. In many social networks, the
number of connections a user has made is advertised on their profile, even though the set of users to
whom they connect is kept confidential (e.g. LinkedIn1).

Since in practice the degrees of nodes in a graph are often readily available, and because this
information is not currently used by existing methods for graph completion, we decided to study
if and how this topological information could be used to improve prediction. Thus, throughout the
remainder of the paper, we assume that degree information is available for the graphs that are to be
completed. To this end, we consider a class of structured graphs called generalized matchings. Let
G = (V, E) be a graph consisting of all candidate edges, for example, the complete graph over n
nodes.

Definition 1 A generalized matching in a graph G = (V, E) is a subgraph defined by edge labels
Y that satisfy in-degree and out-degree constraints. The set of generalized matching is defined
precisely as follows

B ,

{
Y ∈ {0, 1}n

2

| yj,k = 0 if (j, k) /∈ E ,∑
j

yj,k ≤ δin
k ,

∑
k

yj,k ≤ δout
j , j, k = 1, . . . , n

}
.

(6)

for given constants δin
k , δout

j ∈ {0, . . . , n}.

1. www.linkedin.com
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We can use generalized matchings to further specify our probabilistic model of graphs. In this case,
there will be a clique in the graphical model for each row and column of random variables from
the adjacency matrix Y, and potential functions φin

k (Y) = H
(
δin

k −
∑

j yjk

)
and φout

j (Y) =

H
(
δout

j −
∑

k yjk

)
where H (·) is the Heaviside step function.2 Substituting these cliques into

Equation (3), the complete factorization of the model has the following form

pw (Y|X) ∝
∏
j

φin
j (Y)

∏
k

φout
k (Y)

∏
j,k

φw (yj,k|xj,k) . (7)

Notice that the probability will be zero whenever the degree constraints are not met.
For inference by Equation (4), the generalized matching inspired cliques effectively restrict our

search to Y = YU ∪YO ∈ B, since all other configurations have zero probability. Setting the edge
scores sj,k = log (φw (yj,k|xj,k)) , predictions can then be made by solving

GM : argmax
YU

∑
j,k

sj,kyj,k s.t. Y ∈ B , (8)

which is a 0-1 programming problem. The quantity
∑

j,k sj,kyj,k =
∑

j,k

(
wTxj,k

)
yj,k is called

the score of the generalized matching specified by Y.
The GM problem has been studied extensively in operations research, and is closely related to

methods recently applied in machine learning. If the degrees are δin
k = δout

j = 1, in addition to
the graph being bipartite and symmetric, then the set of degree-constrained subgraphs are exactly
the 1-matchings of G, which are used to learn structural alignments in (Chatalbashev et al., 2005,
Taskar et al., 2005). In the 1-matching case, the iterative Hungarian or Kuhn-Munkres algorithms
each provide efficient solutions with worst case O

(
n3

)
time complexity. Moreover, it has been

shown that the optimal 0-1 solution is found by the linear programming relaxation of GM, which,
given the quality of industrial LP solvers, is likely to be faster still.

While in general, the GM problem with arbitrary degrees δin
k , δout

j is significantly more com-
plex, remarkably, it has be reduced to a balanced network flow problem, resulting in O

(
n3

)
com-

plexity. A primal-dual solver for this class of problems is available in the Goblin package (Fremuth-
Paeger and Jungnickel, 1998). This solver accepts both upper and lower bounds on the degrees,
has options for directed or undirected graphs, and also operates on large sparse graphs. Using the
sparse solver allows us to predict missing edges without incurring theO

(
n3

)
cost of solving for the

complete graph connectivity.

4. Learning

In typical methods for graph completion, the edge scores sj,k depend in some way on the node
similarity and the edge attributes. Previous researchers have proposed and debated the merits of
various node similarity or correlation scores. Instead of relying on our ability to design such scoring
functions by hand, we propose to select the scoring function from a large family of candidates, in
a data-driven manner. In particular, we assume a scoring function sj,k =

(
wTxj,k

)
that depends

linearly on the features via hyperplane parameter w and adopt a discriminative structured-outputs

2. The Heaviside step function is defined by H(t) =

(
1 t ≥ 0

0 t < 0
.
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framework (Taskar et al., 2003, Tsochantaridis et al., 2004) in order to learn the weight vector w
from data. Structured output models developed within the max-margin framework have been suc-
cessfully applied to predicting part-of-speech tags, word-alignments, parse trees and image segmen-
tations (Tsochantaridis et al., 2004, Taskar et al., 2004a, 2005). By focusing effort on the margin,
these formulations provide a tractable alternative to conditional likelihood modeling which would
otherwise require the computation of a partition function (Lafferty et al., 2001).

We begin by learning a weight vector that can predict the edges in O. Consider a fixed but un-
known distribution P (X,Y) over generalized matchings. We would like to select a score function
so that the true connectivity Y achieves a larger score than any alternative set of labels Z ∈ B with
ZO 6= YO ∑

j,k∈O

(
wTxj,k

)
yj,k ≥

∑
j,k∈O

(
wTxj,k

)
zj,k , ∀Z ∈ B, ZO 6= YO (9)

for any sample (X,Y) drawn from P (X,Y). If the weight vector w is chosen to satisfy Equa-
tion (9), then the inference procedure will predict Ŷ = argmaxZ∈B

∑
j,k∈O wTxj,kzj,k equal to

the correct graph Y, otherwise an error is incurred.
The structured-outputs framework attempts to minimize the probability of error by maximizing

a margin quantity γw = γw (X,Y) measured on the training data. Generalizing the multi-class case
of (Crammer and Singer, 2001), the margin quantity is defined as the minimum difference between
the score of the true connectivity and an alternative connectivity

γw (X,Y) ≤
∑

j,k∈O
wTxj,kyj,k −

∑
j,k∈O

wTxj,kzj,k , ∀Z ∈ B, ZO 6= YO . (10)

The problem of maximizing the margin γw over bounded weight vectors w is equivalent to the
following optimization problem

min
w

1
2
‖w‖2

s.t.
∑

j,k∈O
wTxj,kyj,k ≥

∑
j,k∈O

wTxj,kzj,k + ∆0/1 (Y,Z) , ∀Z ∈ B ,
(11)

where we have introduced the 0/1 loss term ∆0/1 (Y,Z) and eliminated the restriction on ZO. As is
common for structured-outputs learning, two further modifications are made to this maximum mar-
gin formulation. First, the Hamming loss ∆H (Y,Z) is substituted for the 0/1 loss ∆0/1 (Y,Z) with
the goal of improving generalization (Taskar et al., 2006). The Hamming loss ∆H (Y,Z), counts
the number of edge prediction errors

∑
j,k zj,k (1− yj,k) + yj,k (1− zj,k) and can be expressed as∑

j,k ∆j,kzj,k + ∆0 for given numbers ∆0, ∆j,k depending on yj,k. Finally, a slack variable ξ is
introduced to allow for potential violations of the margin constraint, with a scaled penalty in the
objective. The resulting learning problem is

CUTSVM :
min
w,ξ

1
2
‖w‖2 + Cξ

s.t.
∑

j,k∈O
wTxj,kyj,k ≥

∑
j,k∈O

(
wTxj,k + ∆j,k

)
zj,k + ∆0 − ξ , ∀Z ∈ B .

(12)

Notice that the slack variables are constrained to be positive ξ ≥ 0 because we include the possibility
of Z = Y in these constraints. More importantly, notice that the terms in the constraints involve
summations over the training points only.
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While we have derived our formulation using the structured prediction framework, it is interest-
ing to note that the final optimization problem bears striking resemblance to the recently proposed
1-slack formulation of the support vector machine (Joachims, 2006), which is implemented in SVM-
perf. Using the edge data (xj,k, yj,k) as independent examples, the 1-slack formulation considers
2n2

possible linear constraints that are indexed by n2 binary variables cj,k 1 ≤ j, k ≤ n. In our
work, constraints are also indexed in the same way through zj,k , yj,k − cj,k, but the total number
of possible constraints is less than 2n2

because the Z variables are constrained to be generalized
matchings. We compare the performance of CUT-SVM against SVM-perf, not only because SVM-
perf is the exact i.i.d. counterpart of CUT-SVM, but also because SVM-perf is capable of solving
large SVM problems such as those encountered in pairwise classification tasks dealing with n2

pairs.

4.1 The Cutting-Plane Algorithm

At first glance, solving CUTSVM is a formidable task due to the super-exponential number of
linear constraints that define the space of feasible solutions w. Using the technique of cutting-
planes, however, we can find an approximate solution that is within a pre-specified tolerance of the
optimum, in a finite number of steps (Tsochantaridis et al., 2004, Joachims, 2006).

The key idea employed by cutting-plane algorithms is that we are not so much interested in
representing the complete feasible region, but instead finding a good approximation to it near the
optimal solution (Kelley, 1960). The algorithm works in rounds, generating a nested sequence of
approximations F1 ⊇ . . . ⊇ Ft to the true feasible region, and returning the optimal solution
(wt, ξt) for the current approximation. The regions Ft are defined by a growing subset of the origi-
nal constraints, called the cut set C. Each round selects the most violated of the original constraints
indexed by Z ∈ B, and adds this constraint to the cut set C, thereby shrinking the feasible region
Ft+1. The algorithm terminates when there are no remaining constraints that are violated by more
than the allowed tolerance ε ≥ 0.

Cut generation, the task of finding the most violated constraint, reduces to a GM subproblem
using the loss-augmented edge scores

(
wTxj,k + ∆j,k

)
Zt = argmax

Z∈B

∑
j,k∈O

(
wTxj,k + ∆j,k

)
zj,k (13)

Notice again that the GM optimization is performed over the observed subset of edges alone.
We write CUTSVM (C, C) to denote the solution of quadratic programming problem from Equa-
tion (12) with slack penalty C but limited to the subset of constraints Z ∈ C. For typical prob-
lems and with a large enough tolerance ε, the number of constraints in C is manageable and
CUTSVM (C, C) can be solved efficiently. CUTSVM (C, C) may also be initialized with the solu-
tion from the previous iteration. The complete algorithm is shown in the box.

4.2 Transductive Cut Generation

In a general graph completion task, we observe (X,YO) and the goal is to complete the connectivity
Y by predicting the missing elements YU . Since the features for all edges, training and testing,
are available during training, we can use the principle of transductive inference to help guide the
selection of the score function, and to improve our ability to complete Y.

9
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Algorithm 1 The cutting-plane algorithm for learning to predict generalized matchings.
1: Input: Graph data (X,YO), slack penalty C, and cut tolerance ε ≥ 0.
2: (w1, ξt)← (0, 0), C ← ∅, t← 0
3: repeat
4: Zt ← argmaxZ∈B

∑
j,k∈O

(
wTxj,k + ∆j,k

)
zj,k

5: if
∑

j,k∈O wTxj,kyj,k ≤
∑

j,k∈O
(
wTxj,k + ∆j,k

)
zj,k + ∆0 − ξ − ε then

6: C ← C ∪ {Zt}
7: (wt+1, ξt+1)← CUTSVM (C, C)
8: end if
9: t← t + 1

10: until no change in C (i.e. all cuts satisfied within allowed tolerance ε)

In the maximum-margin framework, transductive inference is usually accomplished by max-
imizing a margin quantity over both labeled and unlabeled examples (Gammerman et al., 1998,
Joachims, 1999, Bennett and Demiriz, 1998, Collobert et al., 2005). Following this general ap-
proach, we have modified the method by which cutting-planes are generated, allowing the test edges
to influence w in an indirect fashion. Ideally, we would include the test points when solving the
GM with loss-augmented scores, simply by summing over U

Zt = argmax
Z∈B

∑
j,k∈O∪U

(
wTxj,k + ∆j,k

)
zj,k . (14)

However, since the entries of YU are not known, the loss terms ∆j,k can not be computed for
(j, k) ∈ U . Our proposed solution is to first predict values VU = ŶU using the current scores

Vt = argmax
V∈B,VO=YO

∑
j,k∈O∪U

wTxj,kvj,k , (15)

and then to compute the loss terms ∆j,k using our predicted labels from VU . Substituting these
∆j,k back into Equation (14), we obtain an alternative structure Zt that approximates the optimal
loss augmented generalized matching. As far as the cutting-plane algorithm is concerned upon
the receipt of Zt, it has obtained another violated constraint corresponding to a valid generalized
matching structure; only the observed component ZO is considered further.

5. Implementation Details

This section discusses a number of issues that arise when implementing the cutting-plane algorithm
for learning to predict generalized matchings.

5.0.1 SCORE COMPUTATION

A significant computational aspect of CUT-SVM is the calculation, each iteration, of the edge scores
sj,k = wTxj,k ,∀j, k , which requires O

(
n2d

)
operations, where d the feature dimension. This

issue is compounded by that fact that d may be large, and so the complete set of features may not fit
in memory. For the large graphs that we studied, we were able to store attributes of each node, and
recompute the edge features xj,k = f (xj ,xk) on the fly.

10
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5.0.2 NEGATIVE SCORES

It is easy to show that exact inference will never select edges that have negative scores; omitting the
edge would result in a higher scoring graph that also satisfies the upper degree constraints. There-
fore, we could remove edges with negative scores in order to speed-up certain generalized matching
solvers. However, such thresholding complicates CUT-SVM learning because the structures Zt will
have varying numbers of edges, which in turn introduces uneven biases through the linear terms∑

j,k xj,k (yj,k − zj,k) of the constraints.
Ideally, we would like the matching solver to be invariant to positive or negative shifts of the

score values. One solution is to change the definition of generalized matchings to use equality con-
straints instead of upper degree bounds, thus ensuring that all structures Zt have the same number
of edges even though some of their scores are negative. Two difficulties of this approach are first,
that the matching solver may not support equality constraints, and second, the degree constraints
may become impossible to satisfy if the degrees are estimated poorly. Moreover, in practice it is
much more reasonable to derive an upper bound on the degree, rather than its exact value. Hence,
the alternative solution that is adopted here is to constrain the scores to be positive, and use upper
degree bounds in the definition of the generalized matchings as in Equation (6). One method to en-
sure positive scores is to use only positive features, and additionally, to constrain the weight vector
to be positive. An easier approach is to add a sufficiently large constant to the scores.

5.0.3 GREEDY APPROXIMATE INFERENCE

The degree-constrained subgraph algorithm has time complexity of O
(
n3

)
. We measured the run-

time of the GOBLIN solver on a number of real-world generalized matching problem instances us-
ing random score matrices, and report the results in Figure 3. Times were measured on a 2GHz Intel
Core Duo
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Figure 3: Inference times

processor. Since this is the state of the art, it is impractical to use
exact inference within the cutting-plane algorithm for more than
a few iterations on graphs with n > 300. To address this issue,
we considered greedy approximations to GM. One extremely sim-
ple and fast greedy algorithm was proposed recently by (Mestre,
2006) which has theoretical running time bound ofO (maxi δi |E|).
While it is not always able to find the optimal generalized match-
ing, this algorithm has a 1/2-factor approximation guarantee. The
greedy algorithm is replaced by the exact algorithm whenever the
cut-generation fails, and for testing.

Other approximations based on loopy belief propagation tech-
niques have been investigated recently in (Huang and Jebara, 2007,
Sanghavi et al., 2007). While these approximations should be used with caution, as demonstrated
in (Kulesza and Pereira, 2007), their efficiency makes them very attractive for cutting-plane ap-
proaches.

5.0.4 DEGREE CONSTRAINTS FOR TESTING

Testing can be performed in two different ways. The first method solves the GM problem over
O ∪ U with the provided degrees δi, and subsequently returns the labels from YU . The second
method solves the GM over U using the residual degrees after subtracting the training edges δ′j =

11
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δj −
∑

k:(j,k)∈O yj,k, and subsequently returns the result YU . In practice was have found that
the second method works better, probably because the resulting GM inference problem is more
constrained.

6. Evaluation

One of the motivations of this work was to understand if, when, and where topological constraints
could be used to improve the prediction of missing edges in a partially observed graph. For this
reason, we tried to design a system that was capable of working with a wide range of network data
sets. This required flexibility in handling directed and undirected edges as well as various sorts of
node and edge attribute data.

6.1 Connectivity and Attribute Data

The graph data we considered included:

• Simple directed graphs embedded in R2 and R3 : these networks were synthetically generated
and included a circle, torus, star, etc.

• A directed cell-signaling network (Sachs et al., 2005): for this network, the expression levels
of 11 signaling molecules subjected to external stimuli were measured using a technology
called flow cytometry. The network is defined by the causal influences of one molecule on
another. These have been determined through extensive and time consuming laboratory study.

• An undirected protein-interaction graph (Yamanishi et al., 2004), and an undirected enzyme-
interaction graph (Yamanishi et al., 2005): these data sets are described by several n × n
kernels, each encoding similarity of a biological attribute. The edges, which correspond to
physical or chemical interactions, are determined experimentally.

• A directed citation network from CoRA (McCallum et al., 2000): this database contains
document attributes (e.g. abstract, authors’ names, date of publication, topic classification),
in addition to a citation network (edges from one paper to another) for several thousand papers
on machine learning.

• An undirected friendship graph from a social network: web pages and the accompanying
“friendship” structure were manually downloaded in a neighbourhood a seed page.

We have tailored our model to handle both directed and undirected graphs independently, but we do
not handle graphs that have both directed and undirected arcs. While self loops are handled, we did
not find an example where we needed to use them.

In all cases except the protein-interaction and enzyme-interaction examples, the attribute data
we collected were measurements associated with the nodes. For the embedded geometric graphs,
we used the coordinates in space for the node features. The node attribute data for the cell-signaling
network are the expression levels of various molecules. For the citation and social network, the
attribute data for the nodes consists of formatted text. In order to compress the bag-of-words rep-
resentations from the citation network and the social network, we use latent Dirichlet allocation
(LDA) (Griffiths and Steyvers, 2004). This resulted in a vector of 111 dimensions describing the
documents in CoRA, and a 171 dimensional feature vector describing an individual user’s page.

12
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k 1 2 3 4 5 6 7 8 9 10 11 12 14
n 668 667 608 483 407 326 287 243 174 81 75 41 15

Table 1: The relationship between the size of the core and degree k.

The protein and enzyme data sets were instead described by several n× n kernels each. While
the kernel values themselves could be used as edge features, we adopted the empirical feature map
approach in order to extract relevant features for the nodes. This was accomplished by decomposing
the kernel K = (kj,k) via eigendecomposition. The resulting features xj measure the similarity of
the j-th node to a set of prototypes, like the empirical feature map (Tsuda, 1999).

In all cases except the signaling network, given a pair of nodes (j, k) we defined the features
for edge xj,k , vec

(
xjxT

k

)
using an outer product of the node features. The result is a high

dimensional representation for edges that includes all pairwise products between a feature from
j and a feature from k. In general xj,k 6= xk,j which provides an opportunity for the model to
discriminate edge directionality, if required by the task. For the signaling network, the edge features
were constructed by hand for interpretability of the learned weight vector, and consistency with
previous work.

As mentioned earlier, we have assumed that accurate upper degree bounds can be estimated
in each application. Thus, for these preliminary experiments, we have used the true degree δi

calculated over the entire graph. In the subsequent sections, we describe experiments on geometric
graphs, protein-interaction graphs and cell-signaling graphs.

6.2 Experimental Protocol

We used the notion of the k-core of a graph to select subgraphs of manageable size for development
purposes and to observe behaviour of CUT-SVM closely. A core of a graph of degree k is the
set of nodes and edges that remain after recursively pruning any node (and its edges) with degree
δ < k. The cores of a graph form a nested sequence, much like the various cores of an onion.
The relationship between the degree k and the size of the core is shown in Table 1 for the enzyme-
interaction graph from (Yamanishi et al., 2005).

We perform 5-fold cross-validation to evaluate and compare CUT-SVM and i.i.d. SVM using
one of the bipartite schemes from Figure 1. The bipartite partition of edges O ∪ U is determined
from the train-test partition of the nodes on each fold. Thus, we first divide the n nodes into 5
subsets of roughly equal size. Then, on the k-th fold, the testing subset of nodes is determined by
the k-th subset, while the remaining nodes comprise the training subset.

The algorithms train on data (X,YO), and are evaluated based on their predictions for the
unknown labels YU . We look at the area under the curve (AUC), accuracy and recall. For a fair
comparison with CUT-SVM, the threshold of the i.i.d.-SVM classifier is chosen so that it predicts
Ntot =

∑
i δi/2 edges, which is the same number of edges predicted by CUT-SVM. Since CUT-

SVM predicts 0-1 outputs, the threshold is alway fixed at 0.5. The cross validated performance for
a given metric, is taken to be the average performance measured on the testing edges U across folds.

13



ANDREWS AND JEBARA

6.3 Results

6.3.1 COMPLETING THE CIRCLE EXPERIMENTS

The purpose of this example is to validate our algorithms. To generate the graph, we placed M = 24
points on a circle centered on the origin with even spacing. These were connected using directed
edges in counter-clockwise order. The x-y coordinates of the points were used as node attributes.
To make this example challenging, we used a random 2:3 partition of the nodes as can be seen in the
top row of the Figure. 4. If we use larger training sets, then each method described below obtains
near-perfect performance.

We compared i.i.d.-SVM, CUT-SVM and CUT-SVM with transduction, using a slack penalty
C = 1. We used a fairly loose tolerance ε = 0.1. The bottom row of the figure shows the com-
pletions predicted by these algorithms. The i.i.d.-SVM in (d) ignores the degree constraints and
appears to have been confused by the 87 negative edges which far out-number the 3 positive ones.
The CUT-SVM algorithm without transduction (d) does somewhat better primarily due to the use
of the degree constraints. The training set is still too small to learn an accurate model, especially
given the loose tolerance ε. Finally, in (f) we see that the CUT-SVM with transduction has predicted
nearly all edges correctly. This is primarily due to the fact that the transductive model adapts its
learning to the presence of the test points.

6.3.2 ENZYME-ENZYME INTERACTIONS

We focus next on a completion task involving the enzyme-interaction network from (Yamanishi
et al., 2005). We performed an eigendecomposition on the “gene expression”, “localization”, and
“phylogenetic profile” kernels, keeping enough eigenbases to explain 50% of the variance of each
kernel, resulting in a 44 dimensional feature vector for each node. The outer product xjxT

k has 1936
elements, however, since the network is undirected, symmetry constraints are used to reduce this
dimension to 990.

The core of size n = 81 was used for this experiment. We set ε = 0.05 and varied the slack
parameter across the following values C = {1e2, 1e4, 1e6, 1e8, 1e10, 1e12, 1e14}. We initialized
the weight vector of the cutting-plane algorithm using the solution from i.i.d.-SVM.

In the following discussion, we describe in detail several aspects of the model, making reference
to the following figures.

• Figure 5 displays learning curves for just one of the many runs of CUT-SVM.

• Figure 6 compares the results of CUT-SVM with that of i.i.d.-SVM in terms of the learned
scores, the predictions and the ROC curves.

• Figure 7 details the behaviour of the algorithms across the range of C values.

To begin, observe how in Figure 5 (a) , the depth of the cutting-planes converges quickly in the first
iterations and yet remains positive with a long tail. This is a typical profile for a problem with many
similar constraints, most of which are not active at the optimum. This behaviour also validates the
finite convergence theorems of (Tsochantaridis et al., 2004, Joachims, 2006). In (b) and (c), we see
the performance on the test edge, measured every 25 iterations. While these curves quickly level
off, in the first few iterations there is significant improvement over the i.i.d.-SVM algorithm that is
shown at iteration 0.
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(b) positive training edges
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(c) negative training edges
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(d) i.i.d. SVM
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(e) CUT SVM
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(f) transductive CUT SVM

Figure 4: Completing the connectivity of a circle. The training subset, generated from a 2:3 split
of the nodes, is depicted in (a). The black entries indicate positive edges which are also
shown in (b). The white entries indicate negative edge which are also shown in (c).
The bottom row shows the predicted completions; the edges from the test set that were
predicted to be positive, in addition to the positive edges from the training set. False-
positives are demarked by open arrows, which can be seen by magnifying the individual
figures. Results include (d) i.i.d. SVM, (e) CUT-SVM without using transduction, and
(f) CUT-SVM using transduction.
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Figure 5: Learning curves for CUT-SVM on the size n = 81 core enzyme-interaction network.

Clearly, the degree constraints are helping CUT-SVM. This effect is also evident in the score
and prediction matrices in Figure 6 (a-b). The prediction matrix uses color entries to indicate how
an edge is classified, with colors for true-positives (tp), true-negatives (tn), false-positives (fp), and
false negatives (fn). The i.i.d.-SVM algorithm cannot help but learn a banded score matrix, and it
will make predictions that are similarly banded, which is evident from the Figure 6 (b). Figure 7
provides a more complete view of the performance of both algorithms across a range of C values.
The difference in the recall measure of the two algorithms is striking. For example, at the largest C
value the average recall of i.i.d.-SVM is 27.3 ± 3.9, while that of CUT-SVM is 46.4 ± 5.3, which
is significant at p� 0.001. This demonstrates the significant effect that topology has on improving
prediction.

We have also run CUT-SVM on larger core examples adapting parameters to ensure timely
convergence. For example, on the size 174 core, using a relatively large tolerance of ε = 0.2, we
were still able to obtain impressive results (cf. Figure 8). In order to save on the training time
for the models that use large C values, we initialized with the final cutting-plane models with cuts
runs with smaller C values. This explains why the average training time of the CUT-SVM model
decreases for the largest C value. The ability to initialize CUT-SVM with a arbitrary collections
of cutting-planes in this manner can be of great importance in practical applications, when training
must be repeated in a dynamic or online setting, or when using multiple processors to find cuts.

It is interesting to note that while CUT-SVM outperforms i.i.d.-SVM in terms of accuracy and
recall, i.i.d.-SVM performs better in terms of AUC (cf. Figures 6 and 8, right side). In fact, for the
size 174 core with a slack penalty of C = 108, the average AUC is 0.67± 0.06 for i.i.d.-SVM, and
0.64 ± 0.01 for CUT-SVM. Part of the reason for this, is that CUT-SVM has 0-1 outputs, giving
rise to a piecewise linear ROC curve which has less area than the rounded curve generated by i.i.d.-
SVM. However, it is also by design that the CUT-SVM algorithm focuses on predicting the most
likely matching, and places less emphasis on the overall ordering of the edge scores.

We were able to run CUT-SVM on the core of size n = 326 in roughly 8 hours. At test time, it
takes 1 hour to solve GM using the exact inference algorithm. A complete set of results for this and
larger networks are expected for the final version of this paper.
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(c) ROC

Figure 6: A comparison of score matrices (column a), predictions matrices (column b), and
receiver-operator curves (ROC) for (top) i.i.d.-SVM and (bottom) CUT-SVM, on the size
81 core enzyme-interaction network.
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Figure 7: A comparison of running time (seconds), accuracy, area under the curve and recall, while
varying the slack parameter C for (dashed line) i.i.d. SVM and (solid line) CUT-SVM,
on the size 81 core enzyme-interaction network. The x-axis reports log10 (C).
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(c) ROC (i.i.d.-SVM)
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(f) ROC (CUT-SVM)

Figure 8: (Right: a,b,d,e) A comparison of running time (seconds), accuracy, area under the curve
and recall, while varying the slack parameter C for (dashed line) i.i.d. SVM and (solid
line) CUT-SVM, on the size 174 core enzyme-interaction network. The x-axis reports
log10 (C). (Left: c,f) A comparison of receiver-operator curves for (top) i.i.d. SVM and
(bottom) CUT-SVM, on the size 174 core enzyme-interaction network. This comparison
is for log10 (C) = 8, where the average AUC for the i.i.d.-SVM algorithm is greater than
that of CUT-SVM. Notice, however, that at the same C value, the ordering of the two
algorithms in terms of average recall is reversed.
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T 2700 1350 675 364 i.i.d. SVM T=2700
AUC (recall) 0.97 (80) 0.96 (79) 0.96 (77) 0.96 (77) 0.94 (73)

Table 2: Predicting causal influence between molecules in a signaling network with limited data (T
measurements). Results of CUT-SVM averaged over 5 repeated trials. A trial randomly
selects two disjoint 11 × T slices of the expression data for training and for testing. The
final column is the performance of an i.i.d. support vector machine trained on the edge
features.

6.3.3 PREDICTING CAUSAL RELATIONSHIPS IN A CELL

As a final example, we consider the cell signaling network previously studied in (Sachs et al., 2005,
Eaton and Murphy, 2007). Our goal was to address two of the limitations of Bayesian networks
outlined by (Sachs et al., 2005): 1) the inferred dependency graph is acyclic, and 2) effective infer-
ence requires many observations. Using CUT-SVM in this framework allows us to learn a function
that maps intervention data into a causal graphs. However, being a supervised method, CUT-SVM
requires that some of the causal relationships are known a priori. It is remarkable that the Bayesian
methods operate in an unsupervised fashion.

Flow-cytometry data was collected and discretized into 3 levels by (Sachs et al., 2005). The data
is summarized by two 11×5400 matrices. The first contains discrete expression levels 1-3, and the
second contains the assumed perfect intervention state. We use pairwise flow-cytometry measure-
ments to describe each possible directed edge j → k by a feature vector xj,k. Our representation,
which is based on contingency tables of the expression levels, is constructed to be: 1) invariant
to the ordering and number of flow-cytometry measurements; 2) sensitive to correlations between
levels but invariant to their sign; and 3) sensitive to both parent and child interventions, under the
assumption that they are not coincident (Andrews and Jebara, 2007).

For our first experiment, the goal was to see if we could generalize across different subsets of the
expression data. We randomly sampled two disjoint feature subsets of size 11×T from the original
11 × 5400 data matrices, to be used for training and testing. We then duplicated the 11 nodes, and
assigned one set of features to each copy, thereby creating two disjoint and independent networks,
one for training and one for testing. This procedure creates a graph completion task similar to
that shown in Figure 1 column (b). The results included in Table 2 show that we can generalize
well from sample to sample, and that performance does not degrade for small sample sizes. For
comparison, we have included the performance of an i.i.d. SVM on subsets of size T=2700. These
results show the benefit of using supervision in reconstructing biological networks, and furthermore
the advantage of using generalized matchings within a structured prediction framework for this task.

For our second experiment, depicted in Figure 9, we tested whether we could complete a net-
work that was partially observed, this time using all 5400 samples. We created a graph completion
task as in Figure 1 column (a), using a 2:1 split of the nodes. Here, we discovered that we could
complete the network with an average area under the curve (AUC) of 0.93 and recall of 80%.
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Figure 9: Predicting causal influence between molecules in a signaling network. Positive and neg-
ative edges used for training are shown in (a) and (b). The completed graph after learning
is shown in (c) and the ground truth in (d). False-positives are demarked by open arrows.

7. Related Work

Graphs appear in a variety of supervised and unsupervised machine learning techniques using a
combination of node and edge attributes for enhanced modeling. Many methods leverage a rela-
tional structure to learn classifications, clusterings, and/or rankings for individual nodes (e.g. (We-
ston et al., 2004)(Kleinberg, 1998)(Page et al., 1999)), and for entire graphs (Tsuda and Kudo,
2006),(Borgwardt et al., 2005),(Kudo et al., 2005)). To save space, we mention briefly only meth-
ods that perform relational learning of some form. Existing machine learning methods for predicting
missing edges in a network can be categorized roughly as follows:

1. Pairwise methods, such as metric, kernel and distance learning such as (Xing et al., 2003,
Goldberger et al., 2004, Shalev-Shwartz et al., 2004, Kondor and Jebara, 2006, Lanckriet
et al., 2002, Alfakih et al., 1999) or (Vert and Yamanishi, 2004, Ben-Hur and Noble, 2005)
mentioned above.

2. Topological methods like (Liben-Nowell and Kleinberg, 2003).

3. Methods for structure learning in Bayesian networks, such as (Jaimovich et al., 2006) and
(Sachs et al., 2005).

4. Learning to predict structured output variables (Bakir et al., 2007).

Structure learning in Bayesian networks is concerned with the recovery of dependencies amongst
a collection of random variables, given multiple independent observations of the random variables.
All of the data contributes to the reconstruction of the network. Our work is similar to structure
learning in Bayesian networks, because we are seeking a single structure. However, the nodes and
the feature vectors in our work, do not correspond to repeated observations of random variables.
Structure learning in a Bayesian network setting usually proceeds by a greedy hill search until no
improvements can be made to the graph likelihood or posterior, at a (local) maximum. There are
also many instances of more elaborate probabilistic models dealing with relational structure (Getoor
et al., 2001, Friedman and Koller, 2003, Taskar et al., 2004b, Pe’er et al., 2006, Airoldi et al., 2007)
although we are unaware that any of these use topological constraints such as ours.
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The task of learning to predict structured output variables has received a great deal of attention
recently (see (Bakir et al., 2007) for a broad overview), with applications from natural language
processing (Koo et al., 2007) to biological sequence analysis (Rätsch et al., 2007). Here the goal is
to find a function that maps multivariate structured inputs to multivariate structured outputs, given
multiple independent examples of this mapping. The task involves many related structures (many
sentences or many mRNA sequences), instead of completing just a single structure as we consider in
this paper. To our knowledge, no researchers have coupled structured output learning with degree-
constrained subgraphs.

While there exist several discriminative methods for learning to predict structured outputs, we
prefer the cutting-plane method because of its relative simplicity, ability to generalize, and depen-
dence on standard solvers. Moreover, our algorithm is closely related to SVM-perf, to which we
compare our results. We did not use the perceptron because it was not competitive with CUT-SVM.
We tried extragradient approach, but ran into computational difficulty solving O

(
n3

)
quadratic

flow problems. On the other hand, CUT-SVM, with its two step loop that solves loss-augmented
inference and then resolves a quadratic program, allowed us to plug-n-play with various inference
algorithms in a modular fashion.

8. Conclusions

This work introduces a structured-output model for learning to predict generalized matchings based
on attribute and topology data that are available in real-world settings. First, we propose a proba-
bilistic model for generalized matchings. Then, adopting a discriminative approach based on em-
pirical risk minimization, we derive an optimization problem for learning the model parameters. A
conceptually simple cutting-plane procedure has been optimized to approximate the solution effi-
ciently.

The main challenge as far as efficiency is concerned is solving the GM inference problem.
During the development of the cutting-plane algorithm, we explored several approximation methods
for this step; trading-off the quality (i.e. depth) of the cut with its generation time. We are currently
exploring automated schedulers that attempt to maximize progress in the minimum amount of time.

A transductive extension of the algorithm is proposed that has been shown to generalize better
than the non-transductive version. In practice, the transductive version is slower because it requires
two calls to the GM subproblem each iteration, and usually requires more iterations to converge.
Developing a more robust and efficient version is a goal for our future work.

Evaluation on several graph completion tasks demonstrate the versatility of our model and im-
plementation. The results demonstrate that it is possible to learn a metric that facilitates prediction
of structured networks. These network predictions are useful because they not only predict edges
accurately, but do so with high recall. We also provide encouraging results that demonstrate it is
possible to use structured learning with generalized matchings to learn to predict graphs with several
hundreds of nodes.
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