-
Multiple-Instance Kernels (ICML 2002)
Thomas Gartner (thomas.gaertner@ais.fraunhofer.de),
Peter A. Flach (peter.flach@bristol.ac.uk), Adam Kowalczyk, Alex Smola
www-gartner pdf
-
Multiple-Instance Learning of Real-Valued Data (2001)
Robert A. Amar, Daniel R. Dooly, Sally A. Goldman, Qi Zhang
citeseer
-
EM-DD: An Improved Multiple-Instance Learning Technique (preliminary version) (2001)
Qi Zhang, Sally A. Goldman
citeseer
-
A Framework for Learning Rules from Multiple Instance Data (2001)
Yann Chevaleyre, Jean-Daniel Zucker
(12th European Conference on Machine Learning)
citeseer
-
Multi Instance Neural Networks (2000)
Jan Ramon, Luc De Raedt
citeseer
-
Learning single and multiple instance decision tree for computer security applications (2000)
Ruffo, G.
(Doctoral dissertation, Department of Computer Science, University of Turin, Torino, Italy)
-
Solving the Multiple-Instance Problem: A Lazy Learning Approach (2000)
Jun Wang (Proc. 17th International Conf. on Machine Learning)
citeseer
-
Multiple-Instance Learning for Natural Scene Classification (1998)
Oded Maron, Aparna Lakshmi Ratan
citeseer
-
A Framework for Multiple-Instance Learning (1998)
Oded Maron, Tomás Lozano-Pérez
(Advances in Neural Information Processing Systems)
ftp.ps.gz
citeseer
-
Top-Down Induction Of First Order Logical Decision Trees (1998)
Hendrik Blockeel (Artificial Intelligence)
citeseer
-
Solving the Multiple-Instance Problem with Axis-Parallel Rectangles (1997)
Thomas G. Dietterich, Richard H. Lathrop, Tomás Lozano-Pérez
(Artificial Intelligence)
ftp.ps.gz
citeseer
-
A Training Algorithm for Optimal Margin Classifiers (1992)
Bernhard E. Boser, Isabelle M. Guyon, Vladimir N. Vapnik
citeseer
-
Integrated Segmentation and Recognition of Hand-Printed Numerals (1991)
James D. Keeler, David E. Rumelhart, Wee-Kheng Leow
djvu
-
Title (conf,journal/year)
authors
citeseer/link
-
Optimization Approaches to Semi-Supervised Learning (2000)
Ayhan Demiriz and Kristen P. Bennett
citeseer
-
Semi-Supervised Support Vector Machines (1998)
Kristin P. Bennett, Ayhan Demiriz
citeseer
-
Transductive Inference for Text Classification using Support Vector Machines (1999)
Thorsten Joachims
citeseer
-
Making Large-Scale SVM Learning Practical (1998)
Thorsten Joachims
citeseer
-
Support Vector Method for Novelty Detection (2000)
Bernhard Schölkopf, Robert Wiliamson, Alex Smola, John Shawe-Taylor and John Platt
citeseer
-
Discriminant-EM Algorithm with Application to Image Retrieval (2000)
Ying Wu, Qi Tian, Thomas S. Huang
citeseer
-
Self-Supervised Learning for Object Recognition based on Kernel Discriminant-EM Algorithm (2001)
Ying Wu, Thomas S. Huang, Kentaro Toyama
citeseer
-
Color Tracking by Transductive Learning (2000)
Ying Wu, Thomas S. Huang
citeseer
-
Integrating Unlabeled Images for Image Retrieval Based on Relevance Feedback
Ying Wu, Qi Tian, Thomas S. Huang
citeseer
-
Title (conf,journal/year)
authors
citeseer/link
-
Self-Supervised Learning for Object Recognition based on Kernel Discriminant-EM
Algorithm (2001)
Ying Wu, Thomas S. Huang, Kentaro Toyama
citeseer
-
Kernel Independent Component Analysis (2001)
Francis R. Bach, Michael I. Jordan
citeseer
-
Covariance Kernels from Bayesian Generative Models (2001)
Matthias Seeger
citeseer
-
Course on Kernels (2000)
Nello Christianinni
course notes
-
Improving Support Vector Machine Classifiers by Modifying Kernel Functions (Neural Networks 1999)
Shun-Ichi Amari, Si Wu
citeseer
-
Natural Regularization in SVMs (1999)
Nuria Oliver, Bernhard Schölkopf, Alex Smola
citeseer
-
Generalization Bounds via Eigenvalues of the Gram Matrix (1999)
Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Robert
C. Williamson
citeseer
-
Probabilistic kernel regression models (1999)
Tommi S. Jaakkola, David Haussler
citeseer
-
Generalization Performance of Regularization Networks and Support Vector
Machines via Entropy Numbers of Compact Operators (1999)
Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf
citeseer
-
From Regularization Operators to Support Vector Kernels (1998)
Alexander Smola, Bernhard Schölkopf
citeseer
-
The Connection between Regularization Operators and Support Vector Kernels
(1998)
Alex J. Smola, Bernhard Schölkopf, Klaus-Robert Müller
citeseer
-
General Cost Functions for Support Vector Regression (1998)
Alex J. Smola, Bernhard Schölkopf, Klaus-Robert Müller
citeseer
-
Exploiting generative models in discriminative classifiers (1998)
Tommi S. Jaakkola and David Haussler
citeseer
-
Nonlinear component analysis as a kernel eigenvalue problem (1998)
B. Scholkopf, A. Smola, and K.-R. Muller
citeseer
-
An Equivalence Between Sparse Approximation and Support Vector Machines (1997)
Nuria Oliver, Bernhard Schölkopf, Alex Smola
citeseer
-
Similarity Metric Learning for a Variable-Kernel Classifier (1995)
David Lowe
citeseer
/ html
version
-
White Noise As An Infinite Dimensional Calculus (1993)
T. Hida, H. Kuo, J. Potthoff, L. Streit
citeseer
(citations)
-
The Role of Differential Geometry in Statistical Theory (1986)
O. Barndorff-Nielsen, D. Cox, N. Reid
Barndorff-Nielsen, O. E., D. R. Cox, and N. Reid (1986). The Role
of Differential Geometry in Statistical Theory, International
Statistical Review, 54, 83--96.
-
Title (conf,journal/year)
authors
citeseer
-
Advanced Topics in Machine Learning (2001)
Peter Bartlett, Nello Christianini, Michael Jordan, Stuart Russell
www
-
Machine Learning and Pattern Recognition (2001)
Thomas Hofmann
www
-
Statistical Learning Theory and Applications (2002)
Tomaso Poggio, Sayan Mukherjee, Ryan Rifkin
www
-
Networks for Learning: Regression and Classification (2001)
Alessandro Verri, Tomaso Poggio
www
-
Learning, Approximation and Networks (1995)
Tomaso Poggio, Federico Girosi
www
-
web site
description etc.
-
Name
name
email
work affiliation
-
Self-Supervised Learning for Object Recognition based on Kernel Discriminant-EM Algorithm (2001)
Ying Wu, Thomas S. Huang, Kentaro Toyama
citeseer
-
Discriminant-EM Algorithm with Application to Image Retrieval (2000)
Ying Wu, Qi Tian, Thomas S. Huang
citeseer
-
Color Tracking by Transductive Learning (2000)
Ying Wu, Thomas S. Huang
citeseer
-
Integrating Unlabeled Images for Image Retrieval Based on Relevance Feedback (2000)
Ying Wu, Qi Tian, Thomas S. Huang
citeseer
-
Learning the Semantics of Words and Pictures (2000)
Kobus Barnard and David Forsyth
citeseer
-
Blobworld: Image segmentation using Expectation-Maximization and its application to image querying (1999)
C. Carson, S. Belonge, H. Greenspan, and J. Malik
citeseer
-
Statistical models for co-occurrence data (1998)
Hofmann T. and Puzicha J.
citeseer ??
-
Learning and representing topic. A hierarchical mixture model for word occurrence in document databases (1998)
Hofmann T.
citeseer ??
-
Normalized Cuts and Image Segmentation (1997)
Jianbo Shi and Jitendra Malik
citeseer
-
Title (conf,journal/year)
authors
citeseer/link
-
Berkeley vision web page
-
Blobworld web page
-
name
email
work affiliation