
Performance of Video-Chat Applications Under Congestion

Omer Boyaci, Andrea G. Forte, Henning Schulzrinne
Department of Computer Science

Columbia University
{boyaci, andreaf, hgs}@cs.columbia.edu

ABSTRACT
We study the performance of four popular IM clients focus-
ing our attention on video-chat. In particular, we analyze
how Skype, Windows Live Messenger, Eyebeam and X-Lite
react to changes in available bandwidth, presence of HTTP
and bit-torrent traffic and random packet losses.

Keywords
Video delay, bandwidth adaptation, measurements, Skype,
Live Messenger, X-Lite, Eyebeam

1. INTRODUCTION
When thinking about high-speed Internet, we have to con-

sider many different technologies such as ADSL, cable and
satellite. Usually, for all of them the speed of the downlink
and the speed of the uplink differ. For example, for ADSL
it is common to have downlink speeds of 3 Mb/s and up-
link speeds of 1 Mb/s with the uplink speeds always signif-
icantly lower than the downlink speeds. For common web
applications such as web browsing and video streaming, this
does not cause problems as the amount of information sent
on the uplink is considerably lower than the one received
on the downlink. Things however are different for applica-
tions such as video chat where a client needs not only to
receive video but also to send it. In such case, the uplink be-
comes the bottleneck of the system. To make things worse,
the presence of cross traffic creates congestion on both links,
with the video stream on the uplink suffering more, given
the much lower available bandwidth on the uplink. In other
words, when congestion happens the video stream on the
uplink will suffer first, thus determining the quality for the
whole video chat. Because of this, in the rest of the paper
we focus our attention on the uplink only.

Changes in bandwidth can significantly affect video and
audio quality, with video suffering the most given its higher
bandwidth requirements. Usually, congestion happens be-
cause bandwidth has to be shared among multiple competing
flows. When this happens, the way an application reacts can
bring to different scenarios by either increasing the overall
congestion or by trying to maintain a fair share of bandwidth
among flows. In order to analyze this aspect in our measure-
ments we consider HTTP and bit-torrent traffic competing

InternetInternet

Video Receiver

Video Sender

Dummynet

InternetInternet

Video Receiver

Video Sender

Dummynet

Figure 1: Experimental testbed

with video and audio traffic.
The application needs to find a way to detect congestion.

Usually, a way to do so is through packet loss. When conges-
tion happens, the queues in the routers fill up quickly and at
some point overflow. This causes packets to be dropped and
lost. Furthermore, when considering wireless networks, for
example, there are random losses due to the medium itself
and not to congestion. Because of this, a way to distinguish
between wireless losses and congestion losses needs to be
defined. More will be discussed in Section 3.

We tested Skype 4.0.0.215 [2], Windows Live Messen-
ger 14.0.8064.206 [11], Eyebeam version 1.5.19.5.52345 [1]
and X-Lite 3.0.47546 [3].

Among the clients we tested, Skype behaved the best by
adapting its codec parameters based not only on packet loss
but also on RTT and jitter. This allowed Skype to closely
follow the changes in bandwidth without causing any packet
loss. Eyebeam performed the worst with high fluctuations
in the transmission speed of its video traffic and with poor
adaptation to bandwidth fluctuations.

The rest of the paper is organized as follows. In Section
2 we give an overview on the state of the art, Section 3 de-
scribes the difference between random losses and losses due
to congestion. In Section 4 we present our experimental re-
sults and finally Section 5 concludes the paper.

2009 11th IEEE International Symposium on Multimedia

978-0-7695-3890-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ISM.2009.45

213

Figure 2: Skype with 10-10 step function

2. RELATED WORK
Real-time video chat has stricter requirements than stream-

ing video. Popular streaming video websites like Youtube,
Hulu, Netflix and Joost use TCP, which has flow and con-
gestion control mechanisms. They buffer the content in the
client before playing. The content is stored at more than
one bitrate and the most appropriate one is used. Netflix
determines the available bandwidth itself whereas Hulu and
Youtube allow users to switch to high quality. Several stud-
ies propose video streaming over heterogeneous environments
[8, 12]. Real-time video chat, however, has very strict de-
lay requirements and the retransmission mechanism of TCP
does not fit into this model. Because of this, all the measured
video chat clients stream over UDP.

In order to avoid congestion or under-utilization of the
link the sender needs to adjust its transmission rate. Under-
utilization may cause low quality because uplink of the res-
idential area networks are limited. Over-utilization causes
unfairness to other traffic as well as packet loss, hence de-
grading video quality.

The performance of audio chat applications has been stud-
ied extensively compared to video chat. Baset and Schulzrinne
compared Skype, MSN, Yahoo and Gtalk in terms of audio
quality and mouth-to-ear latency [4]. Hofeld and Binzenhfer
measured Skype quality and bandwidth adaptation in UMTS
[9]. Although their work studies performance of Skype un-
der congestion, it only covers audio calls whereas we focus
on video calls.

The piece of work closest to ours is [5]. Here, however,
the authors only measure Skype’s video adaptation to band-
width variations. On the other hand, we cover Skype, Win-
dows Live Messenger, Eyebeam, a commercial SIP-based
client and X-Lite, a free SIP-based client. We use Skype 4.0
for Windows which supports high-quality video chat whereas
they used Skype 2.0 for Linux.

3. RANDOM LOSSES VS. CONGESTION
LOSSES

Generally, applications consider packet loss a sign of con-
gestion. This is usually true since during congestion queues

Figure 3: Windows Live Messenger with 10-10 step func-
tion
in the routers fill up and packets get dropped. There are
situations, however, in which packet loss is not a sign of
congestion. This is true, for example, in a wireless environ-
ment. The wireless medium introduces by its own nature
losses due to many factors such as signal fading, obstacles
and co-channel interference [7]. Because of this, an applica-
tion needs to distinguish between the two kinds of losses. If
an application is not capable to distinguish between the two
kinds of losses, when a wireless loss occurs, the application
will think that the medium is congested and therefore will
try to back-off by lowering its sending rate. This, however,
will only be counterproductive since there is no congestion
and yet the application will experience lower quality due to
its lower sending rate.

An algorithm that helps in distinguishing between the two
types of losses is Spike [14]. Spike is an end-to-end loss
differentiation algorithm (LDA) which is based on relative
one-way trip time (ROTT). Spike classifies a loss as conges-
tion related if the loss happens when the ROTT presents a
spike.

4. MEASUREMENTS
In this section we introduce our experimental results.

4.1 Experimental Setup
We deployed a small testbed consisting of a desktop PC

running FreeBSD 7.1 and two Lenovo Thinkpad X63 lap-
tops running Windows Vista. In order to adjust the avail-
able bandwidth we used the desktop PC as a gateway by in-
stalling two ethernet cards and by running the dummynet ap-
plication [13]. By using the dummynet application we were
able to adjust many different parameters such as queue sizes,
RTT, maximum bandwidth and random packet loss. Figure
1 shows the setup for the experiments. All PCs were con-
nected to the Internet and all traffic between sender and re-
ceiver was going through the PC running dummynet. The
two laptops were used as IM clients, that is were running
a video chat. One desktop PC running FreeBSD and Dum-
mynet was used as gateway. All machines used as IM clients
were also running Wireshark [16] in order to collect and later

214

Figure 4: Eyebeam with 10-10 step function
analyze packet flows.

4.2 Results
We wanted to emulate a video-chat session between two

ADSL users located on either coast of the United States. For
all experiments we set the total RTT value to 114 ms to em-
ulate a cross-country link, queue size to 60 kB [6] and the
maximum available bandwidth to 3 Mb/s for the downlink
and 1 Mb/s for the uplink.

We performed three sets of experiments. In the first set,
we analyzed how the IM clients adapt to changes in band-
width. In the second set, we measured the impact of cross
traffic, either HTTP or BitTorrent as well as the impact of
random losses.

4.2.1 Changes in bandwidth

We modify the available bandwidth by following a step
function. We consider two step functions. The first step
function decreases and increases the available bandwidth of
80 kb every 10 seconds, while the second one has decreases
and increases of 400 kb every 10 seconds.

Figures 2, 3, 4 and 5 show the measurement results for
Skype, Live Messenger, Eyebeam and X-Lite, respectively,
when the first step function is used. We also show what dif-
ferent video and audio codecs were used and how the appli-
cations changed codecs depending on the congestion level.

In the following we describe in more detail the behavior
of each IM client.

X-Lite does not support H.264 for video, but it rather uses
H.263 which has poorer quality compared to H.264. From
our measurements, we have seen that it has a minimum bit-
rate of 180 kb/s as it does not go below such value even when
it experiences 100% loss. When congestion happens, even
though it experiences 100% packet loss, it does not stop the
video. It tries to recover from a congestion situation by using
Forward Error Correction (FEC) for audio. This however,
does not help much as it contributes to increasing the level
of congestion by increasing the packet size. Finally, X-Lite
does not drop the call even though the audio quality is very
poor.

Generally speaking, a good video-chat application, when

Figure 5: X-Lite with 10-10 step function

in a congested state, should drop the video stream in order
to preserve the audio stream as much as possible. Further-
more, if congestion is so high that even the audio stream is
severely affected, then it should drop the call. This would
help in lowering the overall level of congestion and it would
not represent a big penalty for the user since the quality of
the call was extremely poor.

In terms of bandwidth, X-Lite decreases its transmission
speed gradually. Unfortunately, once congestions stops and
more bandwidth becomes available, X-Lite does not increase
its transmission speed.

Eyebeam uses the H.264 video codec. Similarly to X-
Lite, it tries to use FEC when it detects high congestion
while still trying to keep both video and audio streams. In
other words, it does not try to disable video in order to keep
the audio quality to an acceptable level. Furthermore, it
seems to support only two different bitrates for video. This
is insufficient to support the different levels of congestion.
Eyebeam presents much higher fluctuations in transmission
speed than X-Lite, due perhaps to the implementation of the
H.264 codec. Such fluctuations translate in higher losses
when the available bandwidth starts decreasing since the peaks
of such fluctuations exceed the maximum available band-
width. Furthermore, once the available bandwidth starts in-
creasing again, similarly to X-Lite, the transmission speed
does not increase, staying steady at the lower speed, thus
never reaching the original level.

Skype behaves differently than the other IM clients. In
particular, it promptly adapts its transmission rate to changes
in bandwidth, thus preventing packet loss until the minimum
bit-rate is reached at which point it drops the call. Skype has
this behavior because it uses other metrics on top of packet
loss in order to detect congestion. Parameters such as RTT
and jitter are taken into account. In particular, we can see
from Figure 2 that as the available bandwidth goes down, the
transmission speed follows it closely, avoiding packet loss.
On the other hand, for the other IM clients packet loss starts
much earlier since in order to detect congestion they need to
“see” some packet loss. Also, the way other IM clients lower
their transmission rate is much more aggressive.

215

Figure 6: Windows Live Messenger behavior when de-
creasing/increasing the available bandwidth according to
10-50 step function

Figure 7: Skype bandwidth, delay and loss in the pres-
ence of concurrent HTTP traffic

While Skype reacts to congestion by trying to closely match
the available bandwidth, Windows Live Messenger drasti-
cally drops its transmission speed when it detects conges-
tion. In particular, it drops the video transmission rate and
then slowly tries to increase it again. No action is taken on
the audio flow. When it reaches very low bit-rates, it com-
pletely disables the video and it adds FEC to the audio trying
to preserve the audio stream as much as possible. A dis-
advantage of Live Messenger compared to Skype is that its
minimum audio bit-rate is 50 kb/s which prevents it from op-
erating at very low bit-rates. Skype audio codec, on the other
hand, can operate at bit-rates as low as 16 kb/s. In terms of
bandwidth, Live Messenger decreases its transmission rate
with the available bandwidth. As the available bandwidth in-
creases, the transmission speed for Live Messenger increases
very slow taking up to 9 minutes to reach the original value.

According to our subjective observations, Skype and MSN
when in congested state decrease video frame rate and qual-
ity, showing an almost-still image with few artifacts as there
is no or little packet loss. On the other hand X-Lite and Eye-
beam try to keep their frame-rate and quality high, show-
ing a smoother video but with lots of artifacts due to higher
packet loss. We believe that in terms of end-user experience,

Figure 8: Windows Live Messenger behavior in the pres-
ence of concurrent HTTP traffic
the first approach is better. Low-quality and low frame-rate
video without artifacts gives a better user experience than
high frame-rate video with lots of artifacts.

Lastly, video chat applications should be able to lower
their video bit-rate to very low levels in order to keep the
audio at an acceptable level. Video codecs should be able to
adapt to changes in bandwidth by supporting any requested
bit-rate. Such behavior we have seen it only in Skype while
the other video-chat applications support only a few fixed
bit-rate levels.

When the second step function is used, all IM clients be-
have similarly to the case of the first step function. In this
case, however, Live Messenger seems to be performing best
by quickly adapting to the sudden change in bandwidth (see
Figure 6). In particular MSN monitors the packet loss ra-
tio and if it sees a very high packet loss then it drastically
drops its transmission rate and when more bandwidth be-
comes available, it increases its transmission rate very slowly.
However, if Live Messenger sees low packet loss, it still
drops its transmission rate to a very low level but this time
it tries to increase it back to its original value in a very short
time.

Eyebeam performs worst as it lowers its transmission speed
only after the bandwidth has increased back to its original
value. Still, both Eyebeam and X-Lite do not increase back
their transmission speeds once the available bandwidth is
back to its original value.

4.2.2 HTTP as Cross-traffic

We show our experimental results when a video chat en-
counters HTTP cross traffic. That is, the cross traffic com-
petes with the audio and video traffic for available band-
width. In this case, we use Dummynet just to restrict the
uplink bandwidth to 1 Mb/s.

For generating HTTP traffic on the uplink, we uploaded a
9 MB file to a web-hosting service called Media Fire [10].

Eyebeam and X-Lite show a similar behavior; this is not
surprising given that they are both products of the same com-
pany. In particular, both do not adjust their transmission rate
at all, keeping it steady at the same value it had before the

216

Figure 9: Skype behavior in the presence of concurrent
bit-torrent traffic
competing traffic was introduced. As a consequence, band-
width is shared in a more or less fair way between audio-
video traffic and HTTP traffic. Packet loss is higher for Eye-
beam than for X-Lite because Eyebeam’s transmission rate
fluctuates. As mentioned earlier, such fluctuations are due to
the video codec Eyebeam uses and its implementation. Such
heavy fluctuations cause spikes in transmission rate which
translate to spikes in used bandwidth, that is spikes in packet
loss. It is curious to notice how the free version of Eyebeam,
that is X-Lite, does not present such spikes. This is due to
the fact that X-Lite is using a different video codec, H.263.

Skype adapts to the presence of other traffic by lowering
its transmission rate. As we can see from Figure 7, the very
good adaptability of Skype allows it to generate very low
packet loss. Unfortunately, in doing so, Skype will always
be penalized as the bandwidth that is not used by Skype is
consumed by the HTTP traffic.

Live Messenger, similar to Eyebeam and X-Lite, does not
lower its transmission rate, keeping it steady. On one hand
this prevents HTTP from using most of the available band-
width, on the other hand it causes higher packet loss.

4.2.3 Bit-torrent as Cross-traffic

In this section we discuss our experimental results when
introducing bit-torrent traffic during a video chat. For the
bit-torrent traffic we used the Vuze [15] bit-torrent client and
did not limit its maximum upload speed.

Eyebeam and X-Lite react in the same way as in the HTTP
case. They both keep the same transmission rate with and
without bit-torrent traffic. The fluctuations in transmission
rate in Eyebeam, cause a higher loss rate than in X-Lite. It
is interesting to note that since X-Lite and Eyebeam do not
lower their transmission rate, they will prevent bit-torrent
traffic from consuming more bandwidth.

On the other hand, Skype lowers its transmission rate as
soon as bit-torrent traffic is introduced (see Figure 9). This
limits the losses of video and audio traffic, however bit-torrent
traffic will take most of the available bandwidth. Once the
bit-torrent traffic stops, Skype goes back to its initial trans-
mission speed fairly quick. The reason why Skype lowers its

Figure 10: Skype behavior in the presence of random
losses
transmission rate considerably more than with HTTP traf-
fic, is because the bit-torrent client opens several concurrent
TCP connections taking in our experiments about 85% of the
available bandwidth. We observed more than 20 concurrent
TCP connections.

Live Messenger behaves differently than in the HTTP case.
When bit-torrent traffic is introduced, Live Messenger low-
ers its transmission rate significantly, leaving almost all the
available bandwidth to the bit-torrent traffic. This is because
in this case the amount of cross traffic is much higher than
in the HTTP case, therefore the amount of packet loss is also
higher. This causes Live Messenger to lower its transmission
rate considerably. In the HTTP case, the amount of cross
traffic and therefore packet loss was considerably smaller,
thus leaving its transmission rate the same. As mentioned
before, once the cross traffic is removed, Live Messenger
takes a long time to go back to its original transmission rate.

Ideally, the desired behavior would be an equal share of
bandwidth with small packet loss. This makes Eyebeam,
X-Lite and Windows Live Messenger all better than Skype
from this point of view. By lowering its transmission speed,
Skype just frees bandwidth which is then taken by other
flows, leaving the level of congestion unchanged.

4.2.4 Random Losses

Packet losses degrade the quality of a video chat signifi-
cantly. This is especially true with modern codecs like H.264
as there is a high correlation between frames. Therefore, a
bandwidth adaption algorithm should try to eliminate packet
losses by decreasing its transmission rate in case of conges-
tion. However, not all losses are due to congestion, wireless
networks introduce random losses due to signal fading, in-
terference and channel quality. Decreasing transmission rate
will not help in case of non-congestion related losses. Some
other techniques like FEC and retransmissions can be uti-
lized. However, in order to respond to losses an application
should differentiate congestion losses from random ones.

In these measurements we wanted to see how the various
IM clients behaved to random losses and in particular, to
see if they could differentiate random losses from congestion

217

losses.
By using Dummynet we introduce 1% random packet loss

and consider two scenarios. In one we introduce packet loss
throughout the video-chat session, in the other one we in-
troduce packet loss in the middle of the video-chat session.
Figure 10 shows our results for Skype in these two scenarios.
The top graph refers to random losses introduced in the mid-
dle of the video-chat session while the graph on the bottom
refers to random losses introduced throughout the video-chat
session.

In both scenarios Eyebeam and X-Lite do not change their
rate.

Skype on the other hand behaves differently. When all the
losses are introduced in the middle of the chat session (see
Figure 10), Skype reacts by adding FEC, therefore increas-
ing its transmission bit-rate by about 20%. This is different
from the case when losses are due to congestion as in that
case Skype decreases its transmission rate. Skype can distin-
guish between congestion losses and random losses by mon-
itoring packets delay. In case of random losses packet delay
does not change while in case of congestion losses packet
delay spikes [14]. Such increase in transmission rate is not
due to retransmissions triggered by the losses as the increase
in transmission rate would then be on the same order of the
random losses, that is 1%.

When random losses are introduced throughout the video
chat session (see Figure 10), Skype increases its transmis-
sion speed gradually. This is different from its usual behav-
ior of reaching full transmission speed almost immediately.

5. CONCLUSIONS
We built a testbed in order to analyze the behavior of four

popular IM clients, focusing on the video-chat feature and
on how such clients react to changes in bandwidth due to
congestion. We analyzed the behavior of Skype, Live Mes-
senger, X-Lite and Eyebeam. As competing traffic we con-
sidered both HTTP traffic and bit-torrent traffic.

We found that Skype adapts gradually to changes in band-
width, reacting to both increases and decreases in bandwidth.
Because Skype monitors also RTT and jitter on top of packet
loss, usually it can adapt its transmission speed before packet
loss occurs. Live Messenger drops its transmission rate dras-
tically when packet loss is detected and increases its trans-
mission rate very slowly when there is available bandwidth.
Because of this, Live Messenger performs best when dras-
tic drops in available bandwidth happen. On the other hand,
however, it does take an extremely long time to raise back
its transmission rate.
X-Lite and Eyebeam do not change their transmission speed

when cross traffic is present which makes them less sensi-
tive to the presence of bit-torrent traffic. When the avail-
able bandwidth decreases, they decrease their transmission
speed. Unfortunately, once more bandwidth becomes avail-
able, both X-Lite and Eyebeam do not increase their trans-
mission rate. Finally, Eyebeam presents strong fluctuations

in transmission rate due to the codec used and its implemen-
tation. These fluctuations are not present in X-Lite and cause
higher packet loss when spikes in transmission speed occur.

Due to limited upstream bandwidth, video clients must
have bandwidth adaptation mechanisms and must be able to
differentiate between wireless losses and congestion losses.

6. REFERENCES
[1] Eyebeam. http://www.counterpath.com, 2009.
[2] Skype. http://www.skype.com, 2009.
[3] X-Lite. http://www.counterpath.com, 2009.
[4] S. A. Baset and H. G. Schulzrinne. An Analysis of the

Skype Peer-to-Peer Internet Telephony Protocol. April
2006.

[5] L. De Cicco, S. Mascolo, and V. Palmisano. Skype
video responsiveness to bandwidth variations. In
NOSSDAV ’08: Proceedings of the 18th International
Workshop on Network and Operating Systems Support
for Digital Audio and Video, pages 81–86, New York,
NY, USA, 2008. ACM.

[6] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu. Characterizing Residential Broadband
Networks. In IMC ’07: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, New
York, NY, USA, 2007. ACM Press.

[7] A. G. Forte, S. Shin, and H. Schulzrinne. IEEE 802.11
in the Large: Observations at an IETF Meeting.
Technical report, Columbia University, November
2006.

[8] K.-M. Ho, W.-F. Poon, and K.-T. Lo. Performance
Study of Large-Scale Video Streaming Services in
Highly Heterogeneous Environment. Broadcasting,
IEEE Transactions on, 53(4):763–773, Dec. 2007.

[9] T. Hofeld and A. Binzenhfer. Analysis of Skype VoIP
traffic in UMTS: End-to-end QoS and QoE
measurements. Computer Networks, 52(3), 2008.

[10] MediaFire. MediaFire. http://www.mediafire.com,
2009.

[11] Microsoft. Windows Live Messenger.
http://messenger.live.com, 2009.

[12] G.-M. Muntean, P. Perry, and L. Murphy. A
Comparison-Based Study of Quality-Oriented Video
on Demand. Broadcasting, IEEE Transactions on,
53(1):92–102, March 2007.

[13] L. Rizzo. dummynet.
http://info.iet.unipi.it/ luigi/ip dummynet, 2008.

[14] Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and
H. Tokuda. Achieving moderate fairness for UDP
flows by path-status classification. In LCN ’00:
Proceedings of the 25th Annual IEEE Conference on
Local Computer Networks, page 252, Washington,
DC, USA, 2000. IEEE Computer Society.

[15] Vuze Inc. Vuze. http://www.vuze.com, 2009.
[16] Wireshark Foundation. Wireshark.

http://www.wireshark.org, 2006.

218

