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Abstract—Voice over WiFi (VoWiFi) will soon be the main
alternative to cellular phones. Providing a satisfactory user ex-
perience remains difficult, however. We focus on Call Admission
Control (CAC) for both Constant Bit Rate (CBR) and Variable
Bit Rate (VBR) VoIP traffic. Our approach is based on measuring
the time between idle times. It requires no infrastructure changes,
adds no probing traffic and has low complexity. We demonstrate
through extended simulations that our approach achieves very
good accuracy for both delay estimation and CAC when only
VoIP sources are present and when both VoIP sources and data
sources are present. Furthermore, we confirm TBIT performance
through experiments.

Index Terms—Call Admission Control, Delay Estimation, IEEE
802.11, VoIP, VBR, CBR.

I. INTRODUCTION

In recent years VoIP and IEEE 802.11 networks have seen
a rapid growth.

In IEEE 802.11 networks, an Access Point (AP) and the
stations (STAs) it serves form a Basic Service Set (BSS).
Each AP can support a limited number of concurrent voice
calls; we refer to this number as the AP capacity. After the
number of concurrent voice calls in the BSS surpasses the AP
capacity, the communication of all users at that AP suffers
from high delay and high collision rate, and therefore, poor
quality. The situation becomes even worse in scenarios where
both voice traffic and data traffic are present. In this last case,
the AP capacity for VoIP becomes even smaller since part
of the bandwidth is now used by data traffic. These are the
kinds of problems we address with CAC. In particular, a good
CAC mechanism needs to recognize when the AP capacity
has been reached and either redirect STAs to associate to a
non-congested AP or defer their call attempt.

In this paper we propose a mobile-station-based CAC mech-
anism. One of the strengths of the proposed approach is that
it is very simple and yet accurate, while not requiring any
probing of the medium. Our approach is entirely client-based,
thus not requiring any changes in the infrastructure and the
protocol. The proposed mechanism is based on the idea that
any STA in the BSS can monitor the shared medium and
calculate the time between idle times (TBIT), focusing on the
level of congestion seen by the AP. By using TBIT each STA
can make CAC decisions autonomously.

1Work performed while at Columbia University.
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Fig. 1. IEEE 802.11 Medium access procedure using DCF

We focus on the congestion seen by the AP because the AP
has to send packets to all the stations in the BSS and still it
has the same medium access priority as any other station in
the BSS [1]. Therefore, for symmetric traffic, the down-link
experiences congestion first [2].

TBIT works for both symmetric and asymmetric traffic. In
this paper we consider only symmetric traffic, that is, caller
and callee use the same voice codecs. While asymmetric traffic
is generally possible and often used in cellular networks,
it does not represent the typical scenario for IEEE 802.11
networks.

As mentioned earlier, in order to know the level of conges-
tion at the AP, we consider the interval between idle times. We
define an “idle time” as a period during which the medium is
idle and long enough to represent a transmission opportunity.
In particular, idle periods due to backoff and inter-frame spaces
are not necessarily idle times since their duration can be very
short, hence not representing a transmission opportunity.

When an idle time occurs, it means that the AP does not
have any packets to send since it would have otherwise sent
them using the transmission opportunity.

To see it in a different way, the time between idle times
is the time needed by the AP to empty its queue. If it takes
“too long” for the AP to empty its queue it means that the
packets stay in the queue for a longer time, that is, experience
a longer delay. Because of this, the time between idle times
gives us a direct estimate of the level of congestion that the AP
is experiencing, that is, the level of congestion all the STAs
in the BSS are experiencing.

The rest of the paper is organized as follows. Section II,
gives an overview of the IEEE 802.11 MAC protocol. In
Section III, we introduce TBIT and show how it can be used
for delay estimation and CAC, and in Section IV we present
simulation results and describe its performance. Section V
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Fig. 2. Packet delay for VoIP in IEEE 802.11b networks using DCF (G.711
CBR, 11 Mb/s)

shows some experimental results for both delay estimation and
CAC decisions using TBIT. Section VI discusses the current
state of the art and limitations of current approaches. Finally,
Section VII concludes the paper.

II. IEEE 802.11 MEDIA ACCESS CONTROL

IEEE 802.11 defines two MAC protocols, Distributed Co-
ordination Function (DCF) and Point Coordination Function
(PCF). Of these two, only DCF is widely adopted.

Figure 1 shows DCF in more detail. DCF uses Carrier Sens-
ing Multiple Access with Collision Avoidance (CSMA/CA).
When a STA needs to send a packet, it senses the medium for
an amount of time equal to a Distributed Inter-Frame Space
(DIFS) to check if it is busy or idle. If the STA senses the
medium idle, it sends the packet. If the STA senses the medium
busy for DIFS or part of DIFS, it defers transmission and starts
a backoff timer. The backoff timer is given by the following
equation:

TBO = N × T, (1)

where T is the duration of a time slot which is PHY-layer
specific and N is the number of time slots. The value of N is
uniformly distributed in the interval [0, CW ) where CW is
the current value of the Contention Window. CW ranges, in
exponentially-increasing steps, between CWmin and CWmax.
Every time the STA senses the medium idle for a duration
equal to DIFS, it starts decrementing the backoff timer. If the
medium becomes busy while decrementing the backoff timer,
the decrementing of the backoff timer is paused. It will resume
the next time the channel is idle for at least DIFS. When
the backoff timer reaches zero, the STA sends the packet.
If a collision occurs after sending a packet, the STA will
set its backoff timer again but this time with a higher value
for CW . Every time the STA experiences a collision, CW
is incremented until CWmax is reached. After a successful
transmission, CW is reset to CWmin.

From AP
Idle time Idle time

Time Between Idle Times
From MS t0 t2t1

New packet arrived at t1 will be queued until t2  

Fig. 3. Delay estimation using Time Between Idle Times (TBIT)

Because of the way DCF works, the down-link delay
increases sharply as soon as the number of calls exceeds the
AP capacity. This exponential growth of the down-link delay
is such that even accepting one single call above capacity
can cause significant quality loss for all the STAs in the
BSS. We have performed some simulations in ns-2, for VoIP
traffic using CBR and the G.711 codec. The simulation results
are plotted in Figure 2. As we can see, the down-link delay
increases sharply with the number of admitted call flows.

According to ITU-T [3], the one-way end-to-end delay
of voice packets must be less than 150 ms. If we consider
the codec delay to be about 30–40 ms at both sender and
receiver and the backbone network delay to be about 20 ms,
the wireless network should introduce a delay 60 ms or less.
Therefore, we define AP capacity for VoIP as the maximum
number of calls where the 90th percentile of up-link and down-
link delay does not exceed 60 ms.

In this configuration, the capacity of the AP is 14 calls
(see Fig. 2) and we can see that admitting one more call
above capacity increases the down-link delay to about 150 ms.
This clearly shows the importance and necessity of having a
good CAC algorithm in order to provide the QoS mobile users
expect.

III. PROPOSAL

As we mentioned in Section I, since the AP tends to be the
bottleneck in IEEE 802.11 DCF networks, STAs need to know
how large the load is or how long packets are delayed at the
AP. However, APs do not generally provide such information,
so it is necessary for STAs to estimate the AP load and packet
delay by themselves in order to make CAC decisions. In this
section, we introduce a method to estimate the delay in a BSS
and explain how to perform CAC with it.

A. Delay Estimation using Time between Idle Times

In 802.11 networks, the wireless medium is shared and
every STA can hear packets that other STAs and the AP send
and receive.

Let us consider an AP with several packets in its transmis-
sion queue. Such an AP tries to send one or more packets
every time it gains access to the medium. Therefore, the AP
will use any transmission opportunity it can and no idle times
will be observed on the medium. Figure 3 shows an example
of an AP having four packets to send at moment t0. If we
imagine that another packet arrives at t1, the packet will have
to wait until the AP empties its queue at t2 (t0 ≤ t1 < t2).
The queuing delay for the packet is t2−t1 and it is maximized



TABLE I
AVERAGE FREQUENCY OF CONTENTION WINDOW (CW) SIZES WITH 16

CALLS (G.711, CBR, 11 MB/S)

CW Size 31 63 127 255 511 1023
Frequency [%] 95.98 3.48 0.46 0.07 0.01 0.00

when t0 = t1. The TBIT is equal to t2 − t0 and represents a
direct measure of the maximum queuing delay at the AP at the
time of the observation. This makes queuing delay estimation
possible by just observing TBIT.

Delay estimation can be done by any STA in a BSS
since every STA can “hear” the medium. Furthermore, the
estimation can be performed anywhere in a BSS, even in
the presence of hidden nodes. This is possible because STAs
can still “hear” ACK frames sent by the AP to acknowledge
packets sent by other STAs, including hidden nodes. Finally,
delay estimation is done without using any additional traffic
for probing the load of the AP.

If the channel conditions are so poor that frames from the
AP are lost, the delay estimation using TBIT might fail. In
such a case, however, users would experience poor quality
calls regardless of the load at the AP. Delay estimation would
be a second-order issue and users should try to associate to a
different AP.

Delay estimation using TBIT represents a feasible way for
STAs to estimate the queuing delay at their AP with low
complexity. It is, in fact, important to notice that STAs already
monitor the medium for idle-times during normal operations
in order to apply the backoff mechanism defined in the IEEE
802.11 standard [1]. The only additional thing needed by the
proposed mechanism is a simple computation of TBIT.

We now explain in more detail how to estimate the queuing
delay at an AP by using TBIT. As explained in Section II, ev-
ery STA performs backoff after each successful transmission.
This means that, even if the AP has more packets to send,
it has to wait for DIFS plus TBO (see Eq. (1)). Therefore,
idle periods below this duration do not indicate that the queue
at the AP is empty as they do not represent a transmission
opportunity. In order to take this into account, we use a
threshold parameter named idle time threshold and ignore idle
periods shorter than this threshold. Let Ith be the idle time
threshold, we define it as:

Ith = TDIFS + TSlot × CWmin, (2)

where TDIFS and TSlot are the lengths of DIFS and a time-
slot duration, respectively, and CWmin is the minimum con-
tention window size. The first term, TDIFS , is obviously the
amount of idle time every station must wait before attempting
a transmission. The second term is the backoff time. The
backoff time is defined as in Eq. (1) where N is a random
variable uniformly distributed in the interval [0, CW ). In our
calculations we consider N equal to its upper bound, that is,
equal to CW and we set CW to its lower bound, that is, to
CWmin.

Usually, the value of CW increases after collisions. Table
I shows the average frequency of CW sizes in IEEE 802.11b
with 16 calls, that is, above the AP capacity (see Figure 2).
As we can see, even when the medium is congested, CW is
equal to CWmin for more than 95% of the time. As we show
later in our experiments, by selecting N = CW = CWmin,
Ith is big enough not to count as transmission opportunities
those idle periods due to backoff, and small enough not to
make our method too conservative.

In IEEE 802.11b networks DIFS is 50 µs, CWmin is 31 and
a slot time is 20 µs. By substituting these values in Eq. (2) we
find that Ith for 802.11b networks is 670 µs.

By using the idle time threshold defined in Eq. (2), a STA
estimates the queuing delay by first detecting idle times, that
is, idle periods longer than Ith, and then by measuring the
TBIT.

Since instantaneous TBIT values fluctuate, averaging tech-
niques are used to obtain the overall trend. In this paper, we
assume to use simple moving average.

B. CAC using TBIT

In the previous section, we showed how to estimate the
queuing delay at an AP by using TBIT. This enables a STA to
estimate the current delays in the wireless medium. However,
in order to perform CAC, we need to know if admitting a new
call causes congestion. We now show how TBIT can be used
to make CAC decisions.

Let us consider a STA making a new call. Let P and λ be
its packet size and packet rate, respectively, and let Ttx(P )
be the time needed to send a packet whose size is P . All
protocol overheads such as IFSs, backoff time, physical layer
convergence protocol (PLCP), and ACK sending time are
included in the calculations. Idle periods longer than Ttx(P )
can be considered as “service opportunities” for packets of the
new call. Admitting a new call does not cause congestion if the
frequency of service opportunities is higher than the packet-
rate of the new flow. Therefore, if we denote the frequency of
idle times that are longer than Ttx(P ) by µ, we can say that
the new call will not cause congestion if µ is larger than λ.

We also notice that the frequency of idle times is obviously
the inverse of time between idle times, so µ is the inverse
of TBIT and is obtained in the same way as in the delay
estimation. The only change we need to apply here is to set
the idle time threshold as Ttx(P ), that is:

Ith = Ttx(P ), (3)

in doing so, idle periods that are not long enough to send a
packet are ignored. Although Ttx(P ) is a function of P , a
client which is starting a new call knows its own packet size
and can calculate Ttx(P ) as follows:

Ttx(P ) = TDIFS + NSlot × TSlot + 2× TPLCP

+ P
Rdata

+ TSIFS + Pack

Rack
, (4)

where NSlot is the number of time slots, TPLCP is the
time needed to send the PLCP header and preamble, and
TSIFS is the time duration for SIFS. Rdata and Rack are



bit-rates to send data and ACK frames, respectively, and Pack

is the size of an ACK frame. Although NSlot is a random
value, it is reasonably replaced by CWmin

2 since NSlot is
uniformly distributed between [0, CW ), and CW usually stays
at CWmin, as we mentioned earlier. As we can see, variables
other than P in Eq. (4) are static and every STA knows their
values. Each STA can calculate Ttx(P ) by substituting P to
Eq. (4). Consequently, a STA can obtain µ by listening to the
medium. By checking whether µ is larger than λ or not, a
STA can make CAC decisions by itself.

C. Parameter Negotiation for CAC

In order to make CAC decisions, each STA needs to know
the packet rate for the new call and compute Ttx(P ). As we
can see from Eq. (4), all the parameters required to calculate
Ttx(P ) are known to each STA except for the packet size
of the new call. Packet size and packet rate depend on the
particular codec used. Because of this, in order to make CAC
decisions with TBIT, each STA needs to know the codec used
by the remote end-point. Let us look at this point in more
detail.

When a STA either wants to initiate a new call with a remote
STA or has to decide whether or not to accept a new call
initiated by a remote STA, it has to do CAC to make sure
that the new call can be admitted without causing congestion.
In order to do this with TBIT, the STA needs to know which
codec it will use for the new call and which codec the remote
end-point will use for such call. The remote end-point will
have to do the same thing for performing CAC on its wireless
link.

Since TBIT is performed passively, that is, without any
probing, each STA can periodically check its channel condi-
tions and see which codecs, among the supported ones, would
cause congestion. In doing so, each STA can build a white list
and a black list of codecs so that codecs causing congestion
are put in the black list and codecs not causing congestion
are put in the white list. In particular, a STA can test multiple
codecs simultaneously since it is possible to run TBIT with
different idle-time thresholds at the same time.

When a STA needs to make a call or respond to a call, it can
choose a codec among those included in its white list. In doing
so, caller and callee can negotiate which codecs to use, taking
into account the load at their respective APs. One possible way
to negotiate codecs is by using the Session Initiation Protocol
(SIP) [4].

In SIP codecs are negotiated in the initial INVITE−200
OK handshake. In our scenario, the caller would include in
the INVITE request only those codecs in its white list. On the
other side, the callee would include in the 200 OK response
those codecs included in the INVITE request that also belong
to its white list. In selecting codecs belonging to the white
list of both caller and callee, congestion is avoided. If caller
and callee do not have common codecs in their white lists, the
caller can cancel the call and the callee can reject it.

To summarize, using SIP together with TBIT allows caller
and callee to negotiate suitable codecs for both sides, thus

avoiding congestion. Furthermore, the proposed mechanism
does not add any additional delay to the call setup time since
each STA can keep updating its codecs’ white list during non-
time-critical operations.

The integration with SIP is reserved for future study.

D. Misbehaving Stations

STAs misbehaving to gain some kind of advantage over
other STAs is a general problem that affects many protocols
and standards. The IEEE 802.11e protocol is an example.
In IEEE 802.11e networks four traffic classes are defined,
each with its own medium access parameters. This is done
so that real-time traffic such as voice, has higher priority to
access the medium than, for example, data traffic. In order for
this protocol to work correctly, however, STAs need to cor-
rectly classify as high-priority traffic only real-time traffic and
classify as low-priority traffic best-effort traffic, for example.
Nothing however, prevents rogue STAs from sending any type
of traffic such as best-effort traffic, as high-priority traffic. In
doing so, rogue STAs try to achieve higher throughput at the
expenses of other STAs.

Similarly, in IEEE 802.11 networks, rogue STAs could
completely ignore the backoff procedure and try to send
packets immediately, trying to achieve higher throughputs.

By using TBIT each STA can make CAC decisions au-
tonomously. Enforcement of CAC policies, however, cannot be
guaranteed with a client-only approach, and rogue STAs can
indeed ignore CAC rules. This said, it is important to notice
that in the present context, STAs do not have any incentive to
misbehave. In particular, ignoring CAC rules would degrade
the communication of all STAs in the same BSS, including the
rogue STA that would just experience poor network conditions.

IV. EVALUATION

In this section, we evaluate the performance of TBIT for
delay estimation and CAC through simulations, using the ns-2
[5] network simulator.

A. Simulation Setup

As shown in Fig. 4, we use the Ethernet-to-wireless network
topology and focus on the delay in the BSS. One AP is
connected to the wired network and N STAs are in its service
range. The STAs make VoIP calls with nodes over the wired
network. In particular, each STA makes one VoIP call, that
is, the number of VoIP calls is equal to N . One of the
STAs monitors the wireless medium and computes TBIT as
explained in Section III. Note that the monitoring STA can
also make calls without affecting the delay estimation or CAC
results. In particular, since STAs have to monitor the medium
for normal operations, their monitoring of the medium can
be extended to compute TBIT on top of the normal DCF
operations.

Since the wired portion adds 4 ms one-way propagation
delay from a STA to a wired node and vice-versa, we subtract
4 ms from the end-to-end packet delay in order to focus on
the delay caused by the wireless part of the network.
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Fig. 4. Simulation topology

TABLE II
VOIP CODEC PARAMETERS USED IN THE SIMULATIONS

Codec G.711 G.723.1
Payload Size [byte] 160 20
Packetization Interval [ms] 20 30

Each VoIP call in the simulations is either G.711 CBR,
G.711 VBR, G.723.1 CBR or G.723.1 VBR. The payload
size and packetization interval of each codec are shown in
Table II. VBR here means that silence suppression is used
and packets are sent only during talk-spurts. The speech model
we use in our simulations is ITU-T P.59 [6], which is one of
the most commonly used. We did not consider any double-
talk and used 1.004 s and 1.587 s as mean values for the
exponentially distributed duration of talk-spurts and silence
periods, respectively. The wireless network parameters used in
our simulations are set according to the IEEE 802.11b standard
and are shown in Table III.

Although we focus on IEEE 802.11b networks, it is im-
portant to notice that TBIT works for any CSMA/CA based
MAC protocol. In particular, it works with any IEEE 802.11
standard, such as 802.11a/g/n by setting the parameters in Eqs.
(2) and (4) accordingly.

TABLE III
NETWORK PARAMETERS USED IN THE SIMULATIONS (IEEE 802.11B)

Parameter Value
PLCP Preamble (short) 144 (72) bits
PLCP Header 48 bits
MAC Header+CRC 34 bytes
IP+UDP+RTP headers 40 bytes
ACK frame size 14 bytes
SIFS 10 µs
DIFS 50 µs
Slot Time 20 µs
CWmin 31 slots
CWmax 1023 slots
Basic Rate 1.0 Mb/s
Data Rate 11.0 Mb/s

B. Evaluation of Delay Estimation using TBIT

Figures 5–8 show the simulation results for delay estimation
by TBIT. In each figure, the x-axis represents the time in
the simulation and the y-axis shows the packet delay. As
mentioned in Section I, APs tend to be the bottleneck in IEEE
802.11 DCF networks; therefore, we show only the down-link
delays. For every simulation in this subsection, the idle time
threshold Ith is set to 670 µs (see Section III-A), and each
estimated delay is the average of 15 TBIT samples.

Let us first look at how TBIT can estimate the delay for
CBR traffic, focusing on Figure 5. In this simulation a new
VoIP call starts every 20 seconds until the number of calls
reaches the AP capacity. The vertical lines in Figure 5 show
the number of calls (second y-axis). We can see from the figure
that when a new call starts, the down-link delay changes and
the estimated delay changes accordingly, that is, the estimated
delay follows very well the real delay. The figure also shows
that when the number of calls reaches the AP capacity, the
down-link delay increases significantly and the estimated delay
also follows the increase.

Figure 6, shows a detail of Fig. 5, that is, the transition
from uncongested state to congested state. As we can see,
also during the transition from uncongested state to congested
state the estimated delay follows the actual delay very well.

In the following we look at how well the delay estimation
works for VBR traffic.

Since VBR calls alternate between silence periods and talk
spurts, the amount of traffic fluctuates over time and delay can
increase even if the number of calls has not reached the AP
capacity. Hence, we need to check if such delay fluctuations
can be caught by using TBIT. Figure 7 shows some of the
results for VBR traffic. We can see that TBIT works well also
for VBR traffic.

Until now we have shown results for VoIP-only scenarios. In
real environments, however, other types of traffic are usually
present and the estimation has to work with such non-VoIP
traffic as well. We tested the delay estimation in a scenario
where G.711 VoIP calls and background HTTP traffic co-
existed. We used Packmime [7], a web traffic emulation
module for ns-2, for generating the HTTP traffic. We show
the delay estimation results in Figure 8. Again, we can see
that the estimated delay follows the actual delay very well.

As we have seen in Eq. (2), delay estimation with TBIT
is independent from traffic-specific parameters such as packet
size and packetization intervals. Because of this, delay estima-
tion using TBIT does not require special tweakings according
to the types of traffic present in the BSS. For example, mixed
scenarios with both data and voice traffic can be handled as
easily as voice-traffic only scenarios.

From these results, we can say that TBIT represents a good
metric to estimate the delay in IEEE 802.11 DCF networks.

There are situations in which the estimated delay might
seem not to follow the peaks of the actual delay. This however
is due to the averaging process performed on the samples
of the estimated delay. If needed, such a mismatch can be
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Fig. 5. Delay estimation using TBIT (G.711 CBR)

eliminated by using more complex average techniques and
different averaging parameters.

TBIT becomes less accurate during extremely high loads.
When the network is highly congested, the AP always has
packets to send in its transmission queue and in theory, the
TBIT should be infinite. In reality, the medium will not be
always busy and the TBIT will not be infinite. This is because
of the backoff procedure in DCF which might cause all stations
to defer transmission simultaneously for a short time, thus
leaving the medium idle for some time, wasting bandwidth.
In such a case, TBIT will consider such “fake” idle times
as transmission opportunities, corrupting the delay estimation.
In practice, however, STAs can know when these kinds of
situations occur since high congestion can be detected by
other means such as high packet loss rate and can respond
accordingly. Furthermore, such a situation should not occur
if a good CAC algorithm is used. In any event, one possible
solution to this problem would be to reconfigure Ith adaptively
with CW so to correct the delay estimation and ignore “fake”
idle times. We plan to investigate this in the future.

C. Evaluation of CAC using TBIT

In this section we show how TBIT can be used for CAC.
We did simulations assuming both homogeneous and hetero-
geneous scenarios, i.e., only one kind of VoIP codec is used
and different kinds of VoIP codecs are mixed together. The
simulation setup is the same as in Section IV-A.

1) Homogeneous scenario: Figures 9, 10, 11, and 12 show
the results of G.711 CBR, G.723.1 CBR, G.711 VBR, and
G.723.1 VBR, respectively. These figures show the 90th per-
centile down-link delay versus the number of calls in the BSS.
Each plot is a result of multiple simulations with changing
random seeds. In particular, we plotted the 90th percentile
delays with 95% confidence intervals.

Each figure also has a second y-axis for the frequency
of idle times. We define the frequency of idle times as the
inverse of the average TBIT in a second and plot the average
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frequency of idle times. Note that the idle time threshold Ith

to obtain the frequency is different for G.711 and G.723.1
codecs because they have different packet sizes. We set Ith

to 780 µs for G.711 and to 680 µs for G.723.1. The time to
send a packet is calculated using Eq. (4) by substituting the
parameters in Table III and the packet size. Note that the short
PLCP preamble is used in all the simulations and both PLCP
header and preamble are sent at the basic rate of 1.0 Mb/s.
With these parameters, TPLCP is 120 µs, Rack 11.0 Mb/s, Ps

234 bytes for G.711 and 94 bytes for G.723.1, including MAC
header, CRC, IP, UDP and RTP headers.

Figures 9–12 show how the 90th percentile delay increases
with the number of calls and it exceeds 60 ms when the
capacity is reached. In our simulations, the capacity was 14,
25, 32, and 58 calls for G.711 CBR, G.723.1 CBR, G.711
VBR, and G.723.1 VBR, respectively.

As we have explained in Section III-B, TBIT makes CAC
decisions based on whether the packet-rate of a new call
exceeds the frequency of idle times. The packet-rate of a new
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Fig. 9. VoIP capacity and frequency of idle times (G.711 CBR)

call should be twice the packet-rate of each codec since each
call generates two way traffic, i.e., up-link and down-link.
Since the packetization intervals of G.711 and G.723.1 are
20 ms and 30 ms, respectively, the packet rates of G.711 and
G.723.1 calls should be 100 packets/s and 66.7 packets/s,
respectively. Therefore, if STAs make CAC decisions based
on TBIT, they should not start a new call when the frequency
of idle times is less than 100 for G.711 and less than 66.7 for
G.723.1. Let us look at Figures 9–12. We can see for all these
four scenarios that the frequency of idle times becomes less
than the packet-rate of a new call just before the number of
calls reaches capacity, i.e., the 90th percentile delay exceeds
60 ms. In particular, with TBIT the maximum number of
accepted calls is 14, 24, 30 and 57 for G.711 CBR, G.723.1
CBR, G.711 VBR and G.723.1 VBR, respectively.

In order to see how much bandwidth remains unutilized
when TBIT starts rejecting new flows, we introduce the
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Fig. 10. VoIP capacity and frequency of idle times (G.723.1 CBR)
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Fig. 11. VoIP capacity and frequency of idle times (G.711 VBR)

utilization ratio. The utilization ratio U is defined as:

U =
[# of accepted calls with TBIT]

[# of calls at capacity]
, (5)

For G.711 CBR, G.723.1 CBR, G.711 VBR and G.723.1 VBR,
U is 1.00, 0.96, 0.94, and 0.98, respectively. As we can see,
TBIT makes accurate CAC decisions.

From these results, we can say that CAC decisions can be
taken by simply checking whether or not the frequency of idle
times is larger than the packet rate of a new call.

2) heterogeneous scenarios: We now evaluate our method
in scenarios where two different kinds of VoIP traffic are
mixed. In one scenario we consider calls with different packet
sizes and different packetization intervals. In another scenario,
in addition to different packet sizes and packetization intervals,
we also consider one of the two codecs to be VBR.

Different Ith values are used for G.711 and G.723.1 calls.
In particular, as mentioned in the previous section, we use a
value of 780 µs for G.711 and 680 µs for G.723.1.
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Fig. 12. VoIP capacity and frequency of idle times (G.723.1 VBR)

The results are shown in Figures 13 and 14. Since two kinds
of calls are mixed, in order to show the different possible
combinations, we use the contour of 90th percentile delays.
The vertical and horizontal axes represent the numbers of
G.711 and G.723.1 calls, respectively, and a coordinate (X, Y )
means that X G.711 calls and Y G.723.1 calls are active in
the BSS. In the white region the 90th percentile of the delay is
below 60 ms while it is higher in the other regions. Because of
this, only the coordinates that are in the white region represent
flows that are not causing congestion. Therefore, the line
between the white region and the colored region represents
the capacity line.

Now, let us look at where our method tells STAs to stop in
adding a new call. Each arrowed solid line in Figures 13 and 14
means that the frequency of idle times is larger than the packet
rate of a G.711 call and a STA can start one G.711 call on
its beginning point. Each arrowed dashed line means the same
thing for G.723.1. If the tip of the arrow reaches the capacity
line, it means that our method made the wrong CAC decision
and accepted one too many calls, reaching congestion. As we
can see from these figures, the tip of the arrows does not reach
the capacity line. We can therefore say that our method also
works in these heterogeneous situations.

In particular, the utilization ratio, U for these cases is
between 0.9 and 1.0. Also for heterogeneous VoIP traffic,
TBIT makes accurate CAC decisions.

We can conclude that STAs can make CAC decisions by
themselves by simply checking if the frequency of idle times
is larger or smaller than the packet-rate of the new call they
want to start.

3) With background traffic: In the previous sections we
have shown that CAC using TBIT works well for VoIP only
scenarios. Now we evaluate TBIT for CAC when background
data traffic and VoIP traffic co-exist.

Since data is usually transmitted using TCP, the throughput
of data traffic changes dynamically and it is not regulated.
Moreover, TCP tries to increase the throughput until packet
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loss is detected. Because of this, even if the number of admit-
ted VoIP calls is controlled by a CAC algorithm, background
data traffic can occupy a large amount of bandwidth degrading
the quality of VoIP calls. IEEE 802.11e tries to address this
problem.

The IEEE 802.11e standard defines an Enhanced Distributed
Channel Access (EDCA) to replace DCF. In EDCA every
station has four access categories (ACs) and four transmission
queues, one for each of the ACs. Though EDCA has the
same backoff procedure as DCF, each AC has now its own
medium access parameters allowing differentiated medium
access. Each AC has an independent set of CWmin, CWmax

and Arbitration IFS (AIFS) which replaces DIFS used in DCF.
The length of AIFS, TAIFS , is calculated as follows:

TAIFS = TSIFS + NAIFS ∗ TSlot, (6)

where NAIFS is the number of backoff slots which is defined
on a per-AC basis. The default parameters are shown in Table
IV. The standard assigns VoIP traffic to AC[0] and data traffic



TABLE IV
DEFAULT PARAMETER SET IN IEEE 802.11E EDCA

AC CWmin CWmax NAIFS

AC[0] 7 15 2
AC[1] 15 31 2
AC[2] 31 1023 3
AC[3] 31 1023 7
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Fig. 15. VoIP capacity and frequency of idle times (G.711 CBR with
background HTTP traffic)

to AC[3]. In doing so, VoIP traffic has higher priority than data
traffic in accessing the medium, hence limiting the throughput
of data traffic.

We performed some simulations in ns-2 using EDCA. We
considered G.711 CBR VoIP traffic and background HTTP
traffic. The HTTP request rate was 5.0 [request/s] and other
parameters such as the packet size, distribution of request
interval and data size in each request were set to Packmime’s
default values. VoIP and HTTP traffic were assigned to AC[0]

and AC[3], respectively, as in the standard. By considering a
CWmin value of 7 associated with AC[0] (see Table IV) and
from Eq. (4) we have that for VoIP traffic the time needed to
send a packet is 540 µs. Hence, we set Ith to 540 µs in this
simulation.

We plotted the simulation results in Fig. 15. As we can see,
the capacity in the simulations was only 10 which is less than
what it was when only VoIP traffic was present (see Figure
11). The reason behind this is that now there is HTTP traffic
that consumes extra bandwidth taking it away from the VoIP
traffic. As we can see from the figure, the frequency of idle
times becomes less than 100 when 9 calls are admitted, and
TBIT stops accepting calls when 9 calls are admitted. In this
case the utilization ratio, U is 0.9.

Clearly, TBIT gives accurate results for CAC also when
background traffic and VoIP traffic co-exist. In particular,
TBIT admits a maximum number of calls that is only one
call below capacity.

V. IMPLEMENTATION AND EXPERIMENTS

In this section we present some experimental results for
delay estimation and CAC with TBIT. Due to time constraints,
we focus only on G.711 CBR with background traffic. More
extensive measurements are reserved for future study.

A. Experimental Setup

For our experiments we created a small wireless testbed.
We used three T42 and one R51 IBM Thinkpad laptops.
Each laptop ran the Linux operating system and used multiple
wireless cards so that one single laptop could emulate multiple
wireless clients. In particular, we used two Proxym Orinoco
Gold 11a/b/g combo wireless cards, one Lucent Orinoco
Gold 802.11b card, one Dlink Air Xpert 802.11abg card, one
Linksys WPC11 wireless card and one Intel Pro 2200 wireless
card. We also used a Lucent Wavepoint-II 802.11b AP. In order
to make the experiments closer to a real scenario, throughout
the experiments other wireless traffic was present at other APs,
that is, our testbed was not isolated from interference.

We implemented a TBIT listener to estimate the AP queuing
delay and make CAC decisions using TBIT. The TBIT listener
was based on Java and libpcap version 0.9.8 [8]. In particular,
we used JPcap version 0.7 [9], a library and application
programming interface set which enables Java applications to
use libpcap. Since we used Java, our implementation works
on any platform which supports Java and libpcap, for as long
as the device driver is supported by libpcap. Furthermore, we
implemented a simple VoIP traffic emulator in order to send
and receive UDP packets at a given packet size and packet
rate. Each packet sent by the VoIP emulator carried a time-
stamp of when it was sent so that the one-way delay could be
easily computed. In the experiments, each laptop ran multiple
instances of the VoIP emulator, one per each wireless interface,
so that each laptop virtually worked as multiple VoIP clients.

B. Implementation

A straight forward approach to observe TBIT is to determine
whether the medium is busy or idle and calculate the time
between idle times by considering those idle periods longer
than the given idle-time threshold (see Section III). Generally
speaking, however, WiFi devices have medium-state informa-
tion available at the lower layers, but they do not make it
available at higher layers. Because of this, directly determining
the status of the medium by exploiting DCF operations is
currently not possible without having to modify the wireless
card firmware.

Device drivers, however, report other useful information at
the higher layers. In particular, they can report the transmission
rate and the time a packet is received by attaching an extension
header on each packet, (e.g. Prism and BSD Radiotap). The
TBIT listener uses such information to compute TBIT. The
TBIT listener captures packets transferred on a given wireless
channel, including IEEE 802.11 management and control
frames such as beacons and acknowledgments; it computes
what time the transmission started and ended by referring
to packet size, transmission rate and time the packet was



Fig. 16. Delay estimation using the Java-based TBIT listener

received; finally, it determines the idle periods and outputs
the time between idle times longer than the given idle-time
threshold.

In order to compute and plot the one-way delay from a
sender to a receiver, each VoIP client includes the time-stamp
at which the packet was sent, in the packet’s payload. When
the TBIT listener receives a packet of a specific format, it
checks the difference between the time-stamp written in the
packet and the current time, and plots the difference as one-
way delay.

C. Delay Estimation Experiments

We set up two laptop PCs connected to an AP via WLAN
and a laptop PC connected to the AP via a wired link. One
of the laptop PCs ran the TBIT listener and estimated the
queuing delay. The PC connected to the AP by Ethernet sent
packets with time-stamps to the TBIT listener so that the TBIT
listener could plot the actual one-way delay as well as the
estimated delay. The other laptop PC was used to generate
background traffic so to increase the queuing delay at the AP.
The clocks of all the PCs were synchronized by using the
Network Time Protocol (NTP). The idle time threshold Ith

was set to 670 µs and each estimated delay point has been
computed as the average of 15 TBIT samples. This is the
same metric we used in Section IV.

The CPU load during the estimation process is sufficiently
low to allow real-time delay estimation. Figure 16 is a screen
shot of the plot of the delay (actual and estimated) generated
by the TBIT listener taken during one of the experiments.
We can see from the figure that the estimated delay follows
the actual delay well. As we can see, however, there are
situations in which the estimation is not as accurate. This
is mostly due to our implementation of TBIT. In particular,
the limitation of our current implementation is that, TBIT is
computed by capturing packets. The capturing of packets is
in itself a not very reliable process since packets are often
missed. Furthermore, packets can also be lost due to errors
and collisions. This loss in packets by the observing node
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Fig. 17. CAC using TBIT for 802.11b (G.711 CBR at 2 Mb/s)

gets translated in a lower accuracy of the estimation process.
This problem can be avoided by accessing the status of the
medium directly from the wireless card. Ways to solve this
problem are reserved for future study.

D. CAC Experiments

We used four laptops and used the same topology as the one
depicted in Figure 4. One laptop was connected to the AP via
Ethernet to emulate a certain number of wired VoIP clients.
The other three laptops had each multiple wireless interfaces
so to emulate a certain number of wireless VoIP clients. The
number of wireless VoIP clients was the same as the number
of wired VoIP clients.

The payload size and packet rate of each emulated VoIP
traffic flow were 172 bytes and 50 packets per seconds,
respectively, that is, it emulated a CBR G.711 codec flow.
In particular, the payload size of 172 bytes included the
size of RTP header and voice data. The total number of
wireless interfaces used in the experiment was six. This means
that the maximum number of concurrent VoIP calls in the
experiment was also six. The AP was configured to set the
data transmission rate in the BSS at 2 Mb/s so that six G.711
calls could reach the capacity of the wireless medium. The
idle time threshold Ith was set to 1650 µs according to Eq. 4.

Figure 17 shows the results for CAC. The x-axis is the
number of concurrent VoIP calls and the y-axis is 90th

percentile down-link delay. The figure also has a second y-axis
to show the frequency of idle times and the packet rate of a
call. From Figure 17, we can see that the capacity of the system
was 4 VoIP calls and the frequency of idle times went below
the packet rate of a new call at exactly 4 concurrent VoIP
calls. As we can see, TBIT can make extremely accurate CAC
decisions. In this particular scenario, TBIT stopped accepting
new calls at exactly the system’s capacity.

Although we have not tested every possible scenario in our
testbed, these preliminary results confirm the TBIT works very
well in real-time environments for delay estimation and CAC



decisions. As future work, we will deploy and test TBIT in a
wider set of scenarios.

VI. RELATED WORK

A lot of research has been done for CAC in wireless
networks. Many approaches however, often require changes in
the either the network infrastructure, the IEEE 802.11 standard
or both [10], [11], [12].

Some client-based approaches have been proposed over the
years; however they usually require some probing mechanism
[13] or introduce a very high cost in terms of complexity [14].
Other approaches also have been proposed for CAC in IEEE
802.11 ad-hoc networks [14], [15]. In the following we look
at some of these approaches in more detail.

Garg et al. [10] propose an Access Control (AC) mechanism
for VoIP traffic. They calculate a Channel Utilization Estimate
(CUE) by collecting data available at the AP, through a
wireless gateway (WC) behind the AP. The gateway monitors
the traffic to and from the AP in order to estimate the channel
utilization. The CUE of a flow is defined as the amount of time
the network is busy transmitting that flow. So, by summing
the CUE of all flows, it is possible to determine the amount
of time for which the medium is idle. A new flow can be
accommodated if its CUE is smaller than the amount of idle
time.

Such an approach requires changes in the infrastructure and
the calculation and use of the CUE for AC purposes is rather
complex and requires a considerable amount of resources since
all flows need to be monitored all the time and the utilization
of the network needs to be correctly estimated. As explained
in Section III-A, we do not calculate the utilization of the
medium as this would introduce more complexity. Rather, we
just measure how often an idle time, that is, a transmission
opportunity occurs.

Casetti et al. [11] propose a CAC algorithm to use in
IEEE 802.11k and IEEE 802.11e networks. In particular, they
introduce a new network element co-located within the AP
and called Wireless Network Controller (WNC). Each mobile
node needs to reserve radio resources for a traffic flow. The
reservation request is sent to the AP which forwards it to the
WNC. The WNC runs the CAC algorithm and decides if to
grant the reservation or not. The reservation request contains
the traffic characteristics of the new flow which are used
by the WNC to estimate the current channel utilization and
make a decision regarding the new flow. The way the channel
utilization is calculated is rather complex and requires a large
number of parameters to be taken into account. Furthermore,
the channel utilization is calculated considering a maximum
desired delay of 400 ms which is unacceptable for real-time
media.

Xiao et al. [12] propose a mechanism for protection and
guarantee of voice and video traffic in IEEE 802.11e networks.
In particular, a two-level protection is proposed. At the first
level, the already admitted voice and video flows are protected
from new flows of the same type. At the second level, already

admitted voice and video flows are protected from best-
effort traffic. The first level protection is based on continuous
measurements of the available bandwidth on a per-traffic-class
basis; the second level protection is based on tweaking the
802.11e access parameters such as contention window and
inter-frame spaces.

Five different optimizations are proposed by the authors and
a combination of all of them is proposed as the best approach
in terms of performance. This clearly shows how this method
introduces high complexity and a large number of parameters
to tweak. Many of these parameters are sent by the AP to the
mobile nodes, thus requiring changes in the protocol.

In [13] McGovern et al. introduce a CAC algorithm based on
probing. The authors propose a client-based approach where
clients, before starting a new flow, probe the medium to see if
the new flow can be admitted or not. The probing is done by
sending ICMP packets that mimic VoIP traffic. A client that
probes the medium waits for ICMP responses and based on
this, it computes delay, jitter and packet loss. These parameters
are then used by the client itself in deciding if to admit and
start the new flow or not.

Probing the medium for available bandwidth is not a novel
idea and has some major drawbacks. In particular, the probing
process itself can cause congestion and all ongoing calls in the
BSS can suffer from it. Probing also introduces an additional
delay to the call set-up delay. This additional delay, according
to the authors, can be as large as 1600 ms, thus making the
overall call set-up delay unacceptable from a user experience
point of view.

Chakeres et al. [14] propose a perceptive admission control
(PAC) for IEEE 802.11 ad-hoc networks. In order to estimate
the network utilization, they consider the channel busy time
within a certain interval. Furthermore, 20% of the maximum
bandwidth is reserved to take into account temporary fluc-
tuations in traffic load of the already admitted flows due to
mobility. Such a heuristic might lead to a significant under-
utilization of the medium. In the paper, only VoIP traffic is
considered and no indication is given on how much bandwidth
remains unutilized when the CAC algorithm starts rejecting
new flows.

PAC has been proposed for ad-hoc networks and it considers
a busy-time ratio as CAC policy. However, the most important
difference between PAC and our approach is that we consider
a certain time interval as idle time, only if its duration is bigger
than a certain value. This certain value is the time needed to
send one packet and receive the corresponding ACK frame (see
Section III-A). Any time interval shorter than such value does
not really represent a transmission opportunity and therefore
should not be considered as idle time. By considering the busy-
time ratio, the authors in [14] fail to consider such short time
intervals as busy time thus losing in accuracy. In order to
prove this, we conducted some simulations in ns-2 and Figure
18 shows how the busy-time ratio fails to detect congestion.
As we can see, although congestion starts with flow 15 when
the delay reaches 200 ms, the busy-time ratio is only around
70% leading to the false impression that new flows can still
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Fig. 18. Congestion detection using packet delay and busy-time ratio

be accepted.
Finally, it is worthwhile noticing that one of the problems

with having additional network elements such as WC or WNC
is that they require a new signaling protocol with the end
system.

VII. CONCLUSIONS

In this paper we introduce the concept of time between
idle times (TBIT) and show how this can be used to estimate
queuing delay and make CAC decisions in IEEE 802.11 net-
works. In particular, a STA can estimate the AP queuing delay
by calculating the time between idle times while following
the usual DCF procedure, that is, without introducing any
significant overhead. Also, CAC decisions can be made by
simply checking if the frequency of idle times is larger than
the packet-rate of the new call.

We have confirmed with extensive simulations that TBIT
represents a direct measure of the queuing delay. In particular,
we show that the estimated delay follows the actual down-link
delay in various traffic scenarios such as CBR and VBR VoIP,
and VoIP with background data traffic. Through simulations
we also show that TBIT can be used to make accurate CAC
decisions for both CBR and VBR VoIP traffic, for different
packet sizes and packetization intervals, in scenarios where
different types of VoIP traffic are mixed and also in the
presence of background traffic. In terms of performance, the
utilization ratio is always between 0.9 and 1.0 for all scenarios
(see Section IV-C). This clearly proves TBIT’s high accuracy
in CAC decisions.

TBIT is very simple and yet effective. It enables every
STA in a BSS to estimate the AP queuing delay and make
CAC decisions without any support from the AP and without
probing the medium.

TBIT also works in the presence of hidden nodes since
STAs can hear the ACK frames sent to the hidden nodes
by the AP. However, in the particular case in which hidden
nodes exchange long frames, their transmitting period can be

mistakenly considered as an “idle time” by STAs using TBIT.
We are currently investigating cooperation approaches where
nodes can share statistical information regarding TBIT so that
the hidden node problem can be mitigated. The main idea
behind this is that the probability of multiple nodes not seeing
the same node is very low. This approach is reserved for future
work.

Currently, we are building a test-bed in order to confirm the
simulation results in a real environment. Preliminary results
for G.711 CBR have proven the correctness of the simulation
results showing the high accuracy TBIT can provide for delay
estimation and CAC decisions. In particular, for G.711 CBR,
TBIT accepts a number of flows equal to the system capacity,
thus allowing the utilization of the network to its maximum.
Further analysis is reserved for future work.
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