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Lecture 5 – Heavy Hitter Problem

Instructor: Alex Andoni Scribes: Shankara Pailoor and Piyushi Bishnoi

1 Introduction

In lecture 4, we discussed the FM, and FM+ sketching algorithm to count number of distinct elements in

a stream. In this lecture we begin by proving some impossibility results on the distinct element counting

problem described in lecture 4. We then discuss a different but related sketching problem called Heavy

Hitters. The motivation behind the impossibility results is to use an algorithm that will require Ω(n)

space while the motivation for the Heavy Hitters problem is to find the value in the stream that is the

most frequent, as well in Ω(n) time.

2 Impossibility Results

Theorem 1. A deterministic Exact Count algorithm requires Ω(n) space

Proof. Any deterministic algorithm A will take as input a stream of values x1, x2, · · ·xm and store the

count with some s bits. (Just as a quick note, s = # bits used by an algorithm solving the problem,

which is this case is the determining exact problem).

You can fix this algorithm using s bits where m ≤ n + 1. Since the input values are represented by

n bits, if we can construct an injective function from {0, 1}n to {0, 1}s then {0, 1}n ⊂ {0, 1}s giving us

s = Ω(n). Take z ∈ {0, 1}n and let zi denote the value of the ith bit. We construct a stream from z by

putting i into the stream if zi = 1 and denote it by streamz. We claim the following function is injective

f(z) , A(streamz) and prove it below.

Claim 2. f(z) is injective

Proof. We will prove this by reconstructing z from f(z). Let α = A(streamz) and let βi = A(streamz∪{i})
where zi is the ith bit of z. To reconstruct z from f(z) we do the following:

• Compute α

• For each i = 1, · · · , n compute βi.

• If βi = α then zi = 1

If βi − 1 = α then zi = 0.
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Since we only send in the positions of the bits of z which are 1 and the algorithm is deterministic and

exact, we recover z.

Also, if f is invertible, then s ≥ n.

Outline: Proving impossibility for determining the approximate count

Theorem 3. A deterministic 1 + ε approximation algorithm requires Ω(n) space.

Proof. The proof assumes that there exists a set T ⊂ {0, 1}n of size 2Ω(n) such that z = (z1, z2 · · · zn) ∈
T =⇒ (1) ‖z‖1 = n

2 , (2) For x, y ∈ T, ‖x− y‖1 >
n
6 . Like in our proof above, we construct the same

function f but restricted to the domain of T . Our procedure to recover z is as follows:

• Compute α = f(z)

• For each y ∈ T , run f(streamz ∪ streamy})

• If βy − α ≤ n
2 ∗ ε then z = y

We also notice that if z = y then # distinct elements doesn’t change much and if z 6= y then the #

of distinct elements changes a lot.

The last claim can be proven by considering two cases. If z = y then there will be a total of n
2 dis-

tinct elements seen. Since the difference when running the algorithm twice on the same input is less than

1 + ε we have βy − α ≤ n
2 ∗ ε. If z 6= y then since ‖z − y‖ ≥ n/6 and ‖z‖ = ‖y‖ = n/2 there are at least

n/12 positions where zi = 0 and yi = 1. Therefore βy ≥ n/2 + n/12 and so

βy − α > n/2 + n/12− n/2(1 + ε) > n/2 ∗ ε

Therefore, y = x ⇐⇒ βy − α ≤ n
2 ∗ ε. This tells us that T ⊂ {0, 1}s and since |T | = Ω(2n) we have

s = Ω(n)

3 Heavy Hitters

We will now describe a new sketching/streaming problem. Consider a sequence of values x1, x2, · · · , xm
where xc ∈ [n]. What is the most frequent value? This is known as the Heavy Hitters problem and

unfortunately, all randomized and 2-approximation solutions take Ω(n) space. However, we can tackle a

more modest goal of finding values that are sufficiently heavy.

Example 4. You are running a web application and your sequence of values is ips. In order to detect

possible DOS attacks you want to keep, track of who is hitting you the hardest.

Definition 5. Assume fi , frequency of i. Take i ∈ [n], φ ∈ (0, 1) and let fi denote the frequence of i

in the stream. We say that i is heavy if f(i) ≥ φ
∑n

j=1 fj = mφ.

We can now ask the more modest question: Given a sequence of values x1, x2, · · · , xm where xc ∈ [n],

what are the heavy elements? Our first attempt is to look at the general idea of hashing. Our second

attempt at a solution is called the Bucketing Algorithm. The idea behind it is to use a universal hash
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function h which points to w buckets. The value we store in the array A is the sum of collisions we have

in the bucket. While this is an overestimate, we can say with a high probability e.g. 90% that it is heavy.

The Bucketing Algorithm is outlined below. It takes as input a universal hash function h : [n]→ [w]

1: procedure BucketingAlgorithm(h)
2: A[1 · · ·w] = 0
3: while next input do
4: xc ← next input
5: A[h(xc)] += 1

Estimator: Once all the values have been bucketed we return all frequencies f̂i = A[h(i)] if f̂i > mφ.

Note: If there are zeroes in this stream, we can map them anywhere because they don’t make a difference

in the sum of collisions.

Claim 6. For a given φ < 1, there exists ε > 0 such that fi ≤ f̂i ≤ fi +mεφ with probability ≥ 90%

Proof. Fix i ∈ [n]. We observe A[h(i)] = fi +
∑

j 6=i:h(j)=h(i) fj because all occurrences of i and those

elements which collide with i will land in h(i). Let C =
∑

j 6=i:h(j)=h(i) fj (which is what we will notice is

the ”bad” part as it is an overestimate). We now want to compute E[C]

E[C] = Eh

 ∑
j 6=i:h(j)=h(i)

fj

 (1)

= Eh

∑
j 6=i

1h(j)=h(i)fj

 (2)

=
∑
i 6=j

1

w
fj ≤

m

w
(3)

By Markov’s, Pr
[
C ≥ 10m

w

]
= E[C]w

10m ≤ mw
10mw = 0.1. For sufficiently small ε we have 10m

w = mεφ.

Rearranging terms, we get w = 10
φε =⇒ Pr[fi ≤ f̂i ≤ fi +mεφ] ≥ .9

If fi < (1− ε)φm→ then not reported as heavy.

If fi ≥ φm then surely reported as heavy.

This gives us a (1 + ε) approximation to the Heavy Hitters Problem.

The drawback of this approach is that approximately 10% of input will be flagged as heavy and for

sufficiently large input this could be very noisy. However, we can reduce this probability of false positive

in a similar manner to FM+ by running L copies of bucketing algorithm. We call this the Count Min

Algorithm.

3



1: procedure CountMinAlgorithm()
2: Select independent hash functions h1, h2, · · · , hL ∈ H
3: Initialize A[L][w] each with hi[n]→ [w]
4: Run L copies of Bucketing Algorithm
5: return Estimators f̂i = minj A[hj(i)]

Claim 7. Pr[f̂i > fi +mεφ] ≤ 0.1L

Proof. Since our hash functions were selected independently, we have

Pr[f̂i ≥ fi + φεm] =
∏
j∈[L]

Pr[A[hj(i)] > fi + φεm] ≤ 0.1L

To achieve an error rate δ < 1
n2 for a given f̂i we need 0.1L ≤ 1

n2 =⇒ L > 2 log(n)
log(10) . Taking

L = C log(n) for C > 2
log(10) is sufficient.

Claim 8. The Counting Min Sketch Algorithm for the Heavy Hitters Problem with fixed n, φ < 1 and

ε ∈ (0, 1) satisfies the following (1) Pr[(∃i)(f̂i > fi + εφm)] < 1
n (2) Uses O(Lω) = O( log(n)

φε ) space.

Proof. Pr[(∃i) s.t. (f̂i is an overestimate by > fi + εφm)] <
n∑
i=1

Pr[f̂i > fi + εφm] ≤ n 1

n2
=

1

n
. The first

inequality follows from union bound and so proves the first property. The algorithm uses O(wL) space.

As we showed in Claim 7, we can take L = C log(n) for a sufficiently large n. Moreover, as showed in

Claim 6, we can take w = 10
φε and maintain these bounds, which gives us Lw = C log(n)

10φε ≤ C
′ log(n)

φε . Thus,

the algorithm takes O( log(n)
εφ ) space.

4 Heavy Hitters Summary

Our initial solution to the more modest goal of the H.H.P was the Bucketing Algorithm. The downside

was its high error rate of 10%. As a result we leveraged a technique we used in FM of lecture 4 to run

L copies of the bucketing algorithm and return the minimum value across all buckets. We called this

algorithm the Count Min Sketch. The reason we return the minimum is that all the estimators are biased

because since they returned frequencies larger than the actual frequency. Thus, the minimum estimator

for i ∈ [n] is closest to the true value. By choosing L = O(log(n)) along with sufficiently small ε and φ,

the fraction of incorrect heavy hitters dropped to 1
n and our algorithm uses O( log(n)

φε ) space.
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