Lecture 3 — Hashing: Power of 2 Choices

COMS 4995-3: Advanced Algorithms Jan 25, 2017

Instructor: Alex Andoni Scribes: Akshay Khatri, Kartikeya Upasani

1 Hashing Continued

The hashing problem was introduced last time. In short, the problem is to design
h: U] = [n]
that solves the dictionary problem:

e given set S of size m

e query: given z € [U], output if x € S

Parameters:

e space =7 (O(|S|logU) for a fully random hash function)
e time =7 (O(1) for a fully random hash function)

h : fully random — takes too much space
h : Universal Hash Function — Cheaper and atleast as good as fully random (mostly)

Runtime: | [~ [h(z)]] N S| 2 L,

C' = #collisions = #pairs x,y € S that fall in the same bucket i.e. h(x) = h(y)

Claim 1. E[C] = [
n

Proof. Proved last time

Want # collisions = 07

dm(m — 1)

Fix n = 5 = 0(m?)
1
< —
:>E[C]_4
By Markov:
1
PT[C>3E[CH§§
3 1
< Z
= Pr [C’> 4] < 3

2
With probability > 3’ we have C' < %
=C=0
Conclusion:
4 -1
fix n = m(n;) = O(m?)

3
Then no collisions with probability 1

To provide a different probability value,

_ 1lm(m —1)
" 2
= E[C] < 1
- 11

1
P[C >10E[C]] < —
10
= With robg C’<E implies C =0
p 10’ =10 p =

If we set n = O(m?), suffices for no collisions
Space = O(n) = O(m?) = O(|S|?)

Better Space = 7
Fixn=m

-1
Claim 2. For fized z, E[L,] < [1 + mn} where Ly, is the size of the bucket containing x
ifn=m, = E[L,] <O(Q1)

Proof.

E[L]=14+E| Y Ing-nw
y#x,yeS
=1+ > E[Lpg)=ne)]
yeS

-1

n

2 Perfect Hashing

The goal of perfect hashing is to have zero collisions. A 2-level hashing scheme is used.
First level: h: [U] — [n]

Second level: for each i € [n], h; : [U] — [ni]

Fix n =m = |S| and

Si(Si—1)
2

Tli=4>l<

where S; = # items from S that map to bucket i.
Assuming no collisions in second level hash lookup, the time taken to run query is O(1). The space
taken can be computed as follows:

space = first level + second level

=0(n)+ Y n
=1

=0(n) +0(1) * (n + zn: s?)
=1

=0(n) +0(1) * (n+ O(n))

Claim 3. E [| S?| =2m
Proof.

n

Zsf:xalznjsi*(si—l)
=1

=1

+E

(where [Z S (S; — 1)] = 2 x # collisions in bucket z)
1=1

A
=2m asn=m

Hence it can be said that space required is O(m) in expectation. For E[space] < 6m, from Markov bound,
we have Pr[space > 10 - 6m] < .
Full Algorithm:

sample h and check if space < 60m

if not, then resample h

for each i, sample h;
check that there are no collisions (probability > %
if collision in h;, resample it

Time complexity = O(m) + O(m) + >, S; = O(m).

3 Power of 2 choices
Using one hash function: E[query time] = E[bucket size] = O(1) if n = m.
Claim 4. Maz load in any bucket is ©(logn/loglogn) with probability 50%.

Proof. For proving the upper bound, fix the bucket size as S; for the i bucket.

Pr(S; > k] < Z Prlall x € T'in bucket i
TCS, |T|=k

1
—nC, . —
kR

(2%

- ()

1
Pr[S; > k] < —
rl8i = }_472

We want

so that

E[# buckets of size > k] < n - Pr[bucket size > k]

1
< —
— 4
< 1 with prob>1/2 from Markov bound
Hence we can infer about k
() <3
k 4dn
hence for a large enough constant c,
B logn
" loglogn

Using two hash functions: Consider hy, hy : [U] — [n]. For any z, compute hi(z) and ha(x) and
put x into the lesser loaded bucket. Such load balancing ensures max load for any bucket is O(loglogn)
with probability > 50%.

