
COMS 4995-3: Advanced Algorithms Jan 25, 2017

Lecture 3 – Hashing: Power of 2 Choices

Instructor: Alex Andoni Scribes: Akshay Khatri, Kartikeya Upasani

1 Hashing Continued

The hashing problem was introduced last time. In short, the problem is to design

h : [U]→ [n]

that solves the dictionary problem:

• given set S of size m

• query: given x ∈ [U], output if x ∈ S

Parameters:

• space = ? (O(|S| logU) for a fully random hash function)

• time = ? (O(1) for a fully random hash function)

h : fully random → takes too much space

h : Universal Hash Function → Cheaper and atleast as good as fully random (mostly)

Runtime: |
[
h−1 [h(x)]

]
∩ S| ∆

= Lx

C = #collisions = #pairs x,y ∈ S that fall in the same bucket i.e. h(x) = h(y)

Claim 1. E [C] =

[
mC2

n

]
=

m(m− 1)

2n

Proof. Proved last time

Want # collisions = 0?

Fix n =
4m(m− 1)

2
= O(m2)

⇒ E [C] ≤ 1

4

By Markov:

Pr [C > 3E[C]] ≤ 1

3

⇒ Pr

[
C >

3

4

]
≤ 1

3

1

With probability ≥ 2

3
, we have C ≤ 3

4
⇒ C = 0

Conclusion:

fix n =
4m(m− 1)

2
= O(m2)

Then no collisions with probability
3

4

To provide a different probability value,

n =
11m(m− 1)

2

⇒ E[C] ≤ 1

11

P [C > 10E[C]] ≤ 1

10

⇒ With prob
9

10
, C ≤ 10

11
, implies C = 0

If we set n = O(m2), suffices for no collisions

Space = O(n) = O(m2) = O(|S|2)

Better Space = ?

Fix n = m

Claim 2. For fixed x, E [Lx] ≤
[
1 +

m− 1

n

]
where Lx is the size of the bucket containing x

if n = m, ⇒ E[Lx] ≤ O(1)

Proof.

E[Lx] = 1 + E

 ∑
y 6=x,y∈S

1h(y)=h(x)


= 1 +

∑
y∈S

E
[
1h(y)=h(x)

]
= 1 +

m− 1

n

2

2 Perfect Hashing

The goal of perfect hashing is to have zero collisions. A 2-level hashing scheme is used.

First level: h : [U]→ [n]

Second level: for each i ∈ [n], hi : [U]→ [ni]

Fix n = m = |S| and

ni = 4 ∗ Si(Si − 1)

2

.

where Si = # items from S that map to bucket i.

Assuming no collisions in second level hash lookup, the time taken to run query is O(1). The space

taken can be computed as follows:

space = first level + second level

= O(n) +

n∑
i=1

ni

= O(n) + O(1) ∗

(
n +

n∑
i=1

S2
i

)
= O(n) + O(1) ∗ (n + O(n))

Claim 3. E
[∑n

i=1 S
2
i

]
= 2m

Proof.

n∑
i=1

S2
i = E

[
n∑

i=1

Si ∗ (Si − 1)

]
+ E

[
n∑

i=1

Si

]
(

where

[
n∑

i=1

Si ∗ (Si − 1)

]
= 2 ∗# collisions in bucket i

)

= 2 ∗ m(m− 1)

2
∗ 1

n
+ m

≤ m +
m2

n

= 2m as n , m

Hence it can be said that space required is O(m) in expectation. For E[space] ≤ 6m, from Markov bound,

we have Pr[space > 10 · 6m] ≤ 1
10 .

Full Algorithm:

sample h and check if space ≤ 60m

if not, then resample h

3

for each i, sample hi

check that there are no collisions (probability ≥ 2
3

if collision in hi, resample it

Time complexity = O(m) + O(m) +
∑n

i=1 Si = O(m).

3 Power of 2 choices

Using one hash function: E[query time] = E[bucket size] = O(1) if n = m.

Claim 4. Max load in any bucket is Θ(log n/ log log n) with probability 50%.

Proof. For proving the upper bound, fix the bucket size as Si for the ith bucket.

Pr[Si ≥ k] ≤
∑

T⊂S, |T |=k

Pr[all x ∈ T in bucket i]

= nCk ·
1

nk

≤
(en
k

)k
· 1

nk

=
(e
k

)k
We want

Pr[Si ≥ k] ≤ 1

4n

so that

E[# buckets of size ≥ k] ≤ n · Pr[bucket size ≥ k]

≤ 1

4

≤ 1 with prob ≥ 1/2 from Markov bound

Hence we can infer about k (e
k

)k
<

1

4n

hence for a large enough constant c,

k = c · log n

log log n

Using two hash functions: Consider h1, h2 : [U]→ [n]. For any x, compute h1(x) and h2(x) and

put x into the lesser loaded bucket. Such load balancing ensures max load for any bucket is O(log log n)

with probability ≥ 50%.

4

