Lecture 3 — Hashing: Power of 2 Choices
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Instructor: Alex Andoni Scribes: Akshay Khatri, Kartikeya Upasani

1 Hashing Continued

The hashing problem was introduced last time. In short, the problem is to design
h: U] = [n]
that solves the dictionary problem:

e given set S of size m

e query: given z € [U], output if x € S

Parameters:

e space =7 ( O(|S|logU) for a fully random hash function)
e time =7 (O(1) for a fully random hash function)

h : fully random — takes too much space
h : Universal Hash Function — Cheaper and atleast as good as fully random (mostly)

Runtime: | [~ [h(z)]] N S| 2 L,

C' = #collisions = #pairs x,y € S that fall in the same bucket i.e. h(x) = h(y)

Claim 1. E[C] = [
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Proof. Proved last time
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1
< —
:>E[C]_4
By Markov:
1
PT[C>3E[CH§§
3 1
< Z
= Pr [C’> 4] < 3



2
With probability > 3’ we have C' < %
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Conclusion:
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fix n = m(n;) = O(m?)
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Then no collisions with probability 1

To provide a different probability value,
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If we set n = O(m?), suffices for no collisions
Space = O(n) = O(m?) = O(|S|?)

Better Space = 7
Fixn=m
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Claim 2. For fized z, E[L,] < [1 + mn} where Ly, is the size of the bucket containing x
ifn=m, = E[L,] <O(Q1)
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2 Perfect Hashing

The goal of perfect hashing is to have zero collisions. A 2-level hashing scheme is used.
First level: h: [U] — [n]

Second level: for each i € [n], h; : [U] — [ni]

Fix n =m = |S| and

Si(Si—1)
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where S; = # items from S that map to bucket i.
Assuming no collisions in second level hash lookup, the time taken to run query is O(1). The space
taken can be computed as follows:

space = first level + second level
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Claim 3. E [ | S?| =2m
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(where [Z S (S; — 1)] = 2 x # collisions in bucket z)
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Hence it can be said that space required is O(m) in expectation. For E[space] < 6m, from Markov bound,
we have Pr[space > 10 - 6m] < .
Full Algorithm:

sample h and check if space < 60m

if not, then resample h



for each i, sample h;
check that there are no collisions (probability > %
if collision in h;, resample it

Time complexity = O(m) + O(m) + >, S; = O(m).

3 Power of 2 choices
Using one hash function: E[query time] = E[bucket size] = O(1) if n = m.
Claim 4. Maz load in any bucket is ©(logn/loglogn) with probability 50%.

Proof. For proving the upper bound, fix the bucket size as S; for the i bucket.

Pr(S; > k] < Z Prlall x € T'in bucket i
TCS, |T|=k
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We want

so that

E[# buckets of size > k] < n - Pr[bucket size > k]
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Hence we can infer about k
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hence for a large enough constant c,
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Using two hash functions: Consider hy, hy : [U] — [n]. For any z, compute hi(z) and ha(x) and
put x into the lesser loaded bucket. Such load balancing ensures max load for any bucket is O(loglogn)
with probability > 50%.



