1 Hashing Continued

The hashing problem was introduced last time. In short, the problem is to design
\(h : [U] \rightarrow [n] \)
that solves the dictionary problem:

- given set \(S \) of size \(m \)
- query: given \(x \in [U] \), output if \(x \in S \)

Parameters:
- space = ? \((O(|S| \log U) \) for a fully random hash function)
- time = ? \((O(1) \) for a fully random hash function)

\(h : \) fully random \(\rightarrow \) takes too much space
\(h : \) Universal Hash Function \(\rightarrow \) Cheaper and at least as good as fully random (mostly)

Runtime: \(|[h^{-1}[h(x)]] \cap S| \) \(\leq \Delta L_x \)

\(C = \# \) collisions = \# pairs \(x, y \in S \) that fall in the same bucket i.e. \(h(x) = h(y) \)

Claim 1. \(\mathbb{E}[C] = \frac{mC_2}{n} = m(m - 1) \frac{2n}{2n} = \frac{m^2 - m}{2n} \)

Proof. Proved last time

Want \# collisions = 0?

Fix \(n = 4m(m - 1) \frac{2}{2} = O(m^2) \)

\(\Rightarrow \mathbb{E}[C] \leq \frac{1}{4} \)

By Markov:

\(Pr[C > 3\mathbb{E}[C]] \leq \frac{1}{3} \)

\(\Rightarrow Pr\left[C > \frac{3}{4}\right] \leq \frac{1}{3} \)
With probability $\geq \frac{2}{3}$, we have $C \leq \frac{3}{4}$

$\Rightarrow C = 0$

Conclusion:

fix $n = \frac{4m(m-1)}{2} = O(m^2)$

Then no collisions with probability $\frac{3}{4}$

To provide a different probability value,

$n = \frac{11m(m-1)}{2}$

$\Rightarrow \mathbb{E}[C] \leq \frac{1}{11}$

$P[C > 10 \mathbb{E}[C]] \leq \frac{1}{10}$

\Rightarrow With prob $\frac{9}{10}$, $C \leq \frac{10}{11}$, implies $C = 0$

If we set $n = O(m^2)$, suffices for no collisions

Space = $O(n) = O(m^2) = O(|S|^2)$

Better Space = ?

Fix $n = m$

Claim 2. For fixed x, $\mathbb{E}[L_x] \leq \left[1 + \frac{m-1}{n}\right]$ where L_x is the size of the bucket containing x

if $n = m$, $\Rightarrow \mathbb{E}[L_x] \leq O(1)$

Proof.

$$\mathbb{E}[L_x] = 1 + \mathbb{E}\left[\sum_{y \neq x, y \in S} 1_{h(y) = h(x)}\right]$$

$$= 1 + \sum_{y \in S} \mathbb{E}[1_{h(y) = h(x)}]$$

$$= 1 + \frac{m-1}{n}$$
2 Perfect Hashing

The goal of perfect hashing is to have zero collisions. A 2-level hashing scheme is used.
First level: \(h : [U] \to [n] \)
Second level: for each \(i \in [n] \), \(h_i : [U] \to [n_i] \)
Fix \(n = m = |S| \) and
\[
 n_i = 4 \cdot \frac{S_i(S_i - 1)}{2}
\]
where \(S_i = \# \text{ items from } S \text{ that map to bucket } i \).

Assuming no collisions in second level hash lookup, the time taken to run query is \(O(1) \). The space taken can be computed as follows:

\[
 \text{space} = \text{first level} + \text{second level} \\
 = O(n) + \sum_{i=1}^{n} n_i \\
 = O(n) + O(1) \cdot \left(n + \sum_{i=1}^{n} S_i^2 \right) \\
 = O(n) + O(1) \cdot (n + O(n))
\]

Claim 3. \(E \left[\sum_{i=1}^{n} S_i^2 \right] = 2m \)
Proof.

\[
\sum_{i=1}^{n} S_i^2 = E \left[\sum_{i=1}^{n} S_i \cdot (S_i - 1) \right] + E \left[\sum_{i=1}^{n} S_i \right] \\
\left(\text{where } \sum_{i=1}^{n} S_i \cdot (S_i - 1) = 2 \cdot \# \text{ collisions in bucket } i \right) \\
= 2 \cdot \frac{m(m - 1)}{2} + 1 + 2m \\
\leq m + \frac{m^2}{n} \\
= 2m
\]

Hence it can be said that space required is \(O(m) \) in expectation. For \(E[\text{space}] \leq 6m \), from Markov bound, we have \(Pr[\text{space} > 10 \cdot 6m] \leq \frac{1}{10} \).

Full Algorithm:

sample \(h \) and check if space \(\leq 60m \)
if not, then resample \(h \)
for each i, sample h_i

check that there are no collisions (probability $\geq \frac{2}{3}$)

if collision in h_i, resample it

Time complexity = $O(m) + O(m) + \sum_{i=1}^{n} S_i = O(m)$.

3 Power of 2 choices

Using one hash function: $\mathbb{E}[\text{query time}] = \mathbb{E}[\text{bucket size}] = O(1)$ if $n = m$.

Claim 4. Max load in any bucket is $\Theta(\log n / \log \log n)$ with probability 50%.

Proof. For proving the upper bound, fix the bucket size as S_i for the i^{th} bucket.

$$Pr[S_i \geq k] \leq \sum_{T \subset S, |T| = k} Pr[\text{all } x \in T \text{ in bucket } i]$$

$$= \binom{n}{k} \cdot \frac{1}{n^k}$$

$$\leq \left(\frac{en}{k}\right)^k \cdot \frac{1}{n^k}$$

$$= \left(\frac{e}{k}\right)^k$$

We want

$$Pr[S_i \geq k] \leq \frac{1}{4n}$$

so that

$$\mathbb{E}[\# \text{ buckets of size } \geq k] \leq n \cdot Pr[\text{bucket size } \geq k]$$

$$\leq \frac{1}{4}$$

$$\leq 1 \text{ with prob } \geq 1/2 \quad \text{ from Markov bound}$$

Hence we can infer about k

$$\left(\frac{e}{k}\right)^k < \frac{1}{4n}$$

hence for a large enough constant c,

$$k = c \cdot \frac{\log n}{\log \log n}$$

Using two hash functions: Consider $h_1, h_2 : [U] \rightarrow [n]$. For any x, compute $h_1(x)$ and $h_2(x)$ and put x into the lesser loaded bucket. Such load balancing ensures max load for any bucket is $O(\log \log n)$ with probability $\geq 50\%$.

4