
COMS 4995-3: Advanced Algorithms April 19, 2017

Lecture 24 – MWU and Large-scale models

Instructor: Alex Andoni Scribes: Emmanouil Vlatakis

1 Introduction

Today’s lecture is about Multiplicative Weight Update and its application in approximating via LP

feasibility problems.

Let’s re-introduce again our basic notation:

• We have access to n experts who tell us over the course of T days (on every day) their opinion

about an aspect.

• Suppose that f ti is representing now a measure the loss of the advice of expert i on day t.

• Suppose that f ti ∈ [−1, 1].

• We define as pt the vector (pt1, · · · , pti, · · · , ptn) which are the probabilities of following the advice of

expert i on day t.

• The number of the mistakes or equivalently the total loss from the advices of the expert i over T

days is defined as mT
i =

T∑
t=1

f ti .

• The expected total error is MT =

n∑
i=1

T∑
t=1

ptif
t
i

1.1 Randomizing the choice halfs the error

MWU algorithm:

• w0
i = 1 ∀i ∈ [n]

• wt+1
i = wti(1− εf ti)

• Choose advice of expert i with probability pti =
wt

i
Qt ,

where Qt =
∑
i∈[n]

wti

Theorem 1. MT ≤
T∑
t=1

f ti +
lnn

ε
+ εT, ∀i ∈ [n]

1

Proof. We will upper bound and lower bound as in the previous lecture’s strategy the quantity Qt+1

QT+1 =
∑
i∈[n]

wT+1
i

=
∑
i∈[n]

wTi (1− εfTi)

=
∑
i∈[n]

wTi −
∑
i∈[n]

wTi εf
T
i (wTi = pTi ×QT)

=
∑
i∈[n]

wTi −
∑
i∈[n]

pTi ×QT × εfTi

=
∑
i∈[n]

wTi︸ ︷︷ ︸
QT

−
∑
i∈[n]

pTi ×QT × εfTi

= QT (1−
∑
i∈[n]

pTi εf
T
i)

= QT (1− ε〈pt, f t〉)

Using the classical bound (1− x) ≤ e−x the last equality implies that:

QT+1 =
∑
i∈[n]

wT+1
i

≤ QT e−ε〈pt,f t〉

≤ Q0
T∏
t=1

e−ε〈p
t,f t〉

≤ Q0︸︷︷︸∑
i∈[n] w

0
i=n

e−
∑T

t=1 ε〈pt,f t〉

≤ ne−ε
∑n

i=1

∑T
t=1 p

t
if

t
i

≤ ne−εMT

On the other hand we have that QT+1 ≥ wT+1
i ∀i ∈ [n] Following the algorithm we know that :

wT+1
i ≥

T∏
t=1

(1− εf ti)w0
i =

T∏
t=1

(1− εf ti)

Given that
∏T
t=1(1− εf ti) ≤ Qt ≤ ne−εM

T ∀i ∈ [n], we have that:

εMT ≤ lnn−
T∑
t=1

ln(1− εf ti) ∀i ∈ [n]

But ln(1− x) ≥ −x− x2 ⇒ − ln(1− x) ≤ x+ x2 so we have that:

2

MT ≤ lnn/ε+

T∑
t=1

f ti + ε(f ti)
2 ∀i ∈ [n]

Additionally, since f ti ∈ [−1, 1], we have that (f ti)
2 ≤ 1.

Therefore:

MT ≤ lnn/ε+

T∑
t=1

f ti + ε

T∑
t=1

(f ti)
2 ≤ lnn

ε
+

T∑
t=1

f ti + εT ∀i ∈ [n]

Notice that this result implies immediately that:

MT ≤ lnn

ε
+ min(1 + ε)mT

i

which is twice better bound than the previous lecture’s result.

1.2 Application in LP Feasibility problems

Suppose that we are trying to solve the feasibility constraints problem

FeasibilityProblem : Does exist any x ∈ Rn : Ax ≥ b ?

We will relax this feasibility problem by the following approximation:

ApproximationProblem :

{
Find an x ∈ Rn : Ax ≥ b− ε1
Certify 6 ∃x : Ax ≥ b

Corollary 2. From the previous theorem if T > lnn/ε2 we have that : MT ≤ mini∈[n]
∑T

t=1 f
t
i + 2εT

In order to solve the LP-relaxed problem we will construct a very clever agent mechanism.

Let’s assume that we have access to the following oracle:

Oracle O(p ∈ (R+)m)

• If there exists x ∈ Rn such that p>Ax ≥ p>b and maxi |Aix−bi| ≤
1 then outputs a possible x.

• Otherwise, it outputs Null.

Notice that ideally, if there was a solution to our initial problem we would like the oracle to output

something very close to it. The difficulty of that oracle is much less than the initial problem.

Theorem 3. There is an algorithm A that simulates the oracle O and use efficiently it O(log n/ε2) many

times to solve the ApproximationProblem.

Proof. The proof is just based in the corollary 2 and in the correct simulation of the oracle O. The idea

is simple. Every inequality will play the role of an expert. We will run a similar MWU scheme.

3

Algorithm:

• Start with w0
i = 1

∣∣∣p0i = 1
m∀i ∈ [m], where m is the number of the

different inequalities.

• Call oracle O(pt)

– If O(pt) ∈ Rn then xt ← O(pt)

– If O(pt) = Null then it outputs ”No Solution”.

– Set f ti = Aix
t − bi. (Notice that the most easily satisfied

constraints are less important, so the loss function’s value is

bigger)

– wt+1
i = wti(1− εf ti)

– pti =
wt

i
Qt , Q

t =
∑

i∈[n]w
t
i

• Do T = O(lnn/ε2) iterations.

• Ouput the time mean value x̃ =

∑T
t=1 x

t

T
To conclude the proof, we will argue about the correctness of the algorithm:

MT =
T∑
i=1

〈pt, f t〉

=
T∑
i=1

〈pt, (Axt − b)〉

=

T∑
i=1

〈pt, Axt〉 −
T∑
i=1

〈pt, b〉

=
T∑
i=1

(
〈pt, Axt〉 −

T∑
i=1

〈pt, b〉
)

≥ 0

The last inequality can be derived by the fact that (〈pt, Axt〉 ≥ 〈pt, b〉
)

because of the construction of

the oracle.

Again using the Lower.bound ≤ Upper.Bound we have that:

{
0 ≤MT

MT ≤ mini∈[n]
∑T

t=1 f
t
i + 2εT

⇒

mini∈[n]
∑T

t=1 f
t
i + 2εT ≥ 0⇒ mini∈[n]

∑T
t=1(Aix

t − bi) + 2εT ≥ 0⇒ 1

T

(∑T
t=1 x

t
)
≥ bi − 2ε ∀i ∈ [n]

Notice that x̃ resolved indeed the approximate problem. In addition notice that the property f ti ∈
[−1, 1] , is guaranteed as maxi∈[n] |f ti | ≤ 1.

4

2 Large Scale models

In this section we study the Input/Output (I/O) complexity of large-scale problems arising e.g. in the

areas of database systems, geographic information systems, VLSI design systems and computer graphics,

and design I/O-efficient algorithms for them.

Traditionally when designing computer programs people have focused on the minimization of the

internal computation time and ignored the time spent on Input/Output (I/O).Theoretically one of the

most commonly used machine models when designing algorithms is the Random Access Machine (RAM).

One main feature of the RAM model is that its memory consists of an (infinite) array, and that any

entry in the array can be accessed at the same (constant) cost. However, in practice there is a huge

difference in access time of fast internal memory (usually so-called “cache memory”) and slower external

memory such as disks or main RAM.

While typical access time of cache is measured in nano seconds, a typical access time of a disk or of

the main memory is on the order of milli seconds. So roughly speaking there is a factor of a million in

difference in the access time of internal and external memory, and therefore the assumption that every

memory cell can be accessed at the same cost is questionable, to say the least.

Figure 1: A real machine with typical memory and block sizes

Definition 4 (The I/O Mode). So we will modify the way that we count the complexity of our model

following an external memory model (I/O model) in 2 levels.

(0th layer) CPU contains a register file.

(1st layer) If CPU cannot find the demanded information in the register file, it exchanges blocks extremely fast

with a cache memory C.

(2nd layer) If the demanded memory block is not located there then CPU seeks it into the external memory M .

Note1 Each memory element (register file,cache memory,external memory) is organized in cache lines, of

length B (the so-called “block size”).

Note2 If we need the information of address addr from cache and this address belongs to block B =

[LeftAddr,RightAddr], then we need to transfer the whole block from the external memory.

5

Figure 2: Cache line Organization

Example 5 (Cache Line Organization). Suppose that cache memory has size |C| = 1Mb, with block

size 32 bits=4 bytes. Then, the cache memory contains |C|/4 cache lines, or equivalently CacheLines =

|C|/|BlockSize| = 220/4 = 218 cache lines.

Example 6 (Block Transfer). If we need the information of address=0004 and the block size is 8 we

have to bring the whole block, the whole cache line [0000,0007].

Definition 7. There are many different ways to count the complexity of a model. However, the main

bottleneck is the communication between 1st and 2nd layer.

Cost(I/O Time) = # times need to bring a cache line into cache from the external memory (or vice versa)

Example 8 (Searching in Unsorted Array). Task: Scanning an array of N numbers in an unsorted array

and searching an element e is possible in O(dN/Be) I/O calls..

Proof. Firstly notice that in the worst case scenario the array may not be aligned into the block. That

means that the first element of the array may not be simultaneously the first element of some block.

If N ≤ B then after at most 2 transfers from RAM to cache memory we can find the element e.

If N > B then using an adversary argument we can conclude that maybe we have to search the whole

array. Therefore we may have to transfer the whole array to the cache memory, so we may transfer at

most dN/Be+ 1 blocks.

Example 9 (Random Access). If we have access to N random elements of an array then with high

probability at each access, we will need access to a different block. Thus N random accesses take N I/O

calls.

6

Example 10 (Binary Search in a sorted array). Suppose that we are running a binary search algorithm

in a sorted array for an element x. There is an I/O call process that need O
(

log(N/B)
)
I/O calls.

Algorithm 1 Binary Search Algorithm

Proof. 1: procedure BinarySearch(l, r, x) . The element x belongs in the range
[
A[l], A[r]

]
2: if l > r then
3: return NIL . The element x is not found.
4: pivot←

⌊
l+r
2

⌋
5: if x = A[pivot] then
6: return pivot . The element x is found.
7: else if x < A[pivot] then
8: return BinarySearch(l,pivot-1,x)
9: else

10: return BinarySearch(pivot+1,r,x)

Notice that while r− l >> B, it is almost sure that our process will need to bring a new block, so we

will need to execute a new I/O call. On the other hand when r− l ≈ B, we will continue our binary search

inside the last block. Additionally, at each iteration, the searching interval halfs. Then if we execute

totally t I/O calls, we have that: N/2t ≤ B ⇒ t ≥ ln(dN/Be).

Suppose that B <<
√
N then the previous algorithm executes 1

2 ln(N) I/O calls.

3 Next Time

Claim 11. It is possible to binary search in a sorted table executing O(logB N) = lnN
lnB I/O calls using

B-trees.

7

