
COMS 4995-3: Advanced Algorithms April 17, 2017

Lecture 23 – Multiplicative Weights Update

Instructor: Alex Andoni Scribes: Alexander Yu, John Heintschel

1 Introduction

Today’s lecture continues the previous discussion on the interior point method (IPM) which aims to take

a constrained optimization problem of the form:

min
x∈Rn

cT · x

such that Ax ≤ b

(let K be the feasible region) and turns it into an unconstrained optimization problem of the form:

min
x∈Rn
{ηcTx+ F (x)} (1)

for η > 0 where the barrier function F (x) is defined as:

F (x) = −
n∑
i=1

log(bi −Aix)

2 Interior Point Method, Continued

First, we observe that

lim
x→∂K

F (x) =∞,

or in other words, F (x) grows unbounded as x approaches the boundary of K (i.e. the set of x ∈ K such

that Ax = b), which captures the constraint that x must be in the feasible region in the original problem,

i.e. that x ∈ K. Now let the optimal solution to (1) be x∗, and let

x∗η = arg min{ηc>x+ F (x)}.

x∗η is a continuous function which defines the central path from the analytic center of K, x∗0, to the

optimal point x∗:
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It was shown last class that x∗∞ = x∗, and thus if we make η sufficiently large then we will have

x∗η → x∗. The steps of the interior point method are as follows:

1. Initialization: first assume that Vol(K) > 0. We must find some x′ in the interior of K: x′ ∈
K \ ∂K. We can find x′ by solving the reduced linear program:

min t

s.t. Ax ≤ b+ t

This will amount to finding a point on the dotted line, which is inside of K:

2. We now have a point on the interior of K: x′. Now we show the following claim:

Claim 1. ∃c̄ such that ∃ η such that x′ is the optimal value for the unconstrained optimization

problem:
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min c̄>x+ F (x)

Proof.

• Take

∇
(
ηc̄Tx′ + F (x′)

)
= 0

• Then

ηc̄T = −∇F (x′)

and we have that x′ = x∗η for a different objective function.

3. Now we know that after “rotating” our feasible polytope we can say that x′ lies on the central path

between the analytic center and the optimum for the different objective function. Our strategy will

first be to follow along the path using Newton steps back to the analytic center, using smaller and

smaller η, and then travel from the analytic center to the original x∗. Graphically, this looks like:

We start at x′, follow along the jagged path to the analytic center, and then travel to x∗. This will

converge to the solution of our original L.P. problem.

Remark. As motivation for why IPM might be used as a method, note that in general, we wish to optimize

some convex function f(x). We have two choices:
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1. Gradient Descent. This has first-order convergence on the order of 1
ε (too slow).

2. Newton’s Method. This converges in time dependent on log log 1
ε , which is much faster, but requires

that the starting point is “close” to x∗. Thus we use IPM to get a close starting point.

3 Multiplicative Weights

Consider the problem of deciding whether a given stock will rise or fall in price over the course of a day.

We have access to n experts who tell us over the course of T days (on every day) whether they believe

the price will rise or fall. Then for i = 1, 2, . . . , n, let:

f ti =

{
1 if expert i at day t is wrong,

0 otherwise.

Moreover, define

mt
i = the number of errors expert i did in the first t days,

M t = number of errors made by us in the first t days.

Goal: make M t as close as possible to the number of errors of the best expert; in other words, make M t

as close as possible to minim
t
i.

The complication is that we cannot make any assumptions about the behavior of the experts, such

as assumptions about their accuracy rate, correlation, etc., and may even be adversarial in nature. This

thus invalidates some simple procedures that may come to mind, such as the following non-solutions:

• Taking the majority vote of the experts

– Counterexample: Take n = 3, and suppose that for each day, the correct action is to sell.

However, experts 1 and 2 always recommend to buy. Then for each day, we thus choose to

buy and make an error for each day. As a result, for each t we get that M t = t (i.e. the worst

possible value).

• Following the expert that was right the previous day

– Counterexample: Take n = 2, and suppose that for each day, the correct action is to

sell. However, expert 1 recommends to buy on even days and sell on odd days, and expert 2

recommends to sell on even days and buy on odd days. Then for each t ≥ 1, we always will

choose to buy, and thus make an error. As a result, for each t ≥ 1 we get that M t ≥ t − 1

(depending on whether or not we choose the correct action on t = 0).

3.1 Weighted Majority Algorithm

Idea: use all past history on experts to determine our decision. In particular, penalize experts that are

tend to be wrong, and try to listen more to experts that tend to be right.

The above idea then leads to the following algorithm, which we call the Weighted Majority Algo-

rithm:
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1. For i = 1, 2, . . . , n, for day t = 0 assign expert i a weight of w0
i = 1.

2. For each t ≥ 0, set wt+1
i = wti(1 − εf ti ), where ε is a parameter to be determined. In other words,

decrease the weight of each expert i by a factor of 1− ε if it was incorrect on day t, and otherwise

do not change the weight.

3. The decision for each day t is a weighted majority: take the sum of the weights of the experts

recommending to sell, and the sum of the weights of the experts recommending to buy, and choose

the option with the higher weighted sum.

3.2 Analysis of the Weighted Majority Algorithm

It turns out that the Weighted Majority Algorithm, for appropriate choices of ε, yields a decent value of

MT relative to the best expert. In particular, we have the following theorem:

Theorem 2. ∀i = 1, 2, . . . , n, ∀ε ∈ (0, 1/2), we have that for any T , the Weighted Majority Algorithm

yields that

MT ≤ 2(1 + ε)mT
i +

2 lnn

ε
,

or equivalently, that

MT ≤ 2(1 + ε) min
i
mT
i +

2 lnn

ε
.

Proof. For t = 0, . . . , T , define

Φt =
n∑
i=1

wti .

Note that Φ0 = n. Next, we prove the following lemmas:

Lemma. For t ≥ 0, we have that

Φt+1 ≥ wt+1
i = (1− ε)mt

i . (2)

Proof. The inequality portion of (2) follows immediately from our definition of Φt, since we have that

wti ≥ 0 for all i. Moreover, note that

wt+1
i = (1− ε)mt

i ,

since the weight of expert i at the beginning of day t + 1 will simply be w0
i = 1 multiplied by 1 − ε

precisely mt
i times, since the weight of expert i is only decreased whenever expert i makes an error, which

is precisely what mt
i counts up until day t. Thus, (2) holds, as desired.

Lemma. For t ≥ 0, we have that

Φt+1 ≤ n
(

1− ε

2

)Mt

.

Proof. For each t ≥ 0, note that if we choose the correct action on day t, then clearly Φt+1 ≤ Φt, since

by definition we have that wt+1
i ≤ wti , with equality iff expert i was correct. This is tight, since it may

be possible that all experts choose correctly on day t. Alternatively, suppose we chose wrong. Then by
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our algorithm, this means that the weighted majority chose wrong. Suppose the set of experts that chose

wrong was A ⊂ {1, 2, . . . , n}. Then since it was the weighted majority, we have that∑
i∈A

wti ≥
1

2
Φt. (3)

Moreover, note that for each expert i ∈ A, since it chose wrong, we decrease its weight, and for each

expert i /∈ A, we keep its weight the same. Then it follows that

Φt+1 =
n∑
i=1

wt+1
i

=
∑
i∈A

wt+1
i +

∑
i/∈A

wt+1
i

=
∑
i∈A

wti(1− ε) +
∑
i/∈A

wti

=
n∑
i=1

wti − ε
∑
i∈A

wti

= Φt − ε
∑
i∈A

wti

(3)

≤ Φt −
ε

2
Φt

= Φt

(
1− ε

2

)
.

In summary, since the above inequality holds for each day where we choose incorrectly, M t counts precisely

all such incorrect choices up until day t, and Φt+1 ≤ Φt even when we choose correctly, it easily follows

by induction that

Φt+1 ≤ Φ0

(
1− ε

2

)Mt

= n
(

1− ε

2

)Mt

,

as desired.

Combining the two lemmas above yields that for each t ≥ 0, we have that

(1− ε)mt
i ≤ Φt+1 ≤ n

(
1− ε

2

)Mt

≤ ne−ε/2·Mt
,

where the last inequality comes from the fact that 1− x ≤ e−x for all x. Now noting that

ln(1− ε) ≥ −ε− ε2, ε ∈ (0, 1/2), (4)

we get that

(1− ε)mt
i ≤ ne−ε/2·Mt

=⇒ mt
i ln(1− ε) ≤ lnn− ε

2
M t

(4)
=⇒ −mt

iε(1 + ε) ≤ lnn− ε

2
M t
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=⇒ Mt ≤ 2(1 + ε)mt
i +

2 lnn

ε
.

Since this holds for any t ≥ 0, simply setting t = T yields the desired conclusion.

3.3 Multiplicative Weights Update

While the above analysis of the Weighted Majority Algorithm yields a nice guarantee that Mt is within a

constant multiple of mt
i (ignoring the

2 lnn

ε
term, which is a fixed constant, given that we fix the number

of experts n and the penalization parameter ε beforehand), this constant is still about 2(1 + ε) ≈ 2.

Now consider the more general situation where we can actually now assume that for each day t and

expert i, that f ti is no longer simply an indicator variable, but can take a range of values in [−1, 1].

Another way to view it is generalizing the loss function of expert i on day t from simply being a 0-1 loss

function to any loss function with a range in [−1, 1]; f ti now represents a measure of how much was lost

on day t by expert i.

Then to reduce the factor of 2 introduced by the Weighted Majority Algorithm, we can improve upon

the algorithm by adding a randomization aspect, which leads to an algorithm which we call Multiplica-

tive Weights Update. In this algorithm, we perform the same initialization and update of weights, but

instead of basing our decision off of the weighted sum, we perform the following process for each day t:

1. For each expert i, compute

pti =
wti∑n
j=1w

t
j

.

2. Choose an expert i, such that each expert i is chosen with probability pti.

3. The decision for day t is precisely the recommendation of expert i.

3.4 Analysis of Multiplicative Weights Update

Within the context of this algorithm, due to the randomization aspect of choosing an arbitrary expert,

we thus redefine our notion of the number of our mistakes MT . More precisely for t = 1, . . . , T , define

pt = (pt1, . . . , p
t
n),

f t = (f t1, . . . , f
t
n).

Then we define MT as

MT =

T∑
t=1

〈pt, f t〉 =

T∑
t=1

n∑
i=1

ptif
t
i .

Previously, MT was simply defined as the number of mistakes that we had made up until day T . This

can be viewed as the result of a loss function, where we applied a 0-1 loss function to our algorithm for

each day. Here, however, one perspective is that we are redefining our loss to be the expected number of

errors that our algorithm makes until day T .

Alternatively, another perspective on our algorithm is that we actually apportion our money among

all the experts proportionally according to the weights (or equivalently, the probabilities), and attribute

each expert to handle that portion of the money based on their own recommendations. In this case, MT
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is actually the total loss of money among all of the experts over all the days and is deterministic, rather

than simply being an expectation of total loss over randomly chosen experts for each day.

Moreover, since f ti is no longer an indicator variable, we must also redefine our notion of loss for each

expert i. Previously, mT
i referred to the total number of mistakes that expert i made until day T , which

similarly to our old definition of MT could be viewed as the sum of 0-1 loss functions. Now, we extend

the same notion algebraically by simply using our new loss functions, and defining

mT
i =

T∑
t=1

f ti .

With these notions of loss for both us and the experts redefined, it turns out that the Multiplicative

Weights Update algorithm yields the following improvement:

Theorem 3. ∀i = 1, 2, . . . , n, ∀ε ∈ (0, 1/2), we have that for any T , the Multiplicative Weights Update

algorithm yields that

MT ≤ (1 + ε)mT
i +

lnn

ε
,

or equivalently, that

MT ≤ (1 + ε) min
i
mT
i +

lnn

ε
.
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