In the previous lecture, in order to find \(\min_{x \in \mathbb{R}^n} f(x) \), assuming that \(f(x) \) has continuous first and second derivatives, we used Taylor approximation.

\[
f(x + \delta) = f(x) + \nabla f(x)^T \delta + \delta^T \nabla^2 f(y) \delta \quad \text{where } y \in [x, x + \delta]
\]

We assumed that we have query access to \(f(x) \) and \(\nabla f(x) \). We also considered the following bound assumptions on \(\nabla^2 f \):

1. \(\delta^T \nabla^2 f(y) \delta \leq \beta \| \delta \|^2 \) or, equivalently, \(\lambda_{\text{max}}(\nabla^2) \leq \beta \), which implies that the progress is at least \(\frac{1}{2\beta} \| \nabla f(x) \|^2 \) at every step;

2. \(f \) is convex, which means that \(\delta^T \nabla^2 f(y) \delta \geq 0 \) and that if \(\nabla f = 0 \) we have reached optimality;

3. \(\delta^T \nabla^2 f(y) \delta \geq \alpha \| \delta \|^2 \)

Convergence occurs in \(O\left(\frac{\beta}{\alpha} \log \frac{f(x^0) - f(x^*)}{\epsilon}\right) \) where \(\beta \) is the biggest eigenvalue and \(\alpha \) is the smallest eigenvalue of \(\nabla^2 f \), and \(x^* \) is the optimal solution. We are looking for \(x^T \) such that:

\[
f(x^T) - f(x^*) \leq \epsilon
\]

Define the condition number \(k = \frac{\beta}{\alpha} \).

1 Newton’s Method

Define \(Q = \delta^T \nabla^2 f(y) \delta \). Using linear changes of variables, we have:

\[
z := Ax \quad \text{where } A \text{ is a full rank } n \times n \text{ matrix}
\]

\[
\Delta := A\delta \implies \delta = A^{-1} \Delta
\]

\[
Q = \Delta^T (A^{-1})^T \nabla^2 f(y) A^{-1} \Delta
\]

We want to set \(A \) such that:

\[
(A^{-1})^T \nabla^2 f(y) A^{-1} = I
\]

since then \(\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} = 1 \). Therefore,

\[
\nabla^2 f(y) = A^T A \implies A = (\nabla^2 f(y))^{\frac{1}{2}}
\]
Now, fix A. We look for a step which is:

$$\arg\min_{\delta : \Delta = A\delta, \|\Delta\| = \epsilon} \nabla f(x)^T \delta + \frac{1}{2} \|\Delta\|^2$$

$$= \arg\min_{\delta : \Delta = A\delta, \|\Delta\| = \epsilon} \nabla f(x)^T A^{-1} \Delta$$

$$= -\eta A^{-1}(A^{-1})^T \nabla f(x)$$

$$= -\eta (\nabla^2 f(y))^{-1} \nabla f(x)$$

Because the minimum is achieved for $\Delta \propto - (\nabla f(x)^T A^{-1})^T = -(A^{-1})^T \nabla f(x)$. Therefore, the minimization occurs at step $\delta = -\eta (\nabla^2 f(y))^{-1} \nabla f(x)$.

Note 1. We need query access to $\nabla^2 f(y)$, which is why this is called a second-order method.

Note 2. We need to invert a matrix, or equivalently a linear system of equations: $\nabla^2 f(y) \delta = -\eta \nabla f(x)$.

Note 3. We don’t have y, which is why Newton’s method uses $\delta = -\eta (\nabla^2 f(x))^{-1} \nabla f(x)$. But in general, $\nabla^2 f(x) \neq \nabla^2 f(y)$.

Note 4. Assuming that $\nabla^2 f(x) = \nabla^2 f(y)$, convergence takes $O((\log \log \|x^0 - x^*\|) / \epsilon)$.

1.1 Alternative view on Newton’s method

$$f(x + \delta) = \underbrace{f(x) + \nabla f(x)^T \delta + \delta^T \nabla^2 f(x) \delta}_{\delta \text{ is minimizer of}} + O(|\delta|^3)$$

Theorem 1. Suppose there exists $r > 0$ such that for all x, y at distance $\leq r$ from x^* we have:

1. $\lambda_{\min}(\nabla^2 f(x)) \geq \mu$

2. $\|\nabla^2 f(x) - \nabla^2 f(y)\| \leq L \|x - y\|$

Then $\|x - x^*\| \leq \frac{L}{\mu \|x^0 - x^*\|^2}$, where x^0 is at distance $\leq r$ from x^* and x^1 is x^0 plus a Newton’s step.

The norm we use for matrices is the spectral norm, i.e., $\|X\| = \lambda_{\max}(X)$.

Intuition: under the right conditions, it converges in $O((\log \log \|x^0 - x^*\|) / \epsilon)$.

2 Back to linear programming

2.1 The interior point method

Consider a linear programming problem of the following form:

$$\min c^T x$$

s.t. $Ax \leq b$

on n coordinates with m constraints. Call K the feasible region, i.e., $K = \{x \in \mathbb{R}^n \mid Ax \leq b\}$.

We have already seen one way to turn this into an unconstrained problem, by replacing the objective function with one that evaluates to $c^T x$ for $x \in K$ and to $+\infty$ otherwise. But such a function isn’t
continuous and doesn’t work well with the gradient descent method or Newton’s method. We need a smoother function.

We will instead replace the objective function with \(f_\eta(x) = \eta c^T x + F(x) \), for \(\eta \geq 0 \), where \(F(x) \) is called a barrier function and has the following properties:

\[
F(x) < +\infty \text{ for } x \in K \\
F(x) \to +\infty \text{ for } x \to \partial K
\]

One possible barrier function is:

\[
F(x) = \log \left(\prod_{i=1}^{m} \frac{1}{b_i - A_i x} \right) = -\sum_{i=1}^{m} \log (b_i - A_i x)
\]

Call \(x^*_\eta = \arg \min \eta c^T x + F(x) \). It is a continuous function of \(\eta \). When \(\eta = 0 \) we have that \(x^*_0 \) is independent of \(c \), and this point is called analytic center.

In the above drawing we see the polytope \(K \) with \(c \) pointing from left to right. The optimal point \(x^* \) is therefore the leftmost vertex of \(K \). The point \(x^*_0 \) is the analytic center. The path connecting the two is the central path, i.e., \(\{x^*_\eta, \eta \geq 0\} \). This means that \(x^* \) is \(\lim_{\eta \to +\infty} x^*_\eta \).

This reformulation of linear programming leads to a few algorithm ideas:

Idea 1

- start from a point \(x^0 \);
- compute \(x^*_\eta \) for a “very large” \(\eta \) using Newton’s method or gradient descent starting at \(x^0 \).

The problem with gradient descent is that it depends on the condition number, which depends on \(F(x) \) and may be very large, whereas Newton’s method requires \(x^0 \) to be “close” to \(x^*_\eta \) in order for the theorem we saw earlier to apply.
Let s_i be $b_i - A_ix$, and call these slack variables. We can use them to express $\nabla f_\eta(x)$ and $\nabla^2 f_\eta(x)$:

$$
\nabla f_\eta(x) = \eta c + \sum_{i=1}^{m} \frac{A_i}{s_i(x)}
$$

$$
\nabla^2 f_\eta(x) = \nabla^2 F(x) = \sum_{i=1}^{m} \frac{A_i A_i^T}{s_i^2(x)}
$$

This means that close to the boundary of K the coefficients of the Hessian of the barrier function will increase rapidly and this may affect negatively the condition number.

Remark: we assume K has > 0 volume.

Idea 2

- start at $x^0 = x^*_{\eta_0}$ for some $\eta_0 > 0$;
- “walk the central path”, meaning that at time $t + 1$:
 - increase η: $\eta_{t+1} = \eta_t (1 + \alpha)$ (we will decide the value of α later);
 - run Newton’s method to find $x^*_{\eta_{t+1}}$ starting at $x^*_{\eta_t}$ (which works correctly and efficiently as long as $x^*_{\eta_{t+1}}$ is “close” to $x^*_{\eta_t}$).

Idea 3 This idea is just a performance improvement of idea 2, based on the observation that when running Newton’s method to find $x^*_{\eta_{t+1}}$ we don’t need to run it until it reaches optimality, we can stop it early. In particular stopping it after just one iteration yields the following algorithm:

Algorithm

- start at $x_0 \approx x^*_{\eta_0}$ for some $\eta_0 > 0$;
- at step $t + 1$ define η_{t+1} as $\eta_t (1 + \alpha)$ and find x_{t+1} by performing one step of Newton’s method for $f_{\eta_{t+1}}$ starting at x_t;
- once at time $t = T$ such that η_T is “large enough” run Newton’s method to optimality and obtain $x^*_{\eta_T}$;
- output $x^*_{\eta_T}$.

Lemma 2. For all η we have $c^T x^*_\eta - c^T x^* \leq \frac{m}{\eta}$, which implies that η_T has to be larger than $\frac{m}{\epsilon}$ if we want $c^T x^*_\eta - c^T x^* \leq \epsilon$. This means that the number of steps is

$$
T = O \left(\frac{1}{\alpha} \log \frac{m/\epsilon}{\eta_0} \right) = O \left(\log_{1+\alpha} \frac{m/\epsilon}{\eta_0} \right)
$$