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1 Introduction

In the previous lectures we have talked about linear programming, and tried to optimize functions which

subject to some constrains. We will step back a lit bit in terms of the variables, talking about some

general optimization problems. In particular, we will minimize a function f(x), which is not necessarily

linear, where x is unconstrained. Considering that we are still talking about linear programming, here

we provide a way to convert constrained optimization to unconstrained optimization.

So, suppose we have a linear programming problem to minimize f(x), where x belongs to a constrained

set K, we can transfer f(x) into a function g(x), where x is unconstrained, i.e., x ∈ Rn. Mathematically,

if we have a probelm to find:

min
x∈K

f(x)

we can convert it to a new problem that:

min
x∈Rn

g(x)

where g(x) is defined as:

g(x) =

{
f(x), x ∈ K
+∞, x /∈ K

(1)

Although this g(x) has some “pulses”, the solution can be equivalent. We will discuss more details in

this lecture.

2 Natural Greedy Algorithm

Natural greedy algorithm is a iterative algorithm to obtain optimal value. It follows two simple operations:

• start at x0 ∈ Rn

• jump to a near point, which improves f(x): xt → xt+1, f(xt)→ f(xt+1)

Here, we make our first assumption to f(x). We assume that f(x) is “nice”, which means that

the value of f(x) doesn’t jump too much with continuous derivatives that all exist, to apply Taylor

approximation.

f(x+ δ) = f(x) +∇f(x)T · δ +
1

2
δT · ∇2f(x) · δ
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Here, ∇f(x) is a n-dimension vector, where [∇f(x)]i = ∂f
∂xi

(x); ∇2f(x) is a n× n dimension matrix,

where [∇2f(x)]i,j = ∂2f
∂xi∂yi

(x), ∀i, j ∈ [n]; plus, we define δ is the step size and δ is reasonably small.

And then we can compute the new point via y = αx+ (1− α)(x+ δ), α ∈ [0, 1]

⇒ f(x) ≈ f(x) +∇f(x)T δ +O(||δ||2)︸ ︷︷ ︸
small

At a small scale, we can assume f(x) is linear, so we have:

f(x+ δ) ≈ f(x) +∇f(x)T δ

Now, keep x, we are trying to optimize f(x+δ) w.r.t.δ, with the assumption that ||δ|| is reasonably small.

arg.min
δ:||δ||≤ε

f(x) +∇f(x)T δ = arg.min
δ:||δ||≤ε

∇f(x)T δ

= −η∇f(x)T
(2)

s.t. η||f(x)||2 = ε

3 Gradient Descent Algorithm

We now introduce gradient descent method to solve a optimal value problem. Actually, it is not a single

method, but a general framework with many possible realizations. We describe some concrete variants

and analyze their performance. The performance guarantees that we are going to obtain will depend on

assumptions that we make about f . Basically, this algorithm can be described as following:

• start at x0 ∈ Rn

• at step t: xt+1 = xt − η∇f(xt)

• do it for T steps

In the above algorithm description, η is fixed in the entire algorithm or depends on t.

3.1 Assumption I

Definition 1. For β > 0, f is β-smooth if: ∀ x and y = x+ δ, we have ||∇f(y)−∇f(x)|| ≤ β · ||y−x||

The β-smooth definition is equivalent to the following: ∀y ∈ Rn, we have yt · ∇2f(x) · y ≤ β · ||y||2.
So we have:

f(x+ δ) ≤ f(x) + ∇f(x)T δ +
β

2
||δ||2︸ ︷︷ ︸

δ=−η·∇f(x), we choose η to minimize
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η = arg.min
δ=−η·∇f(x)

∇f(x)T δ +
β

2
||δ||2

= arg.min
δ=−η·∇f(x)

−η · ∇f(x)T · ∇f(x) +
β

2
· η2||∇f(x)||2

= arg.min
δ=−η·∇f(x)

−η · ||∇f(x)||2 +
β

2
· η2||∇f(x)||2

= arg.min
δ=−η·∇f(x)

−η +
β

2
· η2

=
1

β
⇒ set η =

1

β

(3)

With the progress in (3), we can now continue to compute f(x+ δ).

f(x+ δ) ≤ f(x)− 1

β
||∇f(x)||2 +

1

2β
||∇f(x)||2

= f(x)− 1

2β
||∇f(x)||2

(4)

• if ∇f(x) 6= 0, we need some progress

• if ∇f(x) = 0, then x can be (shown in Fig. 1):

– global min

– local min

– saddle point

∗ in some direction, increase

∗ in some direction, decrease

∗ or stay constant

– local maximum

When we encounter with saddle point and local maximum, we’ll need some random processing such

as giving small perturbation.

3.2 Assumption II

Definition 2. f is convex iff. f(λx+ (1− λ)η) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ Rn, λ ∈ [0, 1]

This definition is equivalent to that, ∀δ, x ∈ Rn, δT · ∇2f(x) · δ ≥ 0, which means that ∇2f(x) is a

positive-definite matrix with all eigenvalue positive.

Claim 3. critical points ⇔ local global minimum

Proof.

f(x+ δ) = f(x) +∇f(x)T δ +
1

2
δT∇2f(y)δ︸ ︷︷ ︸
≥0

≥ f(x) +∇f(x)T δ

(5)
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Figure 1: Critical points in a function

If ∇f(x) = 0⇒ ∀δ, f(x+ δ) ≥ f(x)

• when f is β-smooth ⇒ progress in each step as long as ∇f(x) 6= 0, then we have:

f(x+ δ) ≤ f(x) +
1

2β
||∇f(x)||2

• when f is convex, if ∇f(x) = 0, then we conclude that x is a global minimum.

So, how fast will we find the global maximum? or convergence.

Let x∗ = opt = arg.minf(x), we are looking for some moment T , that:

f(xT )− f(x) ≤ ε

Here, we track how far from opt we are:

f(x∗) ≥ f(x) +∇f(x)T · (x∗ − x) + (x∗ − x) · ∇2 . . . (x2 − x∗)︸ ︷︷ ︸
≥0

⇒ f(x)− f(x∗) ≤ −∇f(x)T · (x∗ − x)

≤ ||∇f(x)|| · ||x∗ − x||

If ||∇f(x)|| ≤ ε
||x∗−x|| , we can conclude that f(x)− f(x∗) ≤ ε. Notice that the annoying part here is

||x∗ − x||, which we want to get rid of.
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Claim 4. The time complexity to find f(xT )− f(x∗) ≤ ε is subject to T = O(β||x
0−x∗|2
ε )

• steps is exponential in target

• bits of precision

3.3 Assumption III

Definition 5. f is α-strong convex if, ∀δ, x, and for some α ≥ 0:

δT∇2f(x)δ ≤ α · ||δ||2

This definition is equivalent to say that ∇2f(x) has a minimum eignvalue λ, and λ ≥ α > 0. This

will allow us to lower bound how much to progress. For:

f(x+ δ) ≥ f(x) +∇f(x)T · δ +
α

2
||δ||2 (*)

First, we can remove the dependence of ||x0 − x∗||. We can now connect ||x0 − x∗|| to f(x)− f(x∗):

(∗)⇒ f(x) ≥ f(x∗) +∇f(x∗)T δ +
α

2
||δ||2

δ = x− x∗

f(x)− f(x∗) ≥ α

2
· ||x− x∗||2 (**)

The progress made per step is − 1
2β ||∇f(x)||2, then

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)− 1

2β
||∇f(xt)||2︸ ︷︷ ︸
≥0

≤ f(xt)− f(x∗)− 1

2β

[f(xt)− f(x∗)]2

||xt − x∗||2

≤ f(xt)− f(x∗)− 1

2β

α

2
[f(xt)− f(x∗)] ⇒ apply (∗∗)

≤ [f(xt)− f(x∗)] · (1− α

4β
)

So, within T = O(αβ · lg
f(x0)−f(x∗)

ε ), we ought to reach the opt solution up to ε.
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