
COMS 4995-3: Advanced Algorithms Mar 29, 2017

Lecture 18 – Linear Programming, Duality

Instructor: Alex Andoni Scribes: Peilin Zhong, Ruiqi Zhong

1 Last Class

In the last class, we began to introduce linear programming. We now discuss about Linear system of

equalities.

1.1 Linear system of equalities

Given A ∈ Rm×n, b ∈ Rm if A is a square matrix i.e., m = n and det(A) 6= 0 ⇔ We can use Gaussian

elimination to find a unique x∗ ∈ Rn such that Ax∗ = b.

2 Equivalency of “No Solution” and “Exists Solution”

In this scribe, all the inequalities between vectors mean pairwise inequalities between en-

tries.

Definition 1. Span(col(A)) = {
∑n

i=1 αiAi, αi ∈ R, Ai is the ith column of A}

Now we extract the maximum number of linearly independent columns of A, and let S be the set

of indexes of these column vectors in A. Then we have span(col(A)) = span(col(AS)). Suppose that

∃x s.t.Ax = b, then b ∈ span(col(A)) = span(col(AS)). Let C =
[
AS B

]
where B is a set of m − |S|

linearly independent vectors outside span(col(A)). Now we solve for C

[
xS
y

]
= b, and we must find the

solution to be xi =

{
xSi i ∈ S
0 otherwise

2.1 What if there is no solution?

Claim 2. There is no solution ⇔ ∃y s.t. y>A = 0, y>b 6= 0

Proof. ”⇐” direction:

By contradiction, if ∃x s.t. Ax = b, then 0 6= y>b = y>Ax = 0>x = 0

Intuition: y> is a linear combination of col(A) is 0, but b disagrees.

Proof. ”⇒” direction: there is such a y being a ”certificate of no solution”

no solution ⇒ b 6∈ span(col(A))

Let projA(b) be a projection of b on span(col(A)), let y = b − projA(b). Then we have that b>y 6=
0, A>y = 0. Also we ∃y s.t. b>y = 1 (by normalization)
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2.2 How to find y quickly?

Solve the system:

[
A>

b>

]
y =

[
0n
1

]
Note also that Gaussian elimination can also give a certificate of ”no solution”.

3 Back to the Linear Programming

We have a standard form of linear programming:

min c>x

s.t. Ax = b

x ≥ 0

Let P = {x | Ax = b, x ≥ 0}. If P 6= ∅ and P is bounded, then we call P as a polytope.

3.1 Basic Feasible Solution and Vertex

Definition 3. An inequality (equality) constraint is tight if the equality holds. Point x ∈ Rn is basic if

it is a solution to n linearly independent tight constraints. A basic feasible solution (bfs, for short) x is

both feasible and basic.

Definition 4. A point x ∈ P is a vertex if and only if it is not a convex combination of other points in

P , namely:

6 ∃y1, · · · , yn+1 ∈ P and α1, · · · , αn+1 ≥ 0 s.t. x =

n+1∑
i=1

αiy
i,

n+1∑
i=1

αi = 1,∀i ∈ [n+ 1], yi 6= x

Claim 5. A bfs is equivalent to a vertex.

Claim 6. If an LP is feasible and bounded ⇒ A bfs is an optimal solution.

Proof. Consider a solution x∗ that is not basic but optimal. ⇒ it satisfies at most n−1 linearly indepen-

dent tight constraints. (Let’s name the set of the such tight constraints T .) Tight constraints T defines

a linear subspace ⇒ contains a line, let ~d be the direction of the line.

∃ε > 0 s.t. both x∗ ± ε~d

are feasible. Since x∗ is optimal, x∗± ε~d are feasible ⇒ ~d>c = 0 (Otherwise one of c>(x± ε~d) > c>x∗) ⇒
We can change x∗ in the direction of ~d s.t. one of its coordinate decreases. How much can we decrease?

Until something else becomes tight, which is a coordinate becoming 0. In particular, xi = 0. Then we

have added one constraints, xi ≥ 0. Therefore, we can repeatedly add in linearly independent constraints,

until the point is basic.

A naive algorithm Now we have a first algorithm for Linear Programming:

1. We can brutally try all bfs ⇒ iterate through all the
(
n+m
n

)
subsets of constraints. We let the set

of constraints be T .
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2. Solve as if constrains in T are tight.

3. Check whether the solution is feasible.

4. Choose the optimal bfs.

3.2 Duality

- It is easy to show that optimal solution ≤ v∗ (just give the right x∗ ∈ P & c>x> ≤ v∗)
- How to show the optimal solution ≥ v∗?

Suppose v∗ is the optimal solution, and suppose (just suppose for now) we can find a y ∈ Rm, y>A =

c> ⇒ y>Ax = c>x = y>b⇒ y>b = c>x ∀x. However, this is too good to be true. Let’s be less ambitious:

If we can find a y>A ≤ c>, then we have y>Ax ≤ y>b (since x ≥ 0⇒ (y>A)x ≤ c>x⇒ y>b ≤ c>x)

How to find a best lower bound based on b>y (the same as y>b.) Now we have another Linear Pro-

gramming problem, namely: we have an unknown y ∈ Rm, and we want to maximize c>y given the

constraint y>A ≤ c>. This linear programming problem we name it Dual Program and the original

problem we name is Primal Program.

4 Next Class...

Let w∗ = optimal solution of Dual Program = maxAy≤c b
>y. We have already proved the weak duality:

w∗ ≤ v∗. Next class we will prove strong duality, which is w∗ = v∗ if both solutions are feasible. Also,

we will demonstrate the fact that Dual(Dual) = Primal.
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