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Lecture 15 – Spectral graph algorithms: Cheeger’s Inequality

Instructor: Alex Andoni Scribes: Rishabh Dudeja (rd2714)

1 Introduction

In the last lecture we studied the relation between the combinatorial properties of a graph G = (V,E) with

n vertices and m edges. and the spectral properties of the normalized adjacency matrix Â = D−
1
2AD−

1
2 .

Let λ1 ≥ λ2 · · · ≥ λn be the ordered eigenvalues of the normalized adjacency matrix. We saw that λ1 = 1.

Furthermore λ2 = 1 iff the graph is disconnected. And finally λn = −1 iff the graph is bipartite. In this

lecture we will introduce the Laplacian Matrix of a Graph and describe how (and why) it can be used

for visualizing graphs. We will then prove a result called the Cheeger’s Inequality which connects the

spectral properties of the graph Laplacian with a combinatorial notion of degree of connectedness of the

graph.

2 The Laplacian Matrix

Let G = (V,E) be a graph with n nodes and m edges. Let A be its adjacency matrix. Let D be the

diagonal matrix with Dii = di, the degree of node i.

Definition 1 (Graph Laplacian). The Laplacian of a graph G = (V,E) with adjacency matrix A is

L := D −A.

We note that Lii = di the degree of node i and for any i 6= j, Lij = −1 iff (i, j) ∈ E. It will be

helpful to decompose the laplacian matrix L as a sum of m matrices Le corresponding to each edge

e ∈ E. For any edge e = (i, j) ∈ E we define Le as a n × n matrix with all zero entries except:

(Le)ii = 1, (Le)jj = 1, (Le)ij = (Le)ji = −1. Using this decomposition we can write a quadratic form of

the Laplacian in a particularly nice form:

Lemma 2 (Quadratic Forms of Laplacian). For any x ∈ Rn, xTLx =
∑

(i,j)∈E(xi − xj)2

Proof. We write L =
∑

e=(i,j)∈E Le. And hence xTLx =
∑

e=(i,j)∈E x
TLex =

∑
e=(i,j)∈E(x2

i + x2
j −

2xixj) =
∑

e=(i,j)∈E(xi − xj)2

Recall that in the last lecture we proved a result relating the combinatorial properties of a graph

like connectivity, bipartiteness to the spectrum of the normalized adjacency matrix. An analogous result

holds for the spectrum of the Laplacian Matrix.

Theorem 3 (Spectrum of Graph Laplacian). Let µ1 ≤ µ2 · · · ≤ µn be the eigenvalues of the Laplacian

Matrix L. Let v1, v2 . . . vn be the corresponding eigenvectors. Then, µ1 = 0 and v1 = 1√
n

(1, 1, . . . 1).

Furthermore, µ2 = 0 iff the graph is disconnected.

Proof. Skipped, Analogous to the proof from the last lecture.
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3 Laplacian Matrix and Graph Visualization

The second and third eigenvalues of the Laplacian Matrix can be used to create interesting visualizations

of the under lying graph. Let v2 and v3 denote the eigenvector corresponding to the second and third

smallest eigenvalues of the graph laplacian L. A simple heuristic to visualize the graph G in R2 proceeds

as follows: For each node i ∈ V , plot node i at the coordinate (v2,i, v3,i) where v2,i, v3,i refer the i-th entry

of the n-dimensional vectors v2, v3.

Why does this heuristic give interesting visualizations of the graph?

To try and understand this better, let us first imagine that we want to visualize the graph in R instead

of R2. Let x ∈ Rn be the vector representing the position of each node in the graph. A good visualization

of the graph would place the connected nodes together and the unconnected nodes further apart. This

desired property can be formulated as an optimization problem as follows:

Option 1. Choose the coordinates as the solution of the optimization problem: minx∈Rn

∑
(i,j)∈E(xi−xj)2

This option sets x = 0. This is not desirable. To avoid this degenerate solution, we can further impose

the constraint ‖x‖2 = 1.

Option 2. Choose the coordinates as the solution of the optimization problem: minx∈Rn

∑
(i,j)∈E(xi−xj)2

subject to ‖x‖2 = 1.

Using Lemma 2, we know that
∑

(i,j)∈E(xi − xj)2 = xTLx. Furthermore by the theorem on Rayleigh

Quotient from the last lecture, we know that v1 minimizes xTLx subject to ‖x‖2 = 1. Since v1 =
1√
n

(1, 1 . . . 1), Option 2 sets x = 1√
n

(1, 1 . . . 1). Again this isn’t desirable. The coordinates of Option

2 are merely a translation of the coordinates of Option 2. To prevent such translation we additionally

impose the constraint
∑n

i=1 xi = 0. Alternatively since v1 = 1√
n

(1, 1, . . . 1), the constraint can be written

as xT v1 = 0:

Option 3. Choose the coordinates as the solution of the optimization problem: minx∈Rn

∑
(i,j)∈E(xi−xj)2

subject to ‖x‖2 = 1, xT v1 = 0

Again by the Rayleigh Quotient description of the second eigenvector, we know that Option 3 sets

x = v2. Thus Option 3 doesn’t suffer from the problems of Option 1 and Option 2 which plotted all

nodes at the same coordinate. We can try to generalize Option 3 to get a visualization in R2.

Let x, y ∈ Rn represent the vector of x and y coordinates of the nodes. That is, Node i is plotted at

the point (xi, yi). Taking cue from the 1-Dimensional visualization, we will try to minimize the sum of

squared distances between the locations of directly connected nodes. This gives us the following Option:

Option 4. Choose the coordinates as the solution of the optimization problem: minx∈Rn

∑
(i,j)∈E(xi −

xj)
2 + (yi − yj)2 s.t. ‖x‖2 = 1, ‖y‖2 = 1 and xT v1 = 1, yT v1 = 0.

This option sets x = y = v2. This is because
∑

(i,j)∈E(xi − xj)2 + (yi − yj)2 = xTLx + yTLy. For

all x such that ‖x‖2 = 1, xT v1 = 0, we know xTLx ≥ vT2 Lv2. Likewise, for all y s.t. ‖y‖2 = 1, yT v1 = 0,

yTLy ≥ vT2 Lv2. Hence the optimal value of the objective is lower bounded by 2vT2 Lv2. Furthermore the

lower bound is attained when x = y = v2. Hence x = y = v2 is an optimal solution. However this is not

desirable, because Option 4 doesn’t use all of the two dimensions available for visualization. To avoid

this we impose the additional constraint xT y = 0 to ensure the second coordinate captures information

which is not already captured by the first coordinate.
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Option 5. Choose the coordinates as the solution of the optimization problem: minx∈Rn

∑
(i,j)∈E(xi −

xj)
2 + (yi − yj)2 s.t. ‖x‖2 = 1, ‖y‖2 = 1 and xT v1 = 1, yT v1 = 0, xT y = 0.

It can be shown that Option 5 sets x = v2, y = v3. This is precisely the heuristic proposed in the

beginning of the section.

4 Cheeger’s Inequality

We have seen that the second smallest eigenvalue µ2 of the graph laplacian is 0 iff the graph is discon-

nected. However µ2 is a real number. Is it true that if µ2 >> 0 then the graph is well-connected in some

sense and if µ2 ≈ 0 then the graph is not well connected? Cheeger’s Inequality is a result of this flavor.

To state Cheeger’s Inequality we will first define some new quantities.

Definition 4 (Normalized Laplacian Matrix). L̂ := D−
1
2LD−

1
2 = D−

1
2 (D−A)D−

1
2 = I −D−

1
2AD−

1
2 =

I − Â

We recall that Â = D−
1
2AD−

1
2 is the normalized adjacency matrix whose spectral properties we

studied in the last lecture. Let λ1 ≥ λ2 · · · ≥ λn be the eigen-values of Â and v1, v2 . . . vn be the

corresponding eigenvectors. Since L̂ = I − Â, v1, v2 . . . vn are also the eigenvectors of L̂ but with the

eigenvalues µ1 = 1−λ1 ≤ µ2 = 1−λ2 · · · ≤ µn = 1−λn. From the last lecture we know that λ1 = 1, hence

the smallest eigenvalue of L̂, µ1 = 0. Furthermore since λ2 = 1 iff G is disconnected. This means that

µ2 = 0 iff G is disconnected. Finally since λn ≥ −1 and λn = −1 iff the graph is bipartite, we conclude

that µn ≤ 2 and µn = 2 iff the graph is bipartite. These results are summarized in the observation below:

Observation 5. Let µ1 ≤ µ2 · · · ≤ µn be the eigenvalues of L̂ and v1, v2 . . . vn be the corresponding

eigenvectors, then µ1 = 0, µn ≤ 2 and v1 = (
√
d1,
√
d2 . . .

√
dn).

Definition 6 (Cuts). Any S ⊂ V is called a Cut.

Definition 7 (Boundary of a Cut). ∂(S) := {(i, j) ∈ E : i ∈ S, j ∈ S̄}

The size of the boundary of a Cut S captures how well connected the set of nodes S is to the rest

of the graph. However |∂(S)| might be small simply because there are very few nodes in S. Hence we

will need to normalize the size of the size of the boundary of a cut by some measure of the size of a cut

(called volume of a cut). This normalized ratio is called the conductance of a cut.

Definition 8 (Volume of a Cut). V ol(S) =
∑

i∈S di

Definition 9 (Conductance of a Cut). φ(S) = ∂S
V ol(S)

It is easy to see that φ(S) = # External Edges
2(# Internal Edges ) + # External Edges . Hence φ(S) is low if there are very

few edges from S to S̄ in comparison to the number of edges within S. Hence it captures how isolated

a set of nodes is from the remaining graph. Using this notion of conductance of a cut, we can define a

notion of global connectivity of a graph:

Definition 10 (Conductance of a Graph G).

φ(G) := min
S⊂V,0<V ol(S)≤ 1

2
V ol(V )

φ(S)
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Intuitively, the conductance of a graph G is small, if there exists extremely isolated (with small

conductance) cuts inside the graph. The restriction that V ol(S) > 0 is to prevent the case that S = {} in

which case the conductance is not defined. The constraint V ol(S) ≤ 1
2V ol(V ) is to prevent the cases like

S = V�{i}. For such a cut, φ(S) = di∑
j 6=di

dj
which is expected to be small for most reasonable graphs

(and hence is not very interesting).

Remark 1. An equivalent definition of conductance of a cut is φ(S) = |∂S|
min(V ol(S),V ol(S̄)

. Correspondingly

the conductance of a graph is then defined as φ(G) = minS 6=φ φ(S)

Remark 2. Computing either φ(G) or the S that is the solution of the optimization problem defining

φ(S) is NP-Hard. Even a constant factor approximation for this problem is not known.

Remark 3. One could come up with alternative ways of capturing the intuition behind Volume of a cut,

Conductance of a cut etc. The advantage of defining them this way is that results relating combinatorial

properties of the graph and linear algebraic properties of the laplacian can be proven.

We now state Cheeger’s Inequality.

Theorem 11 (Cheeger’s Inequality).

µ2

2
≤ φ(G) ≤

√
2µ2

Before proving the result we first note that Cheeger’s Inequality allows us to tightly bound (both

from above and below) φ(G) the conductance of a graph (a combinatorial notion) using µ2 (a linear

algebraic notion) and vice-versa. Intuitively it states that µ2 is small iff φ(G) is small (or the graph is

not well-connected). Furthermore if µ2 = 0 =⇒ φ(G) = 0. Said differently there exists a cut with

zero conductance. This is possible iff the graph is disconnected (taking S as one of the components gives

φ(S) = 0). Hence we recover the result we proved in the last lecture.

In today’s lecture we will only prove the lower bound on φ(G). This is easier to prove than the upper

bound.

Proof. We need to show:

φ(G) := min
S⊂V,0<V ol(S)≤ 1

2
V ol(V )

φ(S) ≥ µ2

2

It is sufficient to show for any fixed S such that 0 < V ol(S) ≤ 1
2V ol(V ):

φ(S) ≥ µ2

2

Fix such a cut S.

Next we recall the Rayleigh Quotient characterization of µ2:

µ2 = min
x 6=0,xT v1=0

xT L̂x

xTx
= min

x 6=0,xT v1=0

xTD−
1
2LD−

1
2x

xTx

We perform the substitution y = D−
1
2x:

µ2 = min
y 6=0,vT1 D

1
2 y=0

yTLy

yTDy
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Hence to prove that 2φ(S) ≥ µ2 = min
y 6=0,vT1 D

1
2 y=0

yTLy
yTDy

, it is sufficient to find a y satisfying: y 6=

0, vT1 D
1
2 y = 0 and 2φ(S) ≥ yTLy

yTDy
.

A natural choice of y = 1S that is, the indicator vector for cut S (yi = 1 iff i ∈ S). However this does

not satisfy vT1 D
1
2 y = 0. To fix this we use y = 1S − σe where σ := V ol(S)

V ol(V ) where e = (1, 1, . . . 1). Doing

so ensures vT1 D
1
2 y = 0 as can be verified below:

yT (D
1
2 v1) = 〈y,D1/2v1〉

= 〈1S , D1/2v1〉 −
V ol(S)

V ol(V )
〈e,D1/2v1〉

Next we recall that v1 = (
√
d1 . . .

√
dn) and D = Diag(d1, . . . dn). Hence D

1
2 v1 = (d1, d2 . . . dn). Hence:

yT (D
1
2 v1) = 〈1S , D1/2v1〉 −

V ol(S)

V ol(V )
〈e,D1/2v1〉

=
∑
i∈S

di − V ol(S)

= 0

Now we are just left to verify 2φ(S) ≥ yTLy
yTDy

. We first simplify yTLy and yTDy separately.

yTLy = (1S − σe)TL(1S − σe)
= 1TSL1S [Since Le = 0, e is an eigenvector with 0 eigenvalue for L]

=
∑

(i,j)∈E

((1S)i − (1S)j)
2

=
∑

(i,j)∈∂(S)

1

= |∂(S)|

Next we simplify yTDy:

yTDy = 1TSD1S + σ2eTDe− 2σ1TSDe

= V ol(S) + σ2V ol(V )− 2σV ol(S)

= V ol(S)

(
1− V ol(S)

V ol(V )

)
Combining the expressions for yTLy and yTDy:

yTLy

yTDy
=

φ(S)

1− V ol(S)
V ol(V )

The condition we needed to check was 2φ(S) ≥ yTLy
yTDy

⇔ 1− V ol(S)
V ol(V ) ≥

1
2 ⇔ V ol(S) ≤ 1

2V ol(V ) which was

one of the assumptions on S.
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